Cis-Element Clustering Correlates with Dose-Dependent Pro- and Antisignaling Effects of IL18
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
IER3 Is a Crucial Mediator of Tap73b-Induced Apoptosis In
OPEN IER3 is a crucial mediator of SUBJECT AREAS: TAp73b-induced apoptosis in cervical CELL DEATH TUMOUR SUPPRESSORS cancer and confers etoposide sensitivity Hanyong Jin1*, Dae-Shik Suh2*, Tae-Hyoung Kim3, Ji-Hyun Yeom4, Kangseok Lee4 & Jeehyeon Bae5 Received 14 September 2014 1Department of Pharmacy, CHA University, Seongnam, 463-836, Korea, 2Department of Obstetrics and Gynecology, Asan Accepted Medical Center, University of Ulsan College of Medicine, 3Department of Biochemistry, Chosun University School of Medicine, 4 5 9 January 2015 Gwangju 501-759, Korea, Department of Life Science, Chung-Ang University, Seoul, 156-756, Korea, School of Pharmacy, Chung-Ang University, Seoul, 156-756, Korea. Published 10 February 2015 Infection with high-risk human papillomaviruses (HPVs) causes cervical cancer. E6 oncoprotein, an HPV gene product, inactivates the major gatekeeper p53. In contrast, its isoform, TAp73b, has become increasingly important, as it is resistant to E6. However, the intracellular signaling mechanisms that account Correspondence and for TAp73b tumor suppressor activity in cervix are poorly understood. Here, we identified that IER3 is a requests for materials novel target gene of TAp73b. In particular, TAp73b exclusively transactivated IER3 in cervical cancer cells, should be addressed to whereas p53 and TAp63 failed to do. IER3 efficiently induced apoptosis, and its knockdown promoted K.L. (kangseok@cau. survival of HeLa cells. In addition, TAp73b-induced cell death, but not p53-induced cell death, was inhibited ac.kr) or J.B. upon IER3 silencing. Moreover, etoposide, a DNA-damaging chemotherapeutics, upregulated TAp73b and IER3 in a c-Abl tyrosine kinase-dependent manner, and the etoposide chemosensitivity of HeLa cells was ([email protected]) largely determined by TAp73b-induced IER3. -
S41467-020-18249-3.Pdf
ARTICLE https://doi.org/10.1038/s41467-020-18249-3 OPEN Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain Lei Zhao1,2,17, Zhongqi Li 1,2,17, Joaquim S. L. Vong2,3,17, Xinyi Chen1,2, Hei-Ming Lai1,2,4,5,6, Leo Y. C. Yan1,2, Junzhe Huang1,2, Samuel K. H. Sy1,2,7, Xiaoyu Tian 8, Yu Huang 8, Ho Yin Edwin Chan5,9, Hon-Cheong So6,8, ✉ ✉ Wai-Lung Ng 10, Yamei Tang11, Wei-Jye Lin12,13, Vincent C. T. Mok1,5,6,14,15 &HoKo 1,2,4,5,6,8,14,16 1234567890():,; The molecular signatures of cells in the brain have been revealed in unprecedented detail, yet the ageing-associated genome-wide expression changes that may contribute to neurovas- cular dysfunction in neurodegenerative diseases remain elusive. Here, we report zonation- dependent transcriptomic changes in aged mouse brain endothelial cells (ECs), which pro- minently implicate altered immune/cytokine signaling in ECs of all vascular segments, and functional changes impacting the blood–brain barrier (BBB) and glucose/energy metabolism especially in capillary ECs (capECs). An overrepresentation of Alzheimer disease (AD) GWAS genes is evident among the human orthologs of the differentially expressed genes of aged capECs, while comparative analysis revealed a subset of concordantly downregulated, functionally important genes in human AD brains. Treatment with exenatide, a glucagon-like peptide-1 receptor agonist, strongly reverses aged mouse brain EC transcriptomic changes and BBB leakage, with associated attenuation of microglial priming. We thus revealed tran- scriptomic alterations underlying brain EC ageing that are complex yet pharmacologically reversible. -
Supplemental Information
Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig. -
MYRF Is a Membrane-Associated Transcription Factor That Autoproteolytically Cleaves to Directly Activate Myelin Genes
