Mechanisms of Nutrient Limitation and Nutrient Acquisition in Managed and Unmanaged Forest Ecosystems
Total Page:16
File Type:pdf, Size:1020Kb
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2013 Mechanisms of nutrient limitation and nutrient acquisition in managed and unmanaged forest ecosystems Matthew A. Vadeboncoeur University of New Hampshire - Main Campus, [email protected] Follow this and additional works at: https://scholars.unh.edu/dissertation Part of the Biogeochemistry Commons, Ecology and Evolutionary Biology Commons, Forest Sciences Commons, and the Soil Science Commons Recommended Citation Vadeboncoeur, Matthew A., "Mechanisms of nutrient limitation and nutrient acquisition in managed and unmanaged forest ecosystems" (2013). Doctoral Dissertations. 1. https://scholars.unh.edu/dissertation/1 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. MECHANISMS OF NUTRIENT LIMITATION AND NUTRIENT ACQUISITION IN MANAGED AND UNMANAGED FOREST ECOSYSTEMS BY MATTHEW A. VADEBONCOEUR Sc.B., Brown University, 2003 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Earth and Environmental Sciences May, 2013 ____ This dissertation has been examined and approved. Disserta ion Di ector, Dr. Erik A. Hobbie Research Associate Professor of Earth, Oceans, and Space TW4c& tr. Julia G. Bryce Associate Professor of Earth Sciences \J \—. s Dr. Scott V. Ollinger Professor of Environmental Sciences and Forestry and Earth, Oceans, and Space Dr. $at’lJ. Ducey / Professor of Forestry Dr. John D. Aber Professor of Environmental Sciences Affiliate Professor of Earth, Oceans, and Space C13 Date ACKNOWLEDGEMENTS I am exceedingly grateful for the practical and intellectual guidance of my committee members: Erik Hobbie, Julie Bryce, Scott Ollinger, Mark Ducey, Adrien Finzi, and John Aber. Erik Hobbie was both a source of experimental advice and intellectual insight, as well as a dedicated academic mentor. Julie Bryce even dedicated her own time to running Pb isotope analyses for Chapter 3. In addition to my committee members, Ruth Yanai, Steve Hamburg, Joel Blum, Mariann Johnston, Christy Goodale, and others generously shared their thoughts on how to improve parts of this work. Much of the work presented here would not have been possible without the thoughtful input and dedicated help of Andy Ouimette. I am also indebted to a large number of current and former Hobbie, Bryce, and Ollinger lab members who provided assistance in the field or laboratory. These include Corey Neskey, Rachel Mixon, M. Florencia Meana-Prado, Zach McAvoy, Nico Gagnon, Mary Santos, Nat Crompton, Spencer Tate, John Clark, and Kevin Leahy, in addition to the students of the 2011 Isotope Geochemistry course. The soil data I present in Chapter 2 were collected by crews of field assistants under the supervision of Elizabeth Hane, Marty Acker, and myself (acknowledged previously by Park et al., 2007; Schaller et al., 2010; Vadeboncoeur et al., 2012a). Other data included in the rotation analysis were generated by Farrah Fatemi, Carrie Rose Levine, and Andrea Klaue. Datasets generated with monumental effort by iv research groups led by Tom Siccama and Gene Likens were also used with permission. Lead isotope ratios used in Chapter 3 were analyzed at the Laboratoire de Géologie de Lyon in collaboration with Janne Blichert-Toft. XRF analyses were conducted by Mike Rhodes. Genetic identification of sporocarp samples was done by Jeremy Hayward. A variety of funding sources supported my graduate work, including a Graduate Fellowship (2007-8), a Summer Teaching Assistant Fellowship (2011), and a Dissertation Year Fellowship (2012-13) from the Graduate School, and a Switzer Environmental Fellowship (2011-12) from the Robert and Patricia Switzer Foundation. Research was also supported by the NRESS Program and NSF grants DEB9810221, DEB0235650, DEB0614266, EAR0746248, NSF0930231, NSF0949324, and DEB1210560. Ecosystem research depends on having appropriate research sites. Among these, the Bartlett and Hubbard Brook Experimental Forests provide critical infrastructure and a diverse and engaging research community with which to work. These sites are operated by the USDA Forest Service Northern Research Station. HBEF is a Long Term Ecological Research network site funded by NSF; site support is also provided by the Hubbard Brook Research Foundation. My work builds on decades of research at both of these sites; this dissertation is a contribution to the Hubbard Brook Ecosystem Study. My collaborators and I are grateful to the Parker Family for over 30 years of stewardship of the Bald Mountain research sites established by Hamburg (1984a) and Rhoads (2005), and studied here in Chapter 2. Field work for Chapter 4 was conducted with permission of the landowners: the UNH Office of Woodlands and Natural Areas, the Town of Strafford Conservation Commission, and the NH DRED Division of Forests and Lands. v TABLE OF CONTENTS Dedication .................................................................................................................. iii Acknowledgements .......................................................................................................... iv List of Tables ................................................................................................................... x List of Figures .................................................................................................................. xi Abstract ................................................................................................................. xii Introduction ................................................................................................................... 1 Global change in temperate forest ecosystems ............................................................... 1 Assessing nutrient limitation .......................................................................................... 3 Modeling potential nutrient depletion by forest harvesting ............................................ 4 Developing tools to constrain mycorrhizal weathering rates .......................................... 6 Quantifying the contribution of organic nitrogen uptake by mycorrhizal roots ............. 8 CHAPTER 1 Meta-analysis of fertilization experiments indicates multiple limiting elements in northeastern deciduous forests .......................................................... 11 Abstract ......................................................................................................................... 11 1.1 Introduction ............................................................................................................. 12 1.2 Methods .................................................................................................................. 15 1.2.1 Study region ................................................................................................ 15 1.2.2 Dataset criteria ............................................................................................ 16 1.2.3 Meta-analysis methods................................................................................ 17 1.3 Regression analysis ................................................................................................. 19 1.4 Other statistical tests ............................................................................................... 19 1.5 Results ..................................................................................................................... 20 1.5.1 Meta-analysis results ................................................................................... 20 1.5.2 Multiple regression results .......................................................................... 21 1.5.3 Results of other statistical tests ................................................................... 28 1.6 Discussion ............................................................................................................... 28 1.6.1 Growth responses to nitrogen fertilization .................................................. 28 1.6.2 Growth responses to phosphorus fertilization............................................. 30 vi 1.6.3 Growth responses to calcium fertilization .................................................. 32 1.6.4 Fertilization responses by species ............................................................... 33 1.6.5 Effect of stand or cohort age ....................................................................... 34 1.6.6 Influence of mensuration methods .............................................................. 35 1.6.7 Multiple resource limitation ........................................................................ 36 1.6.8 Potential biases............................................................................................ 37 1.7 Conclusions and recommendations ........................................................................ 38 CHAPTER 2 Long-term sustainability of forest harvesting in central New Hampshire ................................................................................................................. 41 Abstract ........................................................................................................................