Session 3. Assessing Medicine Efficacy

Total Page:16

File Type:pdf, Size:1020Kb

Session 3. Assessing Medicine Efficacy Drug and Therapeutics Committee Training Course Session 3. Assessing Medicine Efficacy Participants’ Guide Drug and Therapeutics Committee Training Course—Participants’ Guide This document was made possible through support provided by the U.S. Agency for International Development, under the terms of cooperative agreement number HRN-A-00-00- 00016-00. The opinions expressed herein are those of the author(s) and do not necessarily reflect the views of the U.S. Agency for International Development. About RPM Plus RPM Plus works in more than 20 developing and transitional countries to provide technical assistance to strengthen pharmaceutical and health commodity management systems. The program offers technical guidance and assists in strategy development and program implementation both in improving the availability of health commodities—pharmaceuticals, vaccines, supplies, and basic medical equipment—of assured quality for maternal and child health, HIV/AIDS, infectious diseases, and family planning, and in promoting the appropriate use of health commodities in the public and private sectors. Recommended Citation The materials may be freely abstracted, quoted and translated in part or in whole by non-profit or educational organizations (for reference or teaching only) provided the original source is acknowledged. They should not be sold nor used for any other commercial purpose. Management Sciences for Health and World Health Organization. 2007. Drug and Therapeutics Committee Training Course. Submitted to the U.S. Agency for International Development by the Rational Pharmaceutical Management Plus Program. Arlington, VA: Management Sciences for Health. Rational Pharmaceutical Management Plus Center for Pharmaceutical Management Management Sciences for Health 4301 North Fairfax Drive, Arlington, VA 22203 USA Phone: 703.524.6575 Fax: 703.524.7898 E-mail: [email protected] Web: www.msh.org/rpmplus Developed in Collaboration with the World Health Organization Geneva, Switzerland ii ABBREVIATIONS AND ACRONYMS ACS acute coronary syndrome CI confidence interval DTC Drug and Therapeutics Committee HR hazard ratio ITT intention to treat MI myocardial infarction n or N number NNT number needed to treat RCT randomized controlled trial RRR relative risk reduction iii Drug and Therapeutics Committee Training Course—Participants’ Guide iv CONTENTS Session 3. Assessing Medicine Efficacy ......................................................................................... 7 Purpose and Content ................................................................................................................... 7 Objectives ............................................................................................................................... 7 Preparation and Materials ....................................................................................................... 7 Further Readings ..................................................................................................................... 8 Introduction ................................................................................................................................. 8 Formulating the Question ........................................................................................................... 9 Finding the Evidence .................................................................................................................. 9 What Sort of Evidence? ............................................................................................................ 10 Assessing the Quality of the Evidence—What Makes a Good Clinical Trial? ........................ 10 Why Was the Study Done? What Clinical Questions Were the Authors Addressing? ........ 12 What Type of Study Was Done? .......................................................................................... 12 Was the Study Design Appropriate to the Research Question? ............................................ 14 Was the Design of the Study Sensible? ................................................................................ 15 Who Is Studied? .................................................................................................................... 16 How Well Was the Study Conducted? Was Systematic Bias Avoided or Minimized? ....... 16 Quality of Randomized Controlled Trials: What to Look for ............................................... 17 Randomization and Concealment of Allocation ................................................................... 17 Double-Blind vs. Open Trials ............................................................................................... 18 Inclusion of All Patients in the Statistical Analysis .............................................................. 18 Quality of Non-Randomized Trials—What to Look for .......................................................... 19 Understanding the Numbers ..................................................................................................... 20 What Did the Authors Think They Would Find? ................................................................. 20 What Were the Results? ........................................................................................................ 20 Different Types of Data Need Different Statistical Tests ..................................................... 21 Understanding Metrics or the Bottom Line .......................................................................... 