<<

A -Theoretical Approach to the of Chemical Elements: Old and New Developments

MauriceR.Kibler InstitutdePhysiqueNucléaire IN2P3CNRSetUniversitéClaudeBernardLyon1 43Boulevarddu11Novembre1918 69622VilleurbanneCedex France Abstract Thispaperisacompanionarticletothereviewpaperbythepresentauthordevoted to the classification of matter constituents (chemical elements and particles) and published in the first part of the proceedings of The Second Harry Wiener InternationalMemorialConference.Itismainlyconcernedwithagrouptheoretical approachtothePeriodicTableoftheneutralelementsbasedonthenoncompact groupSO(4,2) ⊗SU(2). Presented in part as an invited talk to The Second Harry Wiener International Memorial Conference: “ The Periodic Table: Into the 21 st Century ”,Brewster’sKGRnearBanff,Alberta,Canada,July 1420,2003. To be published in The Mathematics of the Periodic Table ,D.H.RouvrayandR.B.King,Eds.,Nova SciencePublishers,NewYork,2005.

A Group-Theoretical Approach to the Periodic Table of Chemical Elements: Old and New Developments

MauriceR.Kibler InstitutdePhysiqueNucléaire,IN2P3CNRSetUniversitéClaudeBernardLyon1, 43Boulevarddu11Novembre1918,69622VilleurbanneCedex,France

1. INTRODUCTION Thischapterisacompanionarticletothereviewpaperbythepresentauthor devoted to the classification of matter constituents (chemical elements and particles)andpublishedinthefirstpartoftheproceedingsofTheSecondHarry Wiener International Memorial Conference [1]. It is mainly concerned with a grouptheoreticalapproachtothePeriodicTableoftheneutralelementsbasedon thegroupSO(4,2) ⊗SU(2). The chapter is organized in the following way. The basicelementsofgroup theoryusefulforthisworkarecollectedinSection2.Section3dealswiththeLie algebraoftheLiegroupSO(4,2).InSection4,the à la SO(4,2) ⊗SU(2)Periodic Table is presented and its potential interest is discussed in the framework of a programresearch(theKGRprogram).

2. BASIC GROUP THEORY

2.1 Some groups useful for the Periodic Table The structure of a group is the simplest mathematical structure used in and . A group is a set of elements endowed with an internal composition law which is associative,hasaneutralelement,andforwhicheach elementinthesethasaninversewithrespecttotheneutralelement.Therearetwo kindsofgroups:thediscretegroups(withafinitenumberoracountableinfinite number of elements) and the continuous groups (with a noncountable infinite numberofelements).Physicsandchemistryusebothkindsofgroups.However, the groups relevant for the Periodic Table are continuous groups and more specificallyLiegroups.Roughlyspeaking,aLiegroupisacontinuousgroupfor which the composition law exhibits analyticity property. To a given Lie group correspondsoneandonlyoneLiealgebra(i.e.,anonassociativealgebrasuchthat thealgebralawisantisymmetricandsatisfiestheJacobiidentity).Thereverseis nottrueinthesensethatseveralLiegroupsmaycorrespondtoagivenLiealgebra. AsatypicalexampleofaLiegroup,letusconsiderthespecialrealorthogonal groupinthreedimensions,notedSO(3),whichisisomorphictothepointrotation 1 groupinthreedimensions.TheLiealgebra, notedso(3)orA 1,oftheLiegroup SO(3) is nothing but the algebra of angular momentum of quantum mechanics. Indeed,theLiealgebraso(3)isisomorphictotheLiealgebrasu(2)ofthespecial unitarygroupintwodimensionsSU(2).Therefore,thegroupsSO(3)andSU(2) havethesameLiealgebraA 1.Inmoremathematicalterms,thelatterstatementcan bereformulatedinthree(equivalent)ways:su(2)isisomorphictoso(3), 2orSU(2) ishomomorphicontoSO(3)withakerneloftypeZ 2,orSO(3)isisomorphicto 3 SU(2)/Z 2. AmongtheLiegroups,wemaydistinguish:thesimpleLiegroupswhichdo nothaveinvariantLiesubgroupandthesemisimpleLiegroupswhichdonothave abelian (i.e., commutative) invariant Lie subgroup. This definition induces a corresponding definition for Lie algebras: we have simple Lie algebras (with no invariantLiesubalgebra)andsemisimpleLiealgebras(withnonabelianinvariant Liesubalgebra).Ofcourse,theLiealgebraofasemisimple(respectivelysimple) Liegroupisasemisimple(respectivelysimple)Liealgebra.Itshouldbenotedthat anysemisimpleLiealgebraisadirectsumofsimpleLiealgebras. For example, the Poincaré group (which is a Lie group leaving the form dx 2+dy 2+dz 2–c2dt 2invariant)isnotasemisimpleLiegroup.Thisgroupcontains thespacetimetranslations,thespacesphericalrotationsandtheLorentzhyperbolic rotations.Asamatteroffact,thespacetimetranslationsformanabelianinvariant LiesubgroupsothatthePoincarégroupanditsLiealgebraareneithersemisimple nor simple. On the contrary, the Lie groups SU(2) and SO(3) do not contain invariantLiesubgroup:theyaresimpleand,consequently,semisimpleLiegroups. TheLiealgebrasu(2)~so(3)orA 1isthussemisimple. An important point for applications to chemistry and physics is the Cartan classification of semisimple Lie algebras. Let us consider a semisimple Lie algebraAofdimensionororderr(risthedimensionofthevectorspaceassociated withA).Letusnote(,)theLiealgebralaw(whichisoftenacommutator[,]in numerousapplications).Itispossibletofindabasisforthevectorspaceassociated withthealgebraA,thesocalledCartanbasis,theelementsofwhicharenotedH i withi=1,2,…,ℓandE ±αwith α=1,2,…,½(r–ℓ)andaresuchthat (H i ,H j)=0 (H i,E +α)= αiE +α,,(H i,E α)=–αiE α,, αi∈R i i (E +α,E α)= α H i,(E α,E β)=N αβ,γE γif β≠–α, α ∈R, Nαβ,γ∈R

1TheLiealgebraofaLiegroupGisveryoftennotedg.Hence,so(3)standsfortheLie algebraoftheLiegroupSO(3). 2Thisisnotedsu(2)~so(3). 3 ThisisnotedSO(3)~SU(2)/Z 2. TheCartanbasisclearlyexhibitsanoninvariantabelianLiesubalgebra,namely, thesocalledCartansubalgebraspannedbyH 1,H 2,…,H ℓ.Thenumberℓiscalled therankoftheLiealgebraA.Ofcourse,r–ℓisnecessarilyeven.Cartanshowed thatthesemisimpleLiealgebrascanbeclassifiedinto: • fourfamilies(eachhavingacountableinfinitenumberofmembers)notedA ℓ, Bℓ,C ℓandD ℓ • fivealgebrasreferredtoasexceptionalalgebrasandnotedG 2,F 4,E 6,E 7and E8. Theorderrandtherankℓareindicatedinthefollowingtablesforthefourfamilies and the five exceptional algebras. In addition, a representative (in real form) algebraisgivenforeachfamily. Family Rank ℓ Order r Value of r–ℓ Representative algebra

Aℓ ℓ≥1 ℓ(ℓ+2) ℓ(ℓ+1) su(ℓ+1) 2 Bℓ ℓ≥2 ℓ(2ℓ+1) 2ℓ so(2ℓ+1) 2 Cℓ ℓ≥3 ℓ(2ℓ+1) 2ℓ sp(2ℓ) Dℓ ℓ≥4 ℓ(2ℓ–1) 2ℓ(ℓ–1) so(2ℓ) Exceptional algebra Rank ℓ Order r Value of r–ℓ

G2 2 14 12 F4 4 52 48 E6 6 78 72 E7 7 133 126 E8 8 240 232 Foreachofthefourfamilies,atypicalalgebraisgiven: 4

• thealgebrasu(n)withn=ℓ+1forA ℓ,theLiealgebraofthespecialunitary groupinndimensionsSU(n)

• thealgebraso(n)withn=2ℓ+1forB ℓorn=2lforD ℓ,theLiealgebraofthe specialrealorthogonalgroupinndimensionsSO(n)

• thealgebrasp(2n)withn=ℓforC ℓ,theLiealgebraofthesymplecticgroup Sp(2n)in2ndimensions. Of course, other Lie algebras may occur for each family. For example, the Lie algebra so(4, 2) of the noncompact group SO(4, 2) is of type D 3, like the Lie algebraso(6)ofthecompactgroupSO(6).

4Somecoincidencesbetweenafewfamiliesmayappearforlowvaluesofℓ.Forinstance, wehaveC 1≡B 1≡A 1,C 2≡B 2,D 2 ≡A 1⊕A 1,andD 3≡A 3. A list of the Lie groups and Lie algebras to be used here is given in the followingtable.Foreachcouple(group,algebra),theorderristhedimensionof the corresponding Lie algebra; it is also the number of essential parameters necessaryforcharacterizingeachelementofthecorrespondingLiegroup. Lie SO(3) SO(4) SO(4,1) SO(3,2) SO(4,2) SU(2) SU(2,2) Sp(8, R) group