MYRF Is a Membrane-Associated Transcription Factor That Autoproteolytically Cleaves to Directly Activate Myelin Genes Helena Bujalka1., Matthias Koenning1., Stacey Jackson1, Victoria M. Perreau1, Bernard Pope2, Curtis M. Hay1, Stanlislaw Mitew1, Andrew F. Hill3, Q. Richard Lu4, Michael Wegner5, Rajini Srinivasan6, John Svaren6, Melanie Willingham1, Ben A. Barres7, Ben Emery1,8* 1 Department of Anatomy and Neuroscience and the Centre for Neuroscience Research, University of Melbourne, Parkville, Australia, 2 Department of Computing and Information Systems and Victorian Life Sciences Computation Initiative (VLSCI), University of Melbourne, Parkville, Australia, 3 Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia, 4 Department of Developmental Biology and Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration, University of Texas at Austin, Austin, Texas, United States of America, 5 Institute for Biochemistry, University Erlangen-Nuernberg, Germany, 6 Waisman Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America, 7 Department of Neurobiology, Stanford University, Stanford, California, United States of America, 8 Florey Institute of Neuroscience and Mental Health, Parkville, Australia Abstract The myelination of axons is a crucial step during vertebrate central nervous system (CNS) development, allowing for rapid and energy efficient saltatory conduction of nerve impulses. Accordingly, the differentiation of oligodendrocytes, the myelinating cells of the CNS, and their expression of myelin genes are under tight transcriptional control. We previously identified a putative transcription factor, Myelin Regulatory Factor (Myrf), as being vital for CNS myelination. Myrf is required for the generation of CNS myelination during development and also for its maintenance in the adult. -
HIV-1 TAR Mirna Protects Against Apoptosis by Altering Cellular Gene
Retrovirology BioMed Central Research Open Access HIV-1 TAR miRNA protects against apoptosis by altering cellular gene expression Zachary Klase1, Rafael Winograd1, Jeremiah Davis1, Lawrence Carpio1, Richard Hildreth1, Mohammad Heydarian2, Sidney Fu2, Timothy McCaffrey2, Eti Meiri3, Mila Ayash-Rashkovsky3, Shlomit Gilad3, Zwi Bentwich3 and Fatah Kashanchi*1 Address: 1The Department of Microbiology, Immunology and Tropical Medicine program, The George Washington University School of Medicine, Washington, District of Columbia 20037, USA, 2The Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, District of Columbia 20037, USA and 3Rosetta Genomics Ltd., Rehovot, Israel Email: Zachary Klase - [email protected]; Rafael Winograd - [email protected]; Jeremiah Davis - [email protected]; Lawrence Carpio - [email protected]; Richard Hildreth - [email protected]; Mohammad Heydarian - [email protected]; Sidney Fu - [email protected]; Timothy McCaffrey - [email protected]; Eti Meiri - [email protected]; Mila Ayash- Rashkovsky - [email protected]; Shlomit Gilad - [email protected]; Zwi Bentwich - [email protected]; Fatah Kashanchi* - [email protected] * Corresponding author Published: 16 February 2009 Received: 15 August 2008 Accepted: 16 February 2009 Retrovirology 2009, 6:18 doi:10.1186/1742-4690-6-18 This article is available from: http://www.retrovirology.com/content/6/1/18 © 2009 Klase et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: RNA interference is a gene regulatory mechanism that employs small RNA molecules such as microRNA. -
Supplementary Materials
Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine -
CPTC-MAPK3-1 (CAB079934) Immunohistochemistry
CPTC-MAPK3-1 (CAB079934) Uniprot ID: P27361 Protein name: MK03_HUMAN Full name: Mitogen-activated protein kinase 3 Function: Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade plays also a role in initiation and regulation of meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a number of transcription factors. About 160 substrates have already been discovered for ERKs. Many of these substrates are localized in the nucleus, and seem to participate in the regulation of transcription upon stimulation. However, other substrates are found in the cytosol as well as in other cellular organelles, and those are responsible for processes such as translation, mitosis and apoptosis. Moreover, the MAPK/ERK cascade is also involved in the regulation of the endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC); as well as in the fragmentation of the Golgi apparatus during mitosis. The substrates include transcription factors (such as ATF2, BCL6, ELK1, ERF, FOS, HSF4 or SPZ1), cytoskeletal elements (such as CANX, CTTN, GJA1, MAP2, MAPT, PXN, SORBS3 or STMN1), regulators of apoptosis (such as BAD, BTG2, CASP9, DAPK1, IER3, MCL1 or PPARG), regulators of translation (such as EIF4EBP1) and a variety of other signaling-related molecules (like ARHGEF2, FRS2 or GRB10). -