23 What are the Standard Statistical Tests? ............................................................................... 26 Summary Statement on Single Trials ....................................................................................... 29 Systematic Reviews and Meta-Analysis ............................................................................... 29 Search Strategies and Inclusion Criteria ................................................................................... 30 The Use of Systematic Reviews and Meta-Analysis ................................................................ 31 The Use of Sensitivity Analysis in Interpreting the Results ................................................. 32 Interpreting Inconsistent Results (Heterogeneity) ................................................................ 32 Summary of Systematic Reviews ......................................................................................... 33 v Drug and Therapeutics Committee Training Course—Participants’ Guide Use of Evidence in Decision-Making ....................................................................................... 33 Activity 1. Comparing Antimicrobial Medicines for Pneumonia ............................................. 34 Activity 2. Interpreting the Data: The Helsinki Heart Study .................................................... 35 Activity 3. Critically Evaluating an Article .............................................................................. 35 Activity 4. Interpreting the Data: A Medicine Trial to Compare Artesunate with Mefloquine to Treat Malaria .......................................................................................................... 35 Annex 1. Glossary ..................................................................................................................... 38 Annex 2. Checklist to Detect Common Problems Encountered in Articles ............................. 41 vi SESSION 3. ASSESSING MEDICINE EFFICACY Purpose and Content Session 3 is designed to provide participants with a basic guide on how to determine medicine efficacy, primarily through review of the pharmaceutical literature with an emphasis on evaluating randomized controlled trials (RCTs), systematic reviews, and meta-analyses. Systematic and thorough evaluations of the pharmaceutical literature will provide the Drug and Therapeutics Committee (DTC) with the unbiased information necessary to select appropriate medicines for the formulary. In most countries, evaluating the pharmaceutical literature is commonly done by physicians and pharmacists. Unfortunately, this review is often done incorrectly. With the tools presented in this session and practice at home, participants will be better equipped to evaluate the literature systematically and scientifically. Objectives After attending this session, participants will be able to— • Understand the importance of determining efficacy and evaluating the clinical literature • Discuss the major types of medicine study design • Describe the key components of a journal article • Understand how to evaluate and interpret results of a randomized controlled trial • Discuss the use of systematic reviews and meta-analyses in evaluating medicines Preparation and Materials Read the following— • This session—A thorough understanding of this session is necessary before the presentation. • Review session 2, “Developing and Maintaining a Formulary” of the Participants’ Guide. • Activity article—Randomized trial of artesunate and mefloquine alone and in sequence for acute uncomplicated falciparum malaria. 7 Drug and Therapeutics Committee Training Course—Participants’ Guide Further Readings Gehlbach, S. H. 1993. Interpreting the Medical Literature 3rd ed. New York: McGraw-Hill. Greenhalgh, T. 2006. How to Read a Paper: The Basics of Evidence-Based Medicine 3rd ed. Blackwell Publishing. Grimes, D. A., and K. F. Schulz. 2002. An Overview of Clinical Research: The Lay of the Land. Lancet 359: 57–61. Kirkwood,
Recommended publications
  • Descriptive Statistics (Part 2): Interpreting Study Results
    Statistical Notes II Descriptive statistics (Part 2): Interpreting study results A Cook and A Sheikh he previous paper in this series looked at ‘baseline’. Investigations of treatment effects can be descriptive statistics, showing how to use and made in similar fashion by comparisons of disease T interpret fundamental measures such as the probability in treated and untreated patients. mean and standard deviation. Here we continue with descriptive statistics, looking at measures more The relative risk (RR), also sometimes known as specific to medical research. We start by defining the risk ratio, compares the risk of exposed and risk and odds, the two basic measures of disease unexposed subjects, while the odds ratio (OR) probability. Then we show how the effect of a disease compares odds. A relative risk or odds ratio greater risk factor, or a treatment, can be measured using the than one indicates an exposure to be harmful, while relative risk or the odds ratio. Finally we discuss the a value less than one indicates a protective effect. ‘number needed to treat’, a measure derived from the RR = 1.2 means exposed people are 20% more likely relative risk, which has gained popularity because of to be diseased, RR = 1.4 means 40% more likely. its clinical usefulness. Examples from the literature OR = 1.2 means that the odds of disease is 20% higher are used to illustrate important concepts. in exposed people. RISK AND ODDS Among workers at factory two (‘exposed’ workers) The probability of an individual becoming diseased the risk is 13 / 116 = 0.11, compared to an ‘unexposed’ is the risk.