Lie A1 D2 B2 B2 D3 A1 A3 C4 algebra Order r 3 6 10 10 15 3 15 36 Awordoneachtypeofgroupinthetableaboveisinorder: • ThegroupSO(n)isthespecialrealorthogonalgroupinndimensions(nshould notbeconfusedwiththeorderr=½n(n–1)ofthegroup).Itisacompactgroup 2 2 2 leavinginvarianttherealformx 1 +x 2 +…+x n (withx i∈R)andisthus isomorphictoapointrotationgroupin Rn. • The group SO(p, q) is the special real pseudoorthogonal group in p + q dimensions(p+qshouldnotbeconfusedwiththedimension½(p+q)(p+q–1) 2 2 ofthegroup).Itisanoncompactgroupleavinginvarianttherealformx 1 +x 2 2 2 2 2 +…+x p –x p+1 –x p+2 –…–x p+q (withx i∈R)andisthusisomorphictoa generalized rotation group (involving spherical and hyperbolic rotations) in Rp,q .ItsmaximalcompactsubgroupisSO(p) ⊗SO(q).Awellknownexample is provided by SO(3, 1). The group SO(3, 1) is isomorphic to the Lorentz group,asugroupofthePoincarégroup,oforderr = 6 spanned by 3 space rotations(aroundtheaxesx,yandz)and3spacetimerotations(intheplanes xt, yt and zt). Other examples are the groups SO(4, 1) and SO(3, 2), isomorphictothetwodeSittergroupswhichcanbecontracted(intheWigner Inönüsense)intothePoincarégroup,andthegroupSO(4,2),isomorphicto theconformalgroup.ThePoincarégroupitselfisasubgroupofSO(4,2). • ThegroupSU(n)isthespecialunitarygroupinndimensions(nshouldnotbe confusedwiththedimensionr=n 2–1ofthegroup).Itisacompactgroup 2 2 2 leavinginvarianttheHermitecomplexform|z 1| +|z 2| +…+|z p| (withz i∈ C).Thecasen=2correspondstothespectralgroupthatlabelsthespinsince theLiealgebraofSU(2)isisomorphictothealgebraofageneralizedangular momentum. The group SU(2) is the universal covering5 group of SO(3), another way to say that SO(3) ~ SU(2)/Z 2. Note that the direct product SU(2) ⊗SU(2)ishomomorphicontoSO(4)withakerneloftypeZ 2sothatwe have the isomorphism SO(4) ~ SU(2) ⊗SU(2)/Z 2 and SU(2) ⊗SU(2) is the universalcoveringgroupofSO(4). 6 5 Given a Lie algebra A, there exists a simply connected Lie groupwhose Lie algebra is isomorphictoA.ThisgroupistheuniversalcoveringgroupofA. 6 IntermsofLiealgebrasthismeansthatso(4)~su(2) ⊕su(2)orD 2~A 1⊕A 1.Therefore, D2isasemisimpleLiealgebrawhichisnotsimple. • The group SU(p, q) is the special pseudounitary group in p+q dimensions (p+qshouldnotbeconfusedwiththedimensionr=(p+q) 2–1ofthegroup).It 2 2 isanoncompactgroupleavinginvariantthecomplexform|z 1| +|z 2| +…+ 2 2 2 2 |z p| –|z p+1 | –|z p+2 | –…–|z p+q | (withz i∈C).ThetwogroupsSU(2,2)and SO(4,2)havethesameLiealgebraD 3.ThegroupSU(2,2)ishomomorphic ontoSO(4,2)withakerneloftypeZ 2sothatSO(4,2)~SU(2,2)/Z 2andthus SU(2,2)istheuniversalcoveringgroupofSO(4,2). • ThegroupSp(2n, R)istherealsymplecticgroupin2ndimensions(2nshould not be confused with the dimension r = n(2n+1) of the group). It is a noncompactgroupleavinginvariantasymplecticformin2ndimensions. Mostofthegroupsdiscussedaboveoccurinthetwochainsofgroups SO(3) ⊂SO(3,2) ⊂SO(4,2) ⊂Sp(8, R) and SO(3) ⊂SO(4) ⊂SO(4,1) ⊂SO(4,2) ⊂Sp(8, R) whichareofrelevanceinthepresentwork.

2.2 Representations of Lie groups and Lie algebras The concept of the representation of a group is essential for applications. A linearrepresentationofdimensionmofagroupGisahomomorphicimageofGin GL(m, C),thegroupofregularcomplexm ×mmatrices.Inotherwords,toeach elementofGtherecorrespondsamatrixofGL(m, C)suchthatthecomposition rules for G and GL(m, C) are conserved by this correspondence. Among the various representations of a group, the unitary irreducible representations play a centralrole.Fromthemathematicalviewpoint,aunitaryirreduciblerepresentation (UIR) consists of unitary matrices that leave no space for the representation invariant. If invariant subspaces exist, the representation is said to be reducible. Fromthepracticalviewpoint,aUIRcorrespondstoasetofstates(wavefunctions intheframeworkofquantummechanics)whichcanbeexchangedortransformed intoeachotherviatheelementsofthegroups.Moreintuitively,wemaythinkofa UIRofdimensionmasasetofmboxesintoeachofwhichitispossibletoputan objectorstate,themobjectsinthesetpresentinganalogiesorsimilarproperties. When passing from a group to one of its subgroups, each UIR of the group is generallyreducibleasasumofUIR’softhesubgroup. AcompactgrouphasacountableinfinitenumberofUIR’soffinitedimension; thegroupSO(3)hasUIR’sofdimensions2ℓ+1,denoted(ℓ),whereℓ ∈N,while thegroupSU(2)hasUIR’sofdimensions2j+1,denoted(j),where2j ∈N;the group SO(4) has UIR’s denoted (j 1,j2) with 2j 1 ∈ N and 2j 2 ∈ N of dimension (2j 1+1)(2j 2+1);theUIR(j,j)ofSO(4)canbedecomposedinto the direct sum (j,j)=(0)⊕(1)⊕… ⊕(2j)intermsofUIR’sofSO(3).Foranoncompactgroup, theUIR’sarenecessarilyofinfinitedimension;thus,eachUIRofthenoncompact groupSO(4,2)containsaninfinitenumberofboxes. The passage from a Lie group Gtoitscorresponding Lie algebra g can be achieved by means of a derivation (or Taylor) process. It is thus clear that any representation of a Lie group provides a representation of its Lie algebra. The reverse passage from a Lie algebra g to one Lie group G i (the index i can take severalvalues)islessevidentsinceitinvolvesanintegrationprocess.Therefore, fromagivenrepresentationofaLiealgebrag,itispossibletogenerateeitheran ordinary (or univalued) representation of G i or a projective (or multivalued) representation of G i.TheuniversalcoveringgroupGofallthegroups Gi is the groupforwhichanyrepresentationofgprovidesanordinaryrepresentationofG. ThisisbetterunderstoodwiththeexampleoftheLiealgebrag=A 1forwhichwe haveG 1=SO(3)andG 2=SU(2).TheUIR’sofA 1arelabeled(j)with2j ∈N,the UIR (j) being of dimension 2j + 1. In the case where j is an integer, the representation(j)ofA 1yieldsanordinaryrepresentationforbothSO(3)andSU(2) whileinthecasewherejishalfofanoddinteger,therepresentation(j)ofA 1yields anordinaryrepresentationofSU(2)andaprojective(orspinor)representationof SO(3). 7

2.3 Representation theory of a semi-simple Lie algebra

2.3.1Generalities Inwhatfollows,theelementsofaLiealgebraAarelinearoperatorsX,Y,… actingonaseparableHilbertspaceandtheLiealgebralaw(,)isthecommutator law[,](with[X,Y]=XY–YX). 8Inthiscase(thatcorrespondstothegeneral situationinquantumchemistry),wecanconstructpolynomialsfromtheelements ofAandthealgebraofthesepolynomialsiscalledtheenvelopingalgebraofA. Someparticularpolynomialsplayanimportantrôle,viz.,thosepolynomialswhich commutewithalltheelementsofA.ThesepolynomialsarecalledinvariantsofA. IfAissemisimple,thenumberofinvariantsofAandsomeoftheirpropertiesare givenbythethreefollowingtheorems. Theorem 1 (Cartan). ThenumberofindependentinvariantsofasemisimpleLie algebraisequaltoitsrank. AnysemisimpleLiealgebraAofrankℓthuspossessesℓinvariantoperatorsC i (withi=1,2,…,ℓ).Oneoftheseinvariants,sayC1,isapolynomialoforder2 referred to as the Casimir or Casimir operator. Note that the remaining ℓ – 1 invariantsofAareoftencalledCasimiroperatorstoo. 7Inthe(Bethe)terminologyofcrystalfieldtheoryfamiliartothechemist,thegroupSU(2) issaidtobethedoublegrouporspinorgroupofSO(3). 8 Any basis of the vector space associated with the Lie algebra g = A gives a set of generatorsofitsuniversalcoveringgroupGandeachelementofGcanbeobtainedfromthe generatorsbymeansofanexponentiationprocess. Theorem 2 (Cartan). For a semisimple Lie algebra of rank ℓ, the ℓ Cartan generators H i and the ℓ invariants C i with i = 1, 2, …, ℓ constitute a set of commutingoperators. Asatypicalexample,letusconsiderthealgebraA=A 1oforderr=3andrank ℓ=1.SuchanalgebraisspannedbythreeoperatorsX a(a=1,2,3)thatsatisfy

[X a,X b]= εabc Xc where ε is the totally antisymmetric tensor on three indices with ε123 = 1. The Cartanbasis(H 1,E +1 ,E 1)isgivenby 2 2 H1 =(1/v)X 3,E +1 =(1/v )(X 1+iX 2),E 1=(1/v )(X 1–iX 2),v= 2 TheCasimiroperatoris 2 2 2 2 C1=½(X 1 +X 2 +X 3 )=H 1 +E +1 E1+E 1E+1 andtheset{C 1,X 3}isasetofcommutingoperators.Notethat,inthetheoryof 2 2 angularmomentum,thelattersetcorrespondstotheset{J ,J z}ofthesquareJ ofa generalizedangularmomentumanditscomponentJ zaroundanarbitraryaxis. GoingbacktothegeneralcaseofasemisimpleLiealgebraoforderrandrank ℓ,theset{H i,C i:i=1,2,…,ℓ}isnotgenerallyacompletesetofcommuting operators.ThiscanbemadepreciseviaTheorem3. Theorem 3 (Racah). For a semisimple Lie algebra A of rank ℓ and order r, a furthersetoff=½(r–3ℓ)additionaloperatorsintheenvelopingalgebraofAis necessaryforcompletingtheset{H i,C i:i=1,2,…,ℓ}. LetO β(with β=1,2,…,f)bethefadditionaloperators.Then,Theorem3means thattheset{H i,C i:i=1,2,…,ℓ;O β: β=1,2,…,f}isacompletesetconsisting ofℓ+ℓ+f=½(r+ℓ)commutingoperators.Thevaluesr,ℓandfforsomegroups ofinterestherearegiveninthefollowingtable.(ThenumberfiscalledtheRacah number.) Lie group SO(3) SO(4) SO(4,1) SO(4,2) Sp(8, R) and and and and SU(2) SU(2) ⊗SU(2) SO(3,2) SU(2,2)

Lie algebra B1 =A 1 D2 =A 1⊕A1 B2 D3=A 3 C4 Order r 3 6 10 15 36 Rank ℓ 1 2 2 3 4 Racah number f 0 0 2 3 12 Number of 2 4 6 9 20 commuting operators ForA 1,wehavef=0andtheset{C 1,X 3}iscomplete,awellknownfactinthe theoryofangularmomentum.Asaconsequence,wealsohavef=0forD 2.The situationismorecomplicatedfortheotheralgebrasandwenotethatnineoperators

(3H i’s,3C i’sand3O β’s)occurforthealgebraofSO(4,2).

