sustainability Article Addressing Nutrient Depletion in Tanzanian Sisal Fiber Production Using Life Cycle Assessment and Circular Economy Principles, with Bioenergy Co-Production Tracey Anne Colley 1 , Judith Valerian 2, Michael Zwicky Hauschild 1, Stig Irving Olsen 1 and Morten Birkved 3,* 1 Quantitative Sustainability Assessment (QSA) Group, Department of Technology, Sustainability Division, Management and Economics, Technical University of Denmark (DTU), DK-2800 Kgs. Lyngby, Denmark;
[email protected] (T.A.C.);
[email protected] (M.Z.H.);
[email protected] (S.I.O.) 2 Department of Food and Resource Economics (DeFRE), School of Agriculture Economics and Business Studies (SAEBS), Sokoine University of Agriculture (SUA), P.O. Box 3007 Morogoro, Tanzania;
[email protected] 3 SDU Life Cycle Engineering, Institut for Grøn Teknologi (IGT), University of Southern Denmark, DK-5230 Odense, Denmark * Correspondence:
[email protected] Abstract: Nutrient depletion in Tanzanian sisal production has led to yield decreases over time. We use nutrient mass balances embedded within a life cycle assessment to quantify the extent of nutrient depletion for different production systems, and then used circular economy principles to identify potential cosubstrates from within the Tanzanian economy to anaerobically digest with sisal wastes. The biogas produced was then used to generate bioelectricity and the digestate residual Citation: Colley, T.A.; Valerian, J.; can be used as a fertilizer to address the nutrient depletion. Life cycle assessment was used in a Hauschild, M.Z.; Olsen, S.I.; Birkved, gate-to-gate assessment of the anaerobic digestion options with different cosubstrates. If no current M. Addressing Nutrient Depletion in Tanzanian Sisal Fiber Production beneficial use of the cosubstrate was assumed, then beef manure and marine fish processing waste Using Life Cycle Assessment and were the best cosubstrates.