WO 2017/015637 Al 26 January 2017 (26.01.2017) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/015637 Al 26 January 2017 (26.01.2017) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 48/00 (2006.01) C12N 15/63 (2006.01) kind of national protection available): AE, AG, AL, AM, C07K 19/00 (2006.01) C12N 15/65 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C12N 5/22 (2006.0 1) C12N 15/867 (2006.0 1) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, PCT/US2016/043756 KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (22) International Filing Date: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, 22 July 2016 (22.07.2016) PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (25) Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 62/195,680 22 July 2015 (22.07.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 62/293,3 13 9 February 2016 (09.02.2016) US TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicant: DUKE UNIVERSITY [US/US]; 2812 Erwin DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Road, Suite 306, Durham, NC 27705 (US). -
Genetic and Functional Approaches to Understanding Autoimmune and Inflammatory Pathologies
University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2020 Genetic And Functional Approaches To Understanding Autoimmune And Inflammatory Pathologies Abbas Raza University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Genetics and Genomics Commons, Immunology and Infectious Disease Commons, and the Pathology Commons Recommended Citation Raza, Abbas, "Genetic And Functional Approaches To Understanding Autoimmune And Inflammatory Pathologies" (2020). Graduate College Dissertations and Theses. 1175. https://scholarworks.uvm.edu/graddis/1175 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. GENETIC AND FUNCTIONAL APPROACHES TO UNDERSTANDING AUTOIMMUNE AND INFLAMMATORY PATHOLOGIES A Dissertation Presented by Abbas Raza to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Cellular, Molecular, and Biomedical Sciences January, 2020 Defense Date: August 30, 2019 Dissertation Examination Committee: Cory Teuscher, Ph.D., Advisor Jonathan Boyson, Ph.D., Chairperson Matthew Poynter, Ph.D. Ralph Budd, M.D. Dawei Li, Ph.D. Dimitry Krementsov, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Our understanding of genetic predisposition to inflammatory and autoimmune diseases has been enhanced by large scale quantitative trait loci (QTL) linkage mapping and genome-wide association studies (GWAS). However, the resolution and interpretation of QTL linkage mapping or GWAS findings are limited. -
Transcriptome Sequencing of Peripheral Blood Mononuclear
www.nature.com/scientificreports OPEN Transcriptome Sequencing of Peripheral Blood Mononuclear Cells from Elite Controller-Long Term Received: 8 February 2019 Accepted: 12 September 2019 Non Progressors Published: xx xx xxxx Francisco Díez-Fuertes1,2, Humberto Erick De La Torre-Tarazona1, Esther Calonge1, Maria Pernas3, María del Mar Alonso-Socas4, Laura Capa1, Javier García-Pérez1, Anavaj Sakuntabhai 5 & José Alcamí 1,2 The elite controller (EC)-long term non-progressor (LTNP) phenotype represent a spontaneous and advantageous model of HIV-1 control in the absence of therapy. The transcriptome of peripheral blood mononuclear cells (PBMCs) collected from EC-LTNPs was sequenced by RNA-Seq and compared with the transcriptomes from other phenotypes of disease progression. The transcript abundance estimation combined with the use of supervised classifcation algorithms allowed the selection of 20 genes and pseudogenes, mainly involved in interferon-regulated antiviral mechanisms and cell machineries of transcription and translation, as the best predictive genes of disease progression. Diferential expression analyses between phenotypes showed an altered calcium homeostasis in EC-LTNPs evidenced by the upregulation of several membrane receptors implicated in calcium-signaling cascades and intracellular calcium-mobilization and by the overrepresentation of NFAT1/Elk-1-binding sites in the promoters of the genes diferentially expressed in these individuals. A coordinated upregulation of host genes associated with HIV-1 reverse transcription and viral transcription was also observed in EC-LTNPs –i.e. p21/CDKN1A, TNF, IER3 and GADD45B. We also found an upregulation of ANKRD54 in EC-LTNPs and viremic LTNPs in comparison with typical progressors and a clear alteration of type-I interferon signaling as a consequence of viremia in typical progressors before and after receiving antiretroviral therapy. -