2.3.2RepresentationsofasemisimpleLiealgebra LetHbetherepresentationspaceofasemisimpleLiealgebraororderrand rankℓ.Theoperatorsoftheset{C i,H i:i=1,2,…,ℓ;O β: β=1,2,…,f}admit commoneigenvectors.Wenote ψ((c 1,c 2,…,c ℓ);h 1,h 2,…h ℓ;o 1,o 2,…,o f)or,in an abbreviated form, ψ((c) ; h ; o) the common eigenvector of the ½ (r + ℓ) operators C i, H i and O β. The quantum numbers c 1, c 2, …, c ℓ stands for or characterizetheeigenvaluesofC 1,C 2,…,C ℓ,respectively;similarly,h 1,h 2,…h ℓ ando 1,o 2,…,o fstandfororcharacterizetheeigenvaluesofH 1,H 2,…,H ℓandO 1, O2,…,O f,respectively.Moreprecisely,wehave

Ci ψ((c);h;o)=c iψ((c);h;o) Hiψ((c);h;o)=h iψ((c);h;o) Oβψ((c);h;o)=o βψ((c);h;o)

Forfixed(c) ≡(c 1,c 2,…,c ℓ),thevectors ψ((c);h;o),withh ≡h 1,h 2,…,h ℓand o ≡o 1,o 2,…,o fvarying,spananirreduciblerepresentationoftheLiealgebraA.In other words, the eigenvalues c 1, c 2, …, c ℓ (or the numbers characterizing the eigenvalues)oftheinvariantsC 1,C 2,…,C ℓmayserveforlabelingtheirreducible representationsofA.

3. THE LIE ALGEBRA SO(4, 2) AS A DYNAMICAL NON-INVARIANCE ALGEBRA

3.1 The chain SO(3) ⊂⊂⊂ SO(4) Let H Ψ=E Ψ betheSchrödingerequationforalikeatomofnuclearchargeZe(Z=1 forhydrogen).Werecallthatthediscretespectrum(E <0)ofthenonrelativistic HamiltonianHisgivenby 2 E ≡E n=E 1/n , Ψ≡Ψnℓm whereE 1istheenergyofthegroundstate(dependingonthereducedmassofthe hydrogenlikesystem,thenuclearchargeandthePlanckconstant)andwhere n=1,2,3,… forfixedn:ℓ=0,1,…,n–1 forfixedℓ:m=–ℓ,–ℓ+1,…,ℓ 2 ThedegeneracydegreeofthelevelE nisn ifthespinoftheelectronisnottaken intoaccount(2n 2iftakenintoaccount). 9

Forfixednandℓ,thedegeneracyofthe2ℓ+1wavefunctions Ψnℓm isexplained by the threedimensional proper rotation group, isomorphic to SO(3). The degeneracyinmfollowsfromtheexistenceofafirstconstantofthemotion,i.e., the angular momentum L(L1,L2,L3) of the electron of the hydrogenlike atom. Indeed,wehaveafirstsetofthreecommutingoperators:theHamiltonianH,the 2 square L oftheangularmomentumoftheelectronandthethirdcomponentL 3of theangularmomentum.TheoperatorsL 1,L 2andL 3spantheLiealgebraofSO(3).

For fixed n, the degeneracy of the wavefunctions Ψnℓm corresponding to differentvaluesofℓisaccidentalwithrespecttoSO(3)andcanbeexplainedvia the group SO(4). The introduction of SO(4) can be achieved in the framework eitherofalocalapproachbyPauli[2]orastereographic 10 approachbyFock[3]. We shall follow here the localorLielikeapproachdevelopedbyPauli[2].The degeneracyinℓfollowsfromtheexistenceofasecondconstantofthemotion,i.e., theRungeLenzvector M(M 1,M 2,M 3)(discussedbyLaplace,Hamilton,Rungeand Lenz in classical mechanics and by Pauli in quantum mechanics). By properly rescalingthevector M,weobtainavector A(A 1,A 2,A 3)whichhasthedimension ofanangularmomentum.Itcanbeshownthattheset{L i,A i:i=1,2,3}spansthe LiealgebraofSO(4),SO(3,1)andE(3)forE <0,E >0andE=0,respectively. 11 Asapointoffact,theobtainedLiealgebrasareLiealgebraswithconstraintssince thereexiststwoquadraticrelationsbetween Land A[2]. Wenowcontinuewiththe caseE <0.Then,bydefining J= L+ A, K= L–A itispossibletowritetheLiealgebraofSO(4)intheformoftheLiealgebraofthe directproductSO(3) J⊗SO(3) K withthesets {J i=L i+A i:i=1,2,3} and {K i=L i–A i:i=1,2,3} generatingSO(3) J andSO(3) K,respectively.TheUIR’sofSO(4)canbelabeledas 2 (j,k)with2j ∈Nand2k ∈N.Forfixedn,then functions Ψnℓm generatetheUIR (½(n–1),½(n–1))ofSO(4),ofdimensionn 2,correspondingto2j=2k=n–1. 9Notethat2n 2cantakethevalues2n 2=2,8,18,32,50,etc. 10 FockmappedtheSchrödingerequationforthehydrogenatomin R3 ontotheonefora sphericallysymmetricalfreepointrotorin R4(inmomentumspaceafterFouriertransform). Thisstereographicmappingestablishesaconnectionbetweenthemotionofaparticleina Coulomb potential in the threedimensional space ( R3 hydrogen atom) and a particle constrainedtomoveinanullpotentialonthesurfaceofafourdimensionalsphere( R4 free rotor)[3]. 11 E(3)standsfortheEuclideangroupinthreedimensions. Theconditionj=kcomesfromoneofthetwoquadraticrelationsbetween Land A (whichcanbetranscribedas J 2= K 2intermsof Jand K).Theotherrelationgives 2 E = E 1/n . Finally, note that the restriction from SO(4) to SO(3) yields the decomposition (½(n–1),½(n–1))=(0) ⊕(1) ⊕… ⊕(n–1) intermsofUIR’s(ℓ)ofSO(3). Atthispoint,itisinterestingtounderstandthedifferentstatusofthegroups SO(3)andSO(4)foranhydrogenlikeatom.ThegroupSO(4),respectivelySO(3), describes multiplets characterized by a given value of the principal quantum number n, respectively the orbital angular quantum number ℓ; the multiplet of SO(4), respectively SO(3), associated to n, respectively ℓ, is of dimension n 2, respectively2ℓ+1.ThegroupSO(3)isageometricalsymmetrygroupinthesense that it leaves invariant both the kinetic part and the potential part of the HamiltonianH.Asaconsequence,thegeneratorsL 1,L 2andL 3ofSO(3)commute 2 withH.Hence,wehavetheset{H, L ,L 3}ofcommutingoperators.Thegroup SO(4)isadynamicalinvariancegroupthatmanifestsitselfhereviaitsLiealgebra: it does not correspond to a geometrical symmetry groupofHbutitsgenerators 2 2 commute with H. Hence, we have the set {H, L , L 3, A , A 3} of commuting operators.Thelattersetcomprisesfiveindependentconstantsofthemotion(see Ref.[4]). 12 BesidesthesymmetrygroupSO(3)andthedynamicalinvariancegroupSO(4), anothergroup,namelySO(4,2)playsanimportantrôle.Thisisadynamicalnon invariancegroupinthesensethatnotallthegeneratorsofSO(4,2)commutewith H. It can be considered as a spectrum generating group since any wavefunction

Ψnℓm canbededucedfromanyotherwavefunction throughtheactionon Ψnℓm of generatorsofSO(4,2)whichdonotcommutewithH.ThegroupSO(4,2)was introduced,inconnectionwiththehydrogenatom,byBarutandKleinert[5]and independently,inaSO(6, C)form,byMalkinandMan’ko[6].Wenowgivethe generallinesforconstructingSO(4,2)fromSO(4)byanascentprocess(seeRefs. [5],[7]and[8]).

3.2 The chain SO(3) ⊂⊂⊂ SO(4) ⊂⊂⊂ SO(4, 2) ThestartingpointistofindabosonicrealizationoftheLiealgebraofSO(4). Letusintroducetwocommutingpairsofbosonoperators(a 1,a 2)and(a 3,a 4).They satisfythecommutationrelations + + + [a i,a j ]= δ(i,j),[a i,a j]=[a i ,a j ]=0 12 Thisnumber(2d–1=5)isthemaximumnumberofindependentconstantsofthemotion foradynamicalsystemind=3dimensions.Asysteminddimensionsforwhichthenumber of independent constants of the motion is equal to 2d – 1 is referred to a maximally superintegrablesystem[4].Ford=3,twomaximallysuperintegrablesystemsareknown: theharmonicoscillatorsystemandthehydrogenlikesystem. + whereweuseA todenotetheHermiteanconjugateoftheoperatorA.(Thea i’sare + annihilationoperatorsandthea i ’sarecreationoperators.)Itisasimplematterof calculationtocheckthatthesixbilinearforms(J12 ,J 23 ,J 31 )and(J 14 ,J 24 ,J 34 )defined via + + Jαβ=½(a σγa+b σγb)with α, β, γcyclic and + + Jα4=–½(a σαa–b σαb) spantheLiealgebraD 2ofSO(4).Inthelattertwodefinitions,wehave theindices α, β, γcantakethevalues1,2and3

σ1, σ2and σ3arethePaulimatrices aandbstandforthecolumnvectorswhosetransposedvectorsaretheline t t vectors a=(a 1a 2)and b=(a 3a 4),respectively + + + + + + + + a and b stand for the line vectors a = (a 1 a 2 ) and b = (a 3 a 4 ), respectively. Wecanfindnineadditionaloperatorswhichtogetherwiththetwotripletsof operators(J 12 ,J 23 ,J 31 )and(J 14 ,J 24 ,J 34 )generatetheLiealgebraD 3ofSO(4,2). Thesegeneratorscanbedefinedas