    [Show full text]
  • EBM Notebook Numbers Needed to Treat Derived from Meta-Analysis: a Word of Caution
    Evid Based Med: first published as 10.1136/ebm.8.2.36 on 1 March 2003. Downloaded from EBM notebook Numbers needed to treat derived from meta-analysis: a word of caution In clinical trials, treatment effects from binary outcomes, such the NNT will be applied, and information on the time horizon as “alive” or “dead”, can be presented in various ways (eg, rela- of the study (eg, the median follow up time). tive risk reduction [RRR] and absolute risk reduction We illustrate these points using the meta-analysis of [ARR]).1–2 (See glossary for definitions and calculations). Alter- randomised controlled trials investigating the effect of n-3 poly- natively, the number needed to treat (NNT) is an expression of the unsaturated fatty acids on clinical endpoints in patients with number of patients who need to be treated to prevent one coronary heart disease as an example.11–12 The meta-analysis additional adverse event.2–4 Mathematically, the NNT equals the found a 19% (CI 10% to 27%) RRR of overall mortality favour- reciprocal of the ARR. Many journals now report results from ing the use of n-3 polyunsaturated fatty acids. In the clinical trials using the NNT, along with 95% confidence inter- Evidence-Based Medicine structured summary of this meta- vals (CIs).5 analysis, the NNT derived from a pooled risk difference, and 11 Since its introduction,3 a debate has ensued whether based on an average baseline risk of 9.5%, is 73 (CI 49 to 147). reporting NNTs from meta-analyses is misleading.467 ACP However, this estimate does not reflect the high variability of Journal Club and Evidence-Based Medicine have devoted attention baseline risk of the included trials.
    [Show full text]
  • Clinical Pharmacology 1: Phase 1 Studies and Early Drug Development
    Clinical Pharmacology 1: Phase 1 Studies and Early Drug Development Gerlie Gieser, Ph.D. Office of Clinical Pharmacology, Div. IV Objectives • Outline the Phase 1 studies conducted to characterize the Clinical Pharmacology of a drug; describe important design elements of and the information gained from these studies. • List the Clinical Pharmacology characteristics of an Ideal Drug • Describe how the Clinical Pharmacology information from Phase 1 can help design Phase 2/3 trials • Discuss the timing of Clinical Pharmacology studies during drug development, and provide examples of how the information generated could impact the overall clinical development plan and product labeling. Phase 1 of Drug Development CLINICAL DEVELOPMENT RESEARCH PRE POST AND CLINICAL APPROVAL 1 DISCOVERY DEVELOPMENT 2 3 PHASE e e e s s s a a a h h h P P P Clinical Pharmacology Studies Initial IND (first in human) NDA/BLA SUBMISSION Phase 1 – studies designed mainly to investigate the safety/tolerability (if possible, identify MTD), pharmacokinetics and pharmacodynamics of an investigational drug in humans Clinical Pharmacology • Study of the Pharmacokinetics (PK) and Pharmacodynamics (PD) of the drug in humans – PK: what the body does to the drug (Absorption, Distribution, Metabolism, Excretion) – PD: what the drug does to the body • PK and PD profiles of the drug are influenced by physicochemical properties of the drug, product/formulation, administration route, patient’s intrinsic and extrinsic factors (e.g., organ dysfunction, diseases, concomitant medications,
    [Show full text]
  • Measuring Ligand Efficacy at the Mu- Opioid Receptor Using A
    RESEARCH ARTICLE Measuring ligand efficacy at the mu- opioid receptor using a conformational biosensor Kathryn E Livingston1,2, Jacob P Mahoney1,2, Aashish Manglik3, Roger K Sunahara4, John R Traynor1,2* 1Department of Pharmacology, University of Michigan Medical School, Ann Arbor, United States; 2Edward F Domino Research Center, University of Michigan, Ann Arbor, United States; 3Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, United States; 4Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, United States Abstract The intrinsic efficacy of orthosteric ligands acting at G-protein-coupled receptors (GPCRs) reflects their ability to stabilize active receptor states (R*) and is a major determinant of their physiological effects. Here, we present a direct way to quantify the efficacy of ligands by measuring the binding of a R*-specific biosensor to purified receptor employing interferometry. As an example, we use the mu-opioid receptor (m-OR), a prototypic class A GPCR, and its active state sensor, nanobody-39 (Nb39). We demonstrate that ligands vary in their ability to recruit Nb39 to m- OR and describe methadone, loperamide, and PZM21 as ligands that support unique R* conformation(s) of m-OR. We further show that positive allosteric modulators of m-OR promote formation of R* in addition to enhancing promotion by orthosteric agonists. Finally, we demonstrate that the technique can be utilized with heterotrimeric G protein. The method is cell- free, signal transduction-independent and is generally applicable to GPCRs. DOI: https://doi.org/10.7554/eLife.32499.001 *For correspondence: [email protected] Competing interests: The authors declare that no Introduction competing interests exist.