Microarray Gene Expression Analysis in Ovine Ductus Arteriosus During Fetal Development and Birth Transition
nature publishing group Articles Basic Science Investigation Microarray gene expression analysis in ovine ductus arteriosus during fetal development and birth transition Ravi Goyal1, Dipali Goyal1, Lawrence D. Longo1 and Ronald I. Clyman2 BACKGROUND: Patent ductus arteriosus (PDA) in the new- (PDA) persists after birth, the blood shunts from the high- born is the most common congenital heart anomaly and is pressure aorta to the low-pressure pulmonary artery (left to significantly more common in preterm infants. Contemporary right shunt). This can lead to pulmonary hyperemia and edema pharmacological treatment is effective in only 70–80% of the and decreases renal, mesenteric, and cerebral perfusion result- cases. Moreover, indomethacin or ibuprofen, which are used ing in pulmonary engorgement with an increase in pulmonary to close a PDA may be accompanied by serious side effects in vascular resistance and congestive cardiac failure. In those premature infants. To explore the novel molecular pathways, cases in which the pulmonary vascular resistance exceeds which may be involved in the maturation and closure of the the systemic vascular resistance, the blood shunts from right ductus arteriosus (DA), we used fetal and neonatal sheep to test to left. The main therapeutic option for a PDA is to treat the the hypothesis that maturational development of DA is associ- neonate with indomethacin or ibuprofen to inhibit the enzyme ated with significant alterations in specific mRNA expression. cyclooxygenase and thus inhibit prostaglandin synthesis. This METHODS: We conducted oligonucleotide microarray exper- is successful in about 70–80% of infants. Its use, however, may iments on the isolated mRNA from DA and ascending aorta lead to undesirable side effects such as gastrointestinal bleed- from three study groups (premature fetus—97 ± 0 d, near-term ing, perforation, and/or necrotizing enterocolitis. -
Supplementary Figure 1. Network Map Associated with Upregulated Canonical Pathways Shows Interferon Alpha As a Key Regulator
Supplementary Figure 1. Network map associated with upregulated canonical pathways shows interferon alpha as a key regulator. IPA core analysis determined interferon-alpha as an upstream regulator in the significantly upregulated genes from RNAseq data from nasopharyngeal swabs of COVID-19 patients (GSE152075). Network map was generated in IPA, overlaid with the Coronavirus Replication Pathway. Supplementary Figure 2. Network map associated with Cell Cycle, Cellular Assembly and Organization, DNA Replication, Recombination, and Repair shows relationships among significant canonical pathways. Significant pathways were identified from pathway analysis of RNAseq from PBMCs of COVID-19 patients. Coronavirus Pathogenesis Pathway was also overlaid on the network map. The orange and blue colors in indicate predicted activation or predicted inhibition, respectively. Supplementary Figure 3. Significant biological processes affected in brochoalveolar lung fluid of severe COVID-19 patients. Network map was generated by IPA core analysis of differentially expressed genes for severe vs mild COVID-19 patients in bronchoalveolar lung fluid (BALF) from scRNA-seq profile of GSE145926. Orange color represents predicted activation. Red boxes highlight important cytokines involved. Supplementary Figure 4. 10X Genomics Human Immunology Panel filtered differentially expressed genes in each immune subset (NK cells, T cells, B cells, and Macrophages) of severe versus mild COVID-19 patients. Three genes (HLA-DQA2, IFIT1, and MX1) were found significantly and consistently differentially expressed. Gene expression is shown per the disease severity (mild, severe, recovered) is shown on the top row and expression across immune cell subsets are shown on the bottom row. Supplementary Figure 5. Network map shows interactions between differentially expressed genes in severe versus mild COVID-19 patients.