Jα5=i[J α4,J 45 ]with α=1,2,3 + t + t J45 =½(a σ2 b –a σ2 b) Jα6=–i[J α5,J 56 ]with α=1,2,3 J46 =–i[J 45 ,J 56 ] + + J56 =½(a a+b b+2) Thefifteenoperators(J 12 ,J 23 ,J 31 ),(J 14 ,J 24 ,J 34 ),ononehand,and(J 15 ,J 25 ,J 35 ,J 45 ), (J 16 ,J 26 ,J 36 ,J 46 ,J 56 ),ontheotherhand,canbeshowntosatisfy [J ab ,J cd ]=i(g bc Jad –g ac Jbd +g ad Jbc –g bd Jac ) wherethemetric(g ab )isdefinedby (g ab )=diag(111111) WethusendupwiththeLiealgebraofSO(4,2).Asetofinfinitesimalgenerators of SO(4, 2), acting on functions f : (x 1, x 2, …, x 6) |→ f(x 1, x 2, …, x 6) of six variables,isprovidedbythedifferentialoperators

Jab |→U ab =i(g aa xa∂/∂xb–g bb xb∂/∂xa) whichgeneralizethecomponentsoftheusualorbitalangularmomentumin R3.13 SincetheLiealgebraofSO(4,2)isofrank3,wehavethreeinvariantoperators initsenvelopingalgebra.Indeed,theyareofdegree2,3and4andaregivenby ab C1=∑J ab J ab cd ef C2=∑ εabcdef J J J bc da C3=∑J ab J J cd J where εisthetotallyantisymmetrictensoronsixcovariantindexeswith ε123456 =1 and ab ac bd ab J =∑g g J cd withg =g ab (weusetheEinsteinsummationconventions). WenowbrieflydiscusstheexistenceofaspecialrepresentationofSO(4,2) thatprovidesthequantumnumbersn,ℓandm.ItcanbeseenthattheoperatorJ 45 connectsstateshavingdifferentvaluesofn.ThisshowsthattheLiealgebraofthe group SO(4, 2) is a dynamical noninvariance algebra. In fact, it is possible to constructanystatevector ψnℓm byrepeatedapplicationonthegroundstatevector ψ100 oftheoperatorJ 45 –J 46 andofshiftoperatorsforSO(4).Thisresultisatthe rootofthefactthatalldiscretelevels(orboundstates)ofanhydrogenlikeatom span an UIR of SO(4, 2). Let h be this representation. It corresponds to the eigenvalues6,0and–12oftheinvariantoperatorsC 1,C 2andC 3,respectively.The dynamical noninvariance group SO(4, 2) contains another dynamical non invariancegroup,namelySO(4,1),thatcontainsinturnthedynamicalinvariance group SO(4) andthusthesymmetrygroupSO(3).The representation h remains irreduciblewhenSO(4,2)isrestrictedtoSO(4,1).Ontheotherside,therestriction ofSO(4,2)toSO(4)yieldsthedecomposition

h= ⊕2j ∈N(j,j) whichisadirectsumoftherepresentations(j,j),with2j ∈N,ofthegroupSO(4). FurtherrestrictionfromSO(4)toSO(3)gives

h= ⊕n ∈N* ⊕ℓ=0ton–1(ℓ) that reflects that all the discrete states (with E < 0) of a hydrogenlike atom are containedinasingleUIRofSO(4,2).Asimilarresult holds for the continuum states(withE>0). 14

13 Theexpressionsofthecommutator[J ab ,J cd ]andoftheinfinitesimalgeneratorU ab arealso validforSO(p,q)ifwetake(g ab )=(11…111..1)where–1occursptimesand+1occursq times. 3.3 The chain SO(4, 2) ⊂⊂⊂ Sp(8, R) There exists a connection between the Schrödinger equation for a three dimensional hydrogenlike atom and the one for a fourdimensional isotropic harmonic oscillator. 15 Such a connection can be derived from the R4 → R3 KustaanheimoStiefel transformation, which is nothing but the Hopf fibration S3×R+→S 2×R+ofcompactfiberS 1(seeRefs.[9,10,11]andreferencestherein). Thisconnectioncanalsobeobtainedfromabosonization,viaJordanSchwinger boson calculus, of the Pauli equations for a hydrogenlike atom: the four dimensional harmonic oscillator can thus be decomposed into a pair of coupled twodimensionalisotropicoscillatorswiththesameenergy[9].Thiscoupledpairof R2 oscillators, or alternatively the R4 oscillator, can be described by the real symplectic group in eight dimensions Sp(8, R). 16 The introduction in the Lie algebraofSp(8, R)oftheconstraintarisingfromtheequalityoftheenergyofthe twotwodimensionaloscillatorsyieldsaLiealgebraunderconstraints 17 whichis isomorphic to the Lie algebra of SU(2, 2), the pseudounitary group in 2+2 dimensions, acoveringgroupofSO(4,2).Thedynamical noninvariance group SO(4,2)forathreedimensionalhydrogenlikeatomthusarisesasaquotientofthe real symplectic group associated to a fourdimensional isotropic harmonic oscillator subjected to a constraint. This derivationofSO(4,2)correspondstoa symmetry descent process and should be contrasted with the one in Section 3.2 which corresponds to a symmetry ascent process. A link between the two derivations can be established by noting that the Lie algebra of Sp(8, R) can be + generatedbythe36possiblebilinearformsofa ianda i (i=1to4)amongwhich 15generatetheLiealgebraofSU(2,2).

4. AN SO(4, 2) ⊗⊗⊗SU(2) APPROACH TO THE PERIODIC TABLE

4.1 Why the group SO(4, 2) ⊗⊗⊗SU(2)? Thereareseveralgrouptheoreticalapproachestotheperiodictable.Wemainly dealherewiththeSO(4,2) ⊗SU(2)approachbasedonthegroupSO(4,2)[12,13, 14,15,16,17,18,19].AninterestingquestionistoaskwhythegroupSO(4,2)isa quitenaturalcandidateforagrouptheoreticaldescriptionoftheperiodictable.As

14 LetusrememberthattheanalogofSO(4)forthecontinuum(orscattering)states ofahydrogenlikeatomisthenoncompactdynamicalinvariancegroupSO(3,1), anothersubgroupofSO(4,2). 15 Theoscillatorisanattractive(i.e.,ordinary)oscillatorforE<0,arepulsiveoscillatorfor E>0.ItreducestoafreeparticlesystemforE=0. 16 The real symplectic group Sp(2N, R) in 2N dimensions is a dynamical noninvariance groupfortheisotropicharmonicoscillatorinNdimensions.Itsmaximalcompactsubgroup SU(N)isadynamicalinvariancegroupfortheoscillator. 17 The concept of Lie algebra under constraints was discussed from the physical pointofviewinRef.[9]anddefinedinthemathematicalsenseinRef.[11]. afirstreason,chemistryisdeterminedbytheelectromagneticinteraction(oneof the four fundamental interactions besides the weak, strong and gravitational interactions) and we know from the beginning of the twentieth century that the Maxwellequationsoftheelectromagneticfieldarecovariantundertheconformal groupintheMinkowskispace,agroupisomorphictoSO(4,2)[20]. 18 Thesecond reasoncomesfromthefactthatSO(4,2)isthemaximaldynamicalnoninvariance group for a hydrogenlike atom which accounts for all the usual spectroscopic quantum numbers used for complex atoms described in a centralfield approximation.Ofcourse,SO(4,2)containsthegroupsSO(4)andSO(3),thelatter groupbeingthegeometricalsymmetrygroupforanycomplexatom. 19 Finally,the group SU(2) that enters in SO(4, 2) ⊗SU(2) is a spectral group which makes it possibletodoublethenumberofstatesdescribedbySO(4,2). Tobecomplete,weshouldalsomentionothergrouptheoreticalapproachesto thePeriodicTable[21,22,23,24].Mostoftheotherapproachesarebasedona joint use of quantum mechanics and group theory both applied to atomic spectroscopy.Amongtheseapproaches,wemaycitetheonebyNovaroandWolf [21]basedonperturbationtheoryandtheonebyNégadiandKibler[24]basedon quantumgroupsanddeformationtheory.Alongtheselines,letusmentionthatthe SU(2) ⊗SU(2) ⊗SU(2) approach by Novaro and Berrondo [21] is in some sense connectedtotheSO(4,2) ⊗SU(2)approachtobedescribedbelowsincethedirect productSU(2) ⊗SU(2) ⊗SU(2)occursinthenoncanonicalchainSO(4,2) ⊗SU(2) ⊃ SO(4) ⊗SU(2)viatheisomorphismSO(4) ∼SU(2) ⊗SU(2)/Z 2.

4.2 The à la SO(4, 2) ⊗⊗⊗SU(2) periodic table WediscussherethePeriodicSystemofthechemicalelementsfollowingthe generallinesdevelopedbyBarut[13]onthebasisofthegroupSO(4,2)andby Byakov,Kulakov,RumerandFet[16]onthebasisofthe(directproduct)group SO(4,2) ⊗SU(2)andfurtherinvestigatedbyOdabasi[14],Kibler[18],andGurskii etal.[19](seealsothepioneerworksinRefs.[12,15,17]). Fromapracticalpointofview,thereisonerepresentationofSO(4,2),viz.,the representationhdescribedinSections2and3,thatcontainsalldiscretestatesofthe hydrogenatom:Thesetofalldiscretestatesofthehydrogenatomcanberegarded as spanning an infinite multiplet of SO(4,2). This is the starting point for the constructionofaPeriodicChartbasedonSO(4,2) ⊗SU(2).Insuchaconstruction, thechemicalelementscanbetreatedasstructurelessparticlesand/orconsideredas thevariouspossiblestatesofadynamicalsystem;eachstatecanbededucedfroma referencestate(avacuumstateinhighenergyphysicsterminology)bymeansof shift(orcreation)operators.