    [Show full text]
  • NUMBER NEEDED to TREAT (CONTINUATION) Confidence
    Number Needed to treat Confidence Interval for NNT • As with other estimates, it is important that the uncertainty in the estimated number needed to treat is accompanied by a confidence interval. • A common method is that proposed by Cook and Sacket (1995) and based on calculating first the confidence interval NUMBER NEEDED TO TREAT for the difference between the two proportions. • The result of this calculation is 'inverted' (ie: 1/CI) to give a (CONTINUATION) confidence interval for the NNT. Hamisu Salihu, MD, PhD Confidence Interval for NNT Confidence Interval for NNT • This computation assumes that ARR estimates from a sample of similar trials are normally distributed, so we can use the 95th percentile point from the standard normal distribution, z0.95 = 1.96, to identify the upper and lower boundaries of the 95% CI. Solution Class Exercise • In a parallel clinical trial to test the benefit of additional anti‐ hyperlipidemic agent to standard protocol, patients with acute Myocardial Infarction (MI) were randomly assigned to the standard therapy or the new treatment that contains standard therapy and simvastatin (an HMG‐CoA reductase inhibitor). At the end of the study, of the 2223 patients in the control group 622 died as compared to 431 of 2221 patients in the Simvastatin group. – Calculate the NNT and the 95% CI for Simvastatin – Is Simvastatin beneficial as additional therapy in acute cases of MI? 1 Confidence Interval Number Needed to for NNT Treat • The NNT to prevent one additional death is 12 (95% • A negative NNT indicates that the treatment has a CI, 9‐16).
    [Show full text]
  • Antimalarial Drug Efficacy and Drug Resistance: 2000–2010 WHO Library Cataloguing-In-Publication Data
    GLOBAL REPORT ON ANTIMALARIAL DRUG EFFICACY AND DRUG RESISTANCE: 2000–2010 WHO Library Cataloguing-in-Publication Data Global report on antimalarial drug efficacy and drug resistance: 2000-2010. 1.Malaria - prevention and control. 2.Malaria - drug therapy. 3.Antimalarials - therapeutic use. 4.Epidemiologic surveillance - methods. 5.Drug resistance. 6.Drug monitoring. 7.Treatment outcome. 8.Thailand. 8.Cambodia. I.World Health Organization. ISBN 978 92 4 150047 0 (NLM classification: QV 256) © World Health Organization 2010 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]
  • Technical Expert Group on Drug Efficacy and Response 1–2 June 2017 Room M 605, Headquarters, World Health Organization, Geneva, Switzerland
    Global Malaria Programme Technical Expert Group on Drug Efficacy and Response 1–2 June 2017 Room M 605, Headquarters, World Health Organization, Geneva, Switzerland Minutes of the Technical Expert Group on Drug Efficacy and Response This document was prepared as a pre-read for the meeting of the