18 ThegroupSO(4,2)isthelargestgroupleavingMaxwell’sequationsinvariant. 19 Foracomplexatom(manyelectronatom),theSO(4)invarianceisnolongervalidand onlytheSO(3)symmetryremains.TheSO(4)invarianceisbrokenbyanSO(3)symmetry breakingterm(asisthecaseinanHartreeFocktreatmentofamanyelectronatom). Tostartoff,letusgiveatwodimensionalgraphicalrepresentationoftheUIR hofthegroupSO(4,2).Theinfinitemultiplethcanbeorganizedintomultipletsof SO(4)andSO(3).ThemultipletsofSO(4)maybeplacedintorowscharacterized by the UIR labels n = 1, 2, etc. The n th row contains n multiplets of SO(3) characterizedbytheUIRlabelsℓ=0,1,…,n–1.Thistoaframe,withrows labeledbynandcolumnsbyℓ,ofentries[n+ℓn]locatedatlinenandcolumnℓ,in completeanalogywiththeskeletondescribedfortheMadelungrule[18].Withthe entry [n+ l n] are associated 2ℓ+1 boxes and each box can be divided into two boxessothattheentry[n+ℓn]contains2(2ℓ+1)boxes.Theresultantdoubling, i.e.,2ℓ+1 →2(2ℓ+1),maybeaccountedforbytheintroductionofthegroup SU(2): We thus pass from SO(4, 2) ⊃ SO(4) ⊃ SO(3) to SO(4, 2) ⊗SU(2) ⊃ SO(4) ⊗SU(2) ⊃ SO(3) ⊗SU(2). The 2(2 l + 1) boxes in the entry [n+ℓ n] are organizedintomultiplets(j)ofthegroupSU(2):For ldifferentfrom0,theentry 1 1 containstwomultipletscorrespondingtoj=ℓ– 2 andj=ℓ+ 2 oflengths2ℓand 1 2(ℓ + 2) + 1 = 2(ℓ+1), respectively; for ℓ=0, the entry contains only one 1 multipletcorrespondingtoj= 2 oflength2.Eachboxintheentry[n+ℓn]ofthe frame can be characterized by an address (nℓjm) with j and, for fixed j, m increasingfromlefttoright(forfixedj,thevaluesofmarem =–j,–j+1,…,j). WethusobtainaChart[18]forwhichthen th rowcontains2n 2(with2n 2=2,8,18, 32,50,etc.)boxesandtheℓth columncontainsaninfinitenumberofboxes. Theconnectionwithchemistryisasfollows.Toeachaddress(nℓjm)wecan associateavalueoftheatomicnumberZ(seeSection4.3).Thebox(nℓjm)isthen filledwiththechemicalelementofatomicnumberZ.ThisproducesTable1.Itis remarkable that Table 1 is very close to theonearisingfromtheMadelungrule [18].TheonlydifferenceisthatinTable1theelementsinagivenentry[n+ℓn]are arrangedinoneortwomultipletsaccordingtowhetherℓiszeroordifferentfrom zero.Therowsn=1,2,3,etc.ofTable1correspondtotheshellsK,L,M,etc., respectively,encounteredinthestandardPeriodicTable.AgivencolumnofTable 1correspondstoafamilyofchemicalanalogsinthestandardPeriodicTable. Table1resembles,tosomeextent,otherPeriodicTables.First,Table1is,up totheexchangeofrowsandcolumns,identicaltotheTableintroducedbyByakov, Kulakov,RumerandFet[16].Thepresentationadoptedhere,whichisbasedon former work by the author, leads to a Table the format of which is easily comparabletothatofmostTablesinpresentdayuse.Second,Table1exhibits,up to a rearrangement, the same blocks as the table by Neubert [25] based on the fillingofonlyfourCoulombshells.Third,Table1presents,uptoarearrangement, some similarities with the table by Dash [26] based on the principal quantum number, the law of secondorder constant energy differences and the Coulomb momentuminteraction,exceptthatintheDashtablethethirdtransitiongroupdoes notbeginwithLu(Z=71),theseriesdoesnotrunfromLa(Z=57)to Yb(Z=70)andtheseriesdoesnotrunfromAc(Z=89)toNo(Z=102). Finally,itcanbeseenthatTable1isverysimilartothePeriodicTablepresented byScerriattheSecondHarryWienerInternationalConference[27].Asapointof fact, to pass from the format of Table 1 to the format of Scerri’s Table, it is sufficienttoperformasymmetryoperationwithrespecttoanaxisparalleltothe columnsandlocatedattheleftofTable1andthentogetdownthepblocks(forℓ =1)byoneunit,thedblocks(forℓ=2)bytwounits,etc. ThemaindistinguishingfeaturesofTable1areseentobethefollowing:(i) hydrogenisinthefamilyofthealkali,(ii)belongstothefamilyof the alkaline earth metals, and (iii) the inner transition series ( and )aswellasthetransitionseries(group,groupand group) occupy a natural place in the table. This contrasts with the conventional Tableswith8(9)or18columnswhere:(i)hydrogenissometimeslocatedinthe family of the , (ii) helium generally belongs to the family of the noble gases,and(iii)thelanthanideseriesandtheactinideseriesaregenerallytreatedas appendages. Furthermore, in Table 1 the distribution of the elements Z=104 to 120isinagreementwithSeaborg’spredictionsbasedonatomicshellcalculations. Incontrasttohispredictions,however,Table1showsthattheelementsZ=121to 138 form a new family having no homologue among the known elements. In addition,Table1suggeststhatthefamilyofsuperactinidescontainstheelements Z=139to152(andnotZ=122to153aspredictedbySeaborg). WehavementionedinTable1thenamerecentlygiventothe elementZ=110andmentionedtherecentobservationoftheelementsZ=113and Z = 115 [28]. The next table gives some information concerning some of the elementsdiscoveredinthelastfourdecades. Z 105 106 107 108 109 110 Element darmstadtium Symbol Db Sg Bh Hs Mt Ds Year 1968 1974 1981 1984 1982 1994 Z 111 112 113 114 115 116 Element notnamed notnamed notnamed notnamed notnamed notnamed Symbol / / / / / Year 1994 1996 2004 1999 2004 1999 Finally,notethatthenumberofelementsaffordedbyTable1isaprioriinfinite. Thehuntingofsuperheavyelementsisnotclosed. AnotherimportantpeculiarityofTable1isthedivision,forℓdifferentfrom zero,oftheℓintotwosubblocksoflength2ℓand2(ℓ+1).Asanillustration, wegettwosubblocksoflength4and6forthedblocks(correspondingtoℓ=2) andtwosubblocksoflength6and8forthefblocks(correspondingtoℓ=3).In thecaseofrareearthelements,thedivisionintolightorcericrareearthelements andheavyoryttricrareearthelementsisquitewellknown.Ithasbeenunderlined onthebasisofdifferencesforthesolubilitiesofsomemineralsaltsandonthebasis of physical properties as, for example, magnetic and spectroscopic properties of rareearthcompounds[29].Thedivisionfortherareearthelementsandtheotherℓ blocks(withℓdifferentfrom0)wasexplainedbyusingtheDiractheoryforthe electron.Inparticular,itwasshownbyOudet[29]thatthecalculationofmagnetic momentsviathistheoryaccountsforthedivisionoftherareearthelements.Itisto benotedthatthe2oftheioncanbeexplainedbythedivisionof the fblock into two subblocks. In a shellmodel picture, the ion Sm 2+ then correspondstoacompletelyfilledshell(withsixelectrons)associatedwiththefirst subblock.

4.3 of an element There is a onetoone correspondence between chemical elements and state vectorsofthespacefortherepresentationhofSO(4,2).Therefore,eachatomin Table1canbecharacterizedbyanaddresswhichdependsonthelabelingofthe statevectors.Thisaddresscanbewritten(nℓjm)intermsofthequantumnumbers arisingfromthegroupsSO(4),SO(3)andSU(2).Fromtheaddress(nℓjm)ofa neutralelement,wecanobtainitsatomicnumberZ(nℓjm)owingtotheformula: Z(nℓjm)=(n+ℓ)[(n+ℓ) 2 –1]/6+(n+ℓ+1) 2/2–[1+(–1) n+ℓ](n+ℓ+1)/4 –4ℓ(ℓ+1)+ℓ+j(2ℓ+1)+m–1 Table 2 lists the various chemical elements in terms of the quantum numbers (nℓjm).Thesumn+ℓ,whichoccursintheMadelungrule[30],playsanimportant rôle in this formula. The formula can be specialized to two specific formulas accordingtowhethern+ℓisevenorodd.Inthisrespect,itshouldbenotedthatthe stateswithn+ℓeven,ononeside,andthestateswithn+ℓodd,ontheotherside, spantwodistinctUIR’s,sayh eandh o,respectively,ofthenoncompactsubgroup SO(3,2)ofSO(4,2).TheUIRhofSO(4,2)canbedecomposedas h=h o⊕h e whenrestrictingSO(4,2)toSO(3,2).Theneutralelementscanthusbeseparated intotwoclassesaccordingtowhetherasn+ℓisevenorodd.Theclassificationinto twoclassesisinagreementwithexperimentaldata:theionizationpotentialsforthe chemicalelementscanbedescribedbytwocurves,oneforn+ℓoddandtheother forn+ℓeven.Thisclearlyemphasizestherelevanceofthechainofgroups SO(4,2) ⊃SO(3,2) ⊃SO(3) ⊗SO(2) introducedbyBarut[13]forneutralelements.Thischainhastobedistinguished fromthechainofgroups SO(4,2) ⊃SO(4,1) ⊃SO(4) ⊃SO(3) which corresponds to the hydrogenic order and is thus more adapted to highly ionizedatoms[13]. Byusingshiftoperators(raisingandloweringoperators)forthechain SO(4,2) ⊗SU(2) ⊃SO(4) ⊗SU(2) ⊃SO(3) ⊗SU(2) ⊃SO(2) ⊗SU(2), itispossibletoconnectelementswithaddresseshavingthesamevalueofn(for example, elements of the lanthanide series). In a similar way, the use of shift operatorsforthechain SO(4,2) ⊗SU(2) ⊃SO(2) ⊗SO(2,1) ⊗SU(2) ⊃SO(2) ⊗SO(2) ⊗SU(2) allowstoconnectelementswithaddresseshavingthesamevalueofℓ(forexample, elements of the family of the alkaline earth metals). It is even possible to find operatorswhichrenderpossibletheknight’smoveinthePeriodicTableintroduced byLaing[31].Moregenerally,theaddressofanarbitraryelementcanbededuced fromtheaddressofhydrogenbymeansofrepeatedactionsofshiftoperators.The shiftoperatorsmakeitpossibletoconnectonevectorofthespaceoftheUIRhto one another, i.e., to pass from one chemical elementtoanother.IntheSO(4,2) approach to the Periodic Table, the neutral atoms are partners which can be transformedoneintotheotherundertheactionofthegeneratorsofSO(4,2).A similarresultappliestoionizedatoms.

4.4 of an element Giventheaddress(nℓjm)ofaneutralelement,itisalsopossibletoobtainits atomicconfigurationifwehaveafillingorderfortheatomicshells.Asanexample, let us take the Madelung rule for ordering the shells. This rule leads to the followingorderofshellfilling(seealsoRef.[32]): 20 1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p <6s<4f<5d<6p<7s<5f<6d<7p<8s<…(1) In order to find the electron configuration of the element characterized by the address(nℓjm),weisolatein(1)thenℓshell.Then,each νλshellprecedingthenℓ shellisfilledwith2(2 ν+1)electrons,accordingtotheStonerprescription.Hence, ZcelectronsareusedforthecompletelyfilledshellsandweputtheZ–Zcremaining electrons on the nℓ shell. This completes the derivation of the electron configurationoftheelementZ ≡Z(nℓjm).

20 TheMadelungruleforneutralelements,noted[n+ℓ,n]↑,correspondstoanorderingwith n+ℓincreasingand,forn+ℓfixed,withnincreasing.Thisruleisviolatedbysometwenty exceptions between hydrogen (Z = 1) to (Z = 99) [32]. There are of course several other rules for ordering the shells. The most wellknown are: the [n–½ℓ, n]↑ rule connectedwiththeharmonicoscillator,the[n,ℓ]↑ruleconnectedwiththehydrogenatom andthe[n+½ℓ,n]↑[32].Therealsoexistssomeintermediateruleswhichcanbederivedby varyingafreeparameteroriginatingfromperturbationordeformationtheory[21,24]. WegiveinTable3theelectronconfigurationsderivedfromspectroscopicdata and/orselfconsistentfieldcalculations.Theresultscanbecomparedtotheones derivedfromtheMadelungrule. LetusclosethisSectionwithsomeremarksabouttheMadelungrule.First,the sequence(1),orderedaccordington+ℓincreasing,correspondstoamaximalfilling with2,2,8,8,18,18,32,32,…electronsforn+ℓ =1,2,3,4,5,6,7,8,…, respectively.Second,theMadelungrule(thatisinherenttotheAufbauPrinzipof Bohr[33])correspondstoanSO(4)→SO(3)symmetrybreakingwheretheSO(4) levels 1s ⊕{2s ⊕2p} ⊕{3s ⊕3p ⊕3d} ⊕{4s ⊕4p ⊕4d ⊕4f} ⊕{5s ⊕5p ⊕… aresplitintotheSO(3)levels 1s ⊕2s ⊕2p ⊕3s ⊕3p ⊕4s ⊕3d ⊕4p ⊕5s ⊕4d ⊕5p ⊕6s ⊕4f ⊕… in increasing energy. (The levels between brackets have the same energy.) This symmetrybreakingisnottobetakeninthesenseofhighenergyphysics(Higgs mechanism)sinceitisnotspontaneousbutratherduetoelectroncorrelation.

4.5 The KGR program TheapplicationofthegroupSO(4,2) ⊗SU(2)hasuptonowbeenlimitedto qualitativeaspectsofthePeriodicTable.Wewouldnowliketopresentinoutlinea program(inheritedfromnuclearandparticlephysics)forusingSO(4,2) ⊗SU(2)in aquantitativeway.Adetailedtreatmentwillbepresentedinsubsequentpapers. WehaveseeninSections2and3thatthegroupSO(4,2),locallyisomorphicto thespecialunitarygroupin2+2dimensionsSU(2,2),isaLiegroupoforder15 andrank3.Ithastherefore15generatorsinvolvingthreeCartangenerators(i.e., generatorscommutingbetweenthemselves).Inaddition,ithasthreeinvariantsor Casimir operators (i.e., independent polynomials in the generators that commute withallgeneratorsofthegroup).Therefore,wehaveasetof3+3=6operators that commute between themselves. Indeed, this set is not complete from the mathematical point of view. According to the lemmaby Racah, weneedtofind 1 2(order–3rank)=3additionaloperatorsinordertogetacompleteset.Itisthus possibletobuildacompletesetof6+3=9commutingoperators.Eachofthenine operatorscanbetakentobeselfadjointandthus,fromthequantummechanical pointofview,candescribeanobservable. The next step is to connect chemical andphysicalproperties(likeionization energies,electronaffinities,,meltingandboilingpoints,specific heats, atomic radii, atomic volumes, densities, magnetic susceptibilities, solubilities,etc.)totheninecommutingoperators.Inmostcases,thiscanbedone byexpressingachemicalobservableassociatedwithagivenpropertyasalinear combinationoftheninecommutingoperators. Thelaststepistofitthevariouslinearcombinationstoexperimentaldata.For eachpropertythiswilltoaformulaorphenomenologicallawthatcanbeused inturnformakingpredictionsconcerningthechemicalelementsforwhichnodata areavailable. This program, referred to as the KGR program since it was discussed at the KananaskisGuestRanchduringthe2003HarryWienerInternationalConference, is ambitious. Its realization needs the collaboration of chemists, physicists and mathematicians.Personsinterestedinthisprogrammaywritetotheauthor. 1 2 H He

3 4 5 6 7 8 9 10 Li Be B C N O F Ne

11 12 13 14 15 16 17 18 21 22 23 24 25 26 27 28 29 30 Na Mg Al Si P S Cl Ar Sc Ti V Cr Mn Fe Co Ni Cu Zn

19 20 31 32 33 34 35 36 39 40 41 42 43 44 45 46 47 48 57 58 59 60 61 62 63 64 65 66 67 68 69 70 K Ca Ga Ge As Se Br Kr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb

37 38 49 50 51 52 53 54 71 72 73 74 75 76 77 78 79 80 89 90 91 92 93 94 95 96 97 98 99 100 101 102 121138 Rb Sr In Sn Sb Te I Xe Lu Hf Ta W Re Os Ir Pt Au Hg Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No no

55 56 81 82 83 84 85 86 103 104 105 106 107 108 109 110 111 112 139 140 141 142 143 144 145 146 147 148 149 150 151 152 … Cs Ba Tl Pb Bi Po At Rn Lr Rf Db Sg Bh Hs Mt Ds X? X? no no no no no no no no no no no no no no …

87 88 113 114 115 116 117 118 153 154 155 156 157 158 159 160 161 162 … Fr Ra X? X? X? X? no no no no no no no no no no no no …

... ... Table 1: The à la SO(4, 2) ⊗⊗⊗SU(2 ) Periodic Table (X? = observed but not named, no = not observed) Table 2: Addresses (nljm) of the known chemical elements n l j m [n+l n] Z Element Symbol

1 0 0.5 0.5 11 1 hydrogen H 1 0 0.5 0.5 11 2 helium He 2 0 0.5 0.5 22 3 Li 2 0 0.5 0.5 22 4 berylium Be 2 1 0.5 0.5 32 5 B 2 1 0.5 0.5 32 6 C 2 1 1.5 1.5 32 7 N 2 1 1.5 0.5 32 8 O 2 1 1.5 0.5 32 9 F 2 1 1.5 1.5 32 10 Ne 3 0 0.5 0.5 33 11 Na 3 0 0.5 0.5 33 12 Mg 3 1 0.5 0.5 43 13 Al 3 1 0.5 0.5 43 14 Si 3 1 1.5 1.5 43 15 phosphorous P 3 1 1.5 0.5 43 16 S 3 1 1.5 0.5 43 17 Cl 3 1 1.5 1.5 43 18 Ar 4 0 0.5 0.5 44 19 K 4 0 0.5 0.5 44 20 Ca 3 2 1.5 1.5 53 21 Sc 3 2 1.5 0.5 53 22 Ti 3 2 1.5 0.5 53 23 V 3 2 1.5 1.5 53 24 Cr 3 2 2.5 2.5 53 25 Mn 3 2 2.5 1.5 53 26 iron Fe 3 2 2.5 0.5 53 27 Co 3 2 2.5 0.5 53 28 Ni 3 2 2.5 1.5 53 29 Cu 3 2 2.5 2.5 53 30 Zn 4 1 0.5 0.5 54 31 Ga 4 1 0.5 0.5 54 32 Ge 4 1 1.5 1.5 54 33 As 4 1 1.5 0.5 54 34 Se 4 1 1.5 0.5 54 35 Br 4 1 1.5 1.5 54 36 Kr Table 2 (continued) n l j m [n+l n] Z Element Symbol 5 0 0.5 0.5 55 37 Rb 5 0 0.5 0.5 55 38 Sr 4 2 1.5 1.5 64 39 Y 4 2 1.5 0.5 64 40 Zr 4 2 1.5 0.5 64 41 Nb 4 2 1.5 1.5 64 42 Mo 4 2 2.5 2.5 64 43 Tc 4 2 2.5 1.5 64 44 Ru 4 2 2.5 0.5 64 45 Rh 4 2 2.5 0.5 64 46 palladium Pd 4 2 2.5 1.5 64 47 Ag 4 2 2.5 2.5 64 48 Cd 5 1 0.5 0.5 65 49 In 5 1 0.5 0.5 65 50 Sn 5 1 1.5 1.5 65 51 Sb 5 1 1.5 0.5 65 52 Te 5 1 1.5 0.5 65 53 I 5 1 1.5 1.5 65 54 Xe 6 0 0.5 0.5 66 55 cesium Cs 6 0 0.5 0.5 66 56 Ba 4 3 2.5 2.5 74 57 La 4 3 2.5 1.5 74 58 Ce 4 3 2.5 0.5 74 59 Pr 4 3 2.5 0.5 74 60 Nd 4 3 2.5 1.5 74 61 Pm 4 3 2.5 2.5 74 62 samarium Sm 4 3 3.5 3.5 74 63 Eu 4 3 3.5 2.5 74 64 Gd 4 3 3.5 1.5 74 65 Tb 4 3 3.5 0.5 74 66 Dy 4 3 3.5 0.5 74 67 Ho 4 3 3.5 1.5 74 68 Er 4 3 3.5 2.5 74 69 Tm 4 3 3.5 3.5 74 70 Yb 5 2 1.5 1.5 75 71 Lu 5 2 1.5 0.5 75 72 Hf 5 2 1.5 0.5 75 73 Ta 5 2 1.5 1.5 75 74 W 5 2 2.5 2.5 75 75 Re 5 2 2.5 1.5 75 76 Os Table 2 (continued) n l j m [n+l n] Z Element Symbol 5 2 2.5 0.5 75 77 Ir 5 2 2.5 0.5 75 78 platinum Pt 5 2 2.5 1.5 75 79 Au 5 2 2.5 2.5 75 80 Hg 6 1 0.5 0.5 76 81 Tl 6 1 0.5 0.5 76 82 lead Pb 6 1 1.5 1.5 76 83 Bi 6 1 1.5 0.5 76 84 Po 6 1 1.5 0.5 76 85 At 6 1 1.5 1.5 76 86 Rn 7 0 0.5 0.5 77 87 Fr 7 0 0.5 0.5 77 88 Ra 5 3 2.5 2.5 85 89 Ac 5 3 2.5 1.5 85 90 Th 5 3 2.5 0.5 85 91 Pa 5 3 2.5 0.5 85 92 U 5 3 2.5 1.5 85 93 Np 5 3 2.5 2.5 85 94 Pu 5 3 3.5 3.5 85 95 Am 5 3 3.5 2.5 85 96 Cm 5 3 3.5 1.5 85 97 Bk 5 3 3.5 0.5 85 98 Cf 5 3 3.5 0.5 85 99 einsteinium Es 5 3 3.5 1.5 85 100 Fm 5 3 3.5 2.5 85 101 Md 5 3 3.5 3.5 85 102 No 6 2 1.5 1.5 86 103 Lr 6 2 1.5 0.5 86 104 Rf 6 2 1.5 0.5 86 105 dubnium Db 6 2 1.5 1.5 86 106 seaborgium Sg 6 2 2.5 2.5 86 107 bohrium Bh 6 2 2.5 1.5 86 108 hassium Hs 6 2 2.5 0.5 86 109 meitneirium Mt 6 2 2.5 0.5 86 110 darmstadtium Ds 6 2 2.5 1.5 86 111 notnamed nosymbol 6 2 2.5 2.5 86 112 notnamed nosymbol 7 1 0.5 0.5 87 113 notnamed nosymbol 7 1 0.5 0.5 87 114 notnamed nosymbol 7 1 1.5 1.5 87 115 notnamed nosymbol 7 1 1.5 0.5 87 116 notnamed nosymbol Table 3: Electronic configurations for the elements from Z = 1 to Z = 103 Z Element 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 1hydrogen H 1 2helium He 2 3lithium Li 2 1 4berylium Be 2 2 5boron B 2 2 1 6carbon C 2 2 2 7nitrogen N 2 2 3 8oxygen O 2 2 4 9fluorine F 2 2 5 10 neon Ne 2 2 6 11 sodium Na 2 2 6 1 12 magnesium Mg 2 2 6 2 13 aluminium Al 2 2 6 2 1 14 silicon Si 2 2 6 2 2 15 phosphorous P 2 2 6 2 3 16 sulfur S 2 2 6 2 4 17 chlorine Cl 2 2 6 2 5 18 argon Ar 2 2 6 2 6 19 potassium K 2 2 6 2 6 1 20 calcium Ca 2 2 6 2 6 2 21 scandium Sc 2 2 6 2 6 2 1 22 titanium Ti 2 2 6 2 6 2 2 23 vanadium V 2 2 6 2 6 2 3 24 chromium Cr 2 2 6 2 6 1 5 25 manganese Mn 2 2 6 2 6 2 5 26 iron Fe 2 2 6 2 6 2 6 27 cobalt Co 2 2 6 2 6 2 7 28 nickel Ni 2 2 6 2 6 2 8 29 copper Cu 2 2 6 2 6 1 10 30 zinc Zn 2 2 6 2 6 2 10 31 gallium Ga 2 2 6 2 6 2 10 1 32 germanium Ge 2 2 6 2 6 2 10 2 33 arsenic As 2 2 6 2 6 2 10 3 34 selenium Se 2 2 6 2 6 2 10 4 35 bromine Br 2 2 6 2 6 2 10 5 36 krypton Kr 2 2 6 2 6 2 10 6 37 rubidium Rb 2 2 6 2 6 2 10 6 1 38 strontium Sr 2 2 6 2 6 2 10 6 2 39 yttrium Y 2 2 6 2 6 2 10 6 2 1 40 zirconium Zr 2 2 6 2 6 2 10 6 2 2 41 niobium Nb 2 2 6 2 6 2 10 6 1 4 42 molybdenum Mo 2 2 6 2 6 2 10 6 1 5 43 technetium Tc 2 2 6 2 6 2 10 6 1 6 44 ruthenium Ru 2 2 6 2 6 2 10 6 1 7 45 rhodium Rh 2 2 6 2 6 2 10 6 1 8 46 palladium Pd 2 2 6 2 6 2 10 6 10 47 silver Ag 2 2 6 2 6 2 10 6 1 10 48 cadmium Cd 2 2 6 2 6 2 10 6 2 10 49 indium In 2 2 6 2 6 2 10 6 2 10 1 50 tin Sn 2 2 6 2 6 2 10 6 2 10 2 51 antimony Sb 2 2 6 2 6 2 10 6 2 10 3 Table 3 (continued) Z Element 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 52 tellurium Te 2 2 6 2 6 2 10 6 2 10 4 53 iodine I 2 2 6 2 6 2 10 6 2 10 5 54 xenon Xe 2 2 6 2 6 2 10 6 2 10 6 55 cesium Cs 2 2 6 2 6 2 10 6 2 10 6 1 56 barium Ba 2 2 6 2 6 2 10 6 2 10 6 2 57 lanthanum La 2 2 6 2 6 2 10 6 2 10 6 2 1 58 cerium Ce 2 2 6 2 6 2 10 6 2 10 6 2 2 59 praseodymium Pr 2 2 6 2 6 2 10 6 2 10 6 2 3 60 neodymium Nd 2 2 6 2 6 2 10 6 2 10 6 2 4 61 promethium Pm 2 2 6 2 6 2 10 6 2 10 6 2 5 62 samarium Sm 2 2 6 2 6 2 10 6 2 10 6 2 6 63 europium Eu 2 2 6 2 6 2 10 6 2 10 6 2 7 64 gadolinium Gd 2 2 6 2 6 2 10 6 2 10 6 2 7 1 65 terbium Tb 2 2 6 2 6 2 10 6 2 10 6 2 9 66 dysprosium Dy 2 2 6 2 6 2 10 6 2 10 6 2 10 67 holmium Ho 2 2 6 2 6 2 10 6 2 10 6 2 11 68 erbium Er 2 2 6 2 6 2 10 6 2 10 6 2 12 69 thulium Tm 2 2 6 2 6 2 10 6 2 10 6 2 13 70 ytterbium Yb 2 2 6 2 6 2 10 6 2 10 6 2 14 71 lutecium Lu 2 2 6 2 6 2 10 6 2 10 6 2 14 1 72 hafnium Hf 2 2 6 2 6 2 10 6 2 10 6 2 14 2 73 tantalum Ta 2 2 6 2 6 2 10 6 2 10 6 2 14 3 74 tungsten W 2 2 6 2 6 2 10 6 2 10 6 2 14 4 75 rhenium Re 2 2 6 2 6 2 10 6 2 10 6 2 14 5 76 osmium Os 2 2 6 2 6 2 10 6 2 10 6 2 14 6 77 iridium Ir 2 2 6 2 6 2 10 6 2 10 6 2 14 7 78 platinum Pt 2 2 6 2 6 2 10 6 2 10 6 1 14 9 79 gold Au 2 2 6 2 6 2 10 6 2 10 6 1 14 10 80 mercury Hg 2 2 6 2 6 2 10 6 2 10 6 2 14 10 81 thallium Tl 2 2 6 2 6 2 10 6 2 10 6 2 14 10 1 82 lead Pb 2 2 6 2 6 2 10 6 2 10 6 2 14 10 2 83 bismuth Bi 2 2 6 2 6 2 10 6 2 10 6 2 14 10 3 84 polonium Po 2 2 6 2 6 2 10 6 2 10 6 2 14 10 4 85 astatine At 2 2 6 2 6 2 10 6 2 10 6 2 14 10 5 86 radon Rn 2 2 6 2 6 2 10 6 2 10 6 2 14 10 6 87 francium Fr 2 2 6 2 6 2 10 6 2 10 6 2 14 10 6 1 88 radium Ra 2 2 6 2 6 2 10 6 2 10 6 2 14 10 6 2 89 actinium Ac 2 2 6 2 6 2 10 6 2 10 6 2 14 10 6 2 1 90 thorium Th 2 2 6 2 6 2 10 6 2 10 6 2 14 10 6 2 2 91 protactinium Pa 2 2 6 2 6 2 10 6 2 10 6 2 14 10 6 2 2 1 92 uranium U 2 2 6 2 6 2 10 6 2 10 6 2 14 10 6 2 3 1 93 neptunium Np 2 2 6 2 6 2 10 6 2 10 6 2 14 10 6 2 4 1 94 plutonium Pu 2 2 6 2 6 2 10 6 2 10 6 2 14 10 6 2 6 95 americium Am 2 2 6 2 6 2 10 6 2 10 6 2 14 10 6 2 7 96 curium Cm 2 2 6 2 6 2 10 6 2 10 6 2 14 10 6 2 7 1 97 berkelium Bk 2 2 6 2 6 2 10 6 2 10 6 2 14 10 6 2 8 1 98 californium Cf 2 2 6 2 6 2 10 6 2 10 6 2 14 10 6 2 10 99 einsteinium Es 2 2 6 2 6 2 10 6 2 10 6 2 14 10 6 2 11 100 fermium Fm 2 2 6 2 6 2 10 6 2 10 6 2 14 10 6 2 12 101 mendelevium Md 2 2 6 2 6 2 10 6 2 10 6 2 14 10 6 2 13 102 nobelium No 2 2 6 2 6 2 10 6 2 10 6 2 14 10 6 2 14 103 lawrencium Lr 2 2 6 2 6 2 10 6 2 10 6 2 14 10 6 2 14 1 5. CLOSING REMARKS The Periodic Table presented in this work does not arise from group theory alone.Grouptheoryisabranchofmathematicsthatrequires,foritsapplicationtoa specific domain of physics and chemistry, simultaneous use of physicochemical theories and/or models. The reader should appreciate, for the SO(4, 2) ⊗SU(2) approachtothePeriodicTable,theimportanceofatomictheorybasedonquantum mechanicsusedinconjunctionwithperturbationandvariationmethods. Todate,theSO(4,2) ⊗SU(2)approachtothePeriodicCharthasbeenrestricted toqualitativebutnonethelessinterestingaspects.TheKGRprogramsuggestedin this work could open an avenue for future investigations beyond qualitative considerations and perhaps make it possible to establish empirical laws for the observedregularitiesamongchemicalelements.Thismightalsoproveusefulfor predictingpropertiesofnewelements. AnotherinterestoftheSO(4,2) ⊗SU(2)approachconcernsmolecules.Inthis vein, we should mention the work by Hefferlin and Zhuvikin and their collaborators[34].Thestartingpointoftheirworkistoconsiderthedirectproduct [SO(4, 2) ⊗SU(2)] ⊗N for describing an Natom molecule. Preliminary successful tests have been achieved by comparing calculated observables (in a second quantizedformadaptedtosubgroupsof[SO(4,2) ⊗SU(2)] ⊗N) with experimental datawhenavailable[34]. 6. ACKNOWLEDGMENTS IwouldliketothanktheWienerfamilyandtheorganizersoftheSecondHarry Wiener International Memorial Conference, especially Dennis Rouvray (ConferencePresident),BruceKing(ConferenceSecretary)andMichaelWingham (Conference VicePresident) for making possible this beautiful interdisciplinary meetingwherepartofthisworkwaspresented.IamindebtedtoMichaelCoxfor hishelpfuleditorialassistanceandsuggestionswiththefinalpolish.Mythanksare also due to Mariasusai Antony and Itsvan Berkes for information concerning superheavyelements.

7. REFERENCES 1M.R.Kibler,in The Periodic Table: Into the 21 st Century ,D.H.RouvrayandR.B. King,Eds.,ResearchStudiesPress,Baldock,UnitedKingdom,2004. 2W.Pauli,Jr., Z. Phys. , 36 ,336(1926);seealso:V.Bargmann, Z. Phys. , 99 ,576 (1936). 3V.Fock, Z. Phys. , 98 ,145(1935). 4M.KiblerandP.Winternitz, Phys. Lett. A , 147 ,338(1990). 5A.O.BarutandH.Kleinert, Phys. Rev. , 156 ,1541(1967); 157 ,1180(1967); 160 , 1149(1967). 6I.A.MalkinandV.I.Man’ko, Pis’ma Zh. Eksp. Teor. Fiz. , 2,230(1965)[ Sov. Phys., JETP Lett. , 2,146(1965)]. 7A.O.BarutandG.Bornzin, J. Math. Phys. , 11 ,2938(1970); 12 ,841(1971). 8C.E.Wulfman,in Group Theory and Its Applications ,E.M.Loebl,Ed.,Vol.II, Academic, New York, 1971; in Recent Advances in Group Theory and Their Application to Spectroscopy ,J.C.Donini,Ed.,Plenum,NewYork,1979. 9 M. Kibler and T. Négadi, Lett. Nuovo Cimento , 37 , 225 (1983); J. Phys. A : Math. Gen. , 16 ,4265(1983); Phys. Rev. A , 29 ,2891(1984); Folia Chim. Theor. Latina , 12 ,117(1984);seealso:M.KiblerandG.Grenet, J. Math. Phys. , 21 ,422 (1980);M.KiblerandT.Négadi, J. Phys. A : Math. Gen. , 24 ,5283(1991). 10 D.LambertandM.Kibler, J. Phys. A: Math. Gen. , 21 ,307(1988);M.Kibler,in Symmetries in Science IX , B. Gruber and M. Ramek, Eds., Plenum, New York, 1997. 11 M.KiblerandP.Winternitz , J. Phys. A: Math. Gen. , 21 ,1787(1988). 12 Yu.B.RumerandA.I.Fet, Teor. i Mat. Fiz. , 9,203(1971)[Englishtranslation: Theor. Math. Phys. , 9,1081(1972)]. 13 A.O. Barut, in The Structure of Matter (Proc. Rutherford Centennial Symp., 1971) , B.G. Wybourne, Ed., University of Canterbury Publications, Bascands, Christchurch,NewZealand,1972. 14 H.Odabasi, Int. J. Quantum Chem., Quantum Chem. Symp. , 7,23(1973);see also:E.U.CondonandH.Odabasi, Atomic Structure ,CambridgeUniversityPress, Cambridge,1980. 15 A.I.Fet, Teor. i Mat. Fiz. , 22 ,323(1975)[ Theor. Math. Phys. , 22 ,227(1975)]. 16 V.M. Byakov, Y.I. Kulakov, Y.B. Rumer and A.I. Fet, Preprint ITEP26, Moscow (1976); Preprint ITEP90, Moscow (1976); Preprint ITEP7, Moscow (1977). 17 V.G. Konopel’chenko and Yu.B. Rumer, Usp. Fiz. Nauk , 129 , 339 (1979) [Englishtranslation: Sov. Phys. Usp. , 22 ,837(1979)]. 18 M.Kibler, J. Mol. Struct. (Theochem) , 187 ,83(1989). 19 L.I.Gurskii,L.I.KomarovandA.M.Solodukhin, Int. J. Quantum Chem. , 72 ,499 (1999). 20 H.Bateman, J. Lond. Math. Soc. , 8,70(1908);E.Cunningham, J. Lond. Math. Soc. , 8,77(1909);H.Bateman, J. Lond. Math. Soc. , 8,223(1909). 21 O.A.NovaroandK.B.Wolf, Rev. Mex. Fís. , 20 ,265(1971);O.A.Novaroand M.Berrondo, J. Phys. B: At. Mol. Phys. , 5,1104(1972);M.BerrondoandO.A. Novaro, J. Phys. B: At. Mol. Phys. , 6, 761 (1973); O. Novaro, Int. J. Quantum Chem., Quantum Chem. Symp. , 7,53(1973);seealso:O.Novaro, J. Mol. Struct. (Theochem) , 199 ,103(1989). 22 V.N. Ostrovsky, J. Phys. B: At. Mol. Phys. , 14 ,4425(1981);seealso:Yu.N. Demkov and V.N. Ostrovsky, Zh. Eksp. Teor. Fiz. , 60 , 2011 (1971) [English translation: Sov. Phys., JETP, 33 , 1083 (1971)]; Zh. Eksp. Teor. Fiz. , 62 , 125 (1971); Errata, 63 , 2376 (1972) [English translation: Sov. Phys., JETP, 35 , 66 (1972)]. 23 Y.KitagawaraandA.O.Barut, Phys. Rev. B , 16 ,3305(1983); J. Phys. B: At. Mol. Phys. , 16 ,3305(1983); 17 ,4251(1984). 24 T. Négadi and M. Kibler, J. Phys. A: Math. Gen. , 25 , L157 (1992); Int. J. Quantum Chem. , 57 ,53(1996). 25 D.Neubert, Z. Naturforsch., a , 25 ,210(1970). 26 H.H.Dash, Int. J. Quantum Chem., Quantum Chem. Symp. , 3,335(1969). 27 E.R.Scerri,in The Periodic Table: Into the 21 st Century ,D.H.RouvrayandR.B. King,Eds.,ResearchStudiesPress,Baldock,UnitedKingdom,2004. 28 M.S. Antony, Tableau périodique des éléments , Institut de Recherches Subatomiques, Strasbourg, 2004; Yu.Ts. Oganessian et al., Phys. Rev. C , 69 , 021601(2004); 69 ,029902(2004). 29 F.Trombe,J.Loriers,F.GaumeMahnandC.HenryLaBlanchetais,in Nouveau traité de chimie minérale VII ; P. Pascal, Ed., Masson and Cie, Paris, 1960; X. Oudet, J. Physique , 40 , C5395 (1979); Ann. Fondation L. de Broglie , 6, 127 (1981);X.OudetandG.Lochak, J. Mag. Magnetic Materials , 65 ,99(1987). 30 E. Madelung, Die mathematischen Hilfsmittel des Physikers , Springer, Berlin, 1936;V.M.Klechkovskii, J. Exp. Theor. Phys. , 41 ,465(1961);S.A.Goudsmitand P.I.Richards, Proc. Natl. Acad. Sci. U.S.A. , 51 ,664(1964). 31 M.Laing, Educ. Chem. , 36 ,160(1999). 32 J.KatrielandC.K.Jørgensen, Chem. Phys. Lett. , 87 ,315(1982);D.Purdela, Int. J. Quantum Chem. , 34 ,107(1988). 33 N.Bohr , Z. Phys. , 9,1(1922). 34 G.V. Zhuvikin and R. Hefferlin, Vestnik Leningradskovo Universiteta , 16 , 10 (1983); R.A. Hefferlin, G.V. Zhuvikin, K.E. Caviness and P.J. Duerksen, J. Quantum Spectrosc. Radiat. Transfer , 32 , 257 (1984); G.V. Zhuvikin and R.A. Hefferlin, in Anales de Física, Monografías , M.A. del Olmo, M. Santander and J.M. Guilarte, Eds., Real Sociedad Española de Física, Madrid, 1993; G.V. ZhuvikinandR.Hefferlin, Symmetry Principles for Periodic Systems of Molecules , JointReportSC/SPBU#1,1994;C.M.Carlson,R.A.HefferlinandG.V.Zhuvikin, Analysis of Group Theoretical Periodic Systems of Molecules Using Tabulated Data ,JointReportSC/SPBU#2,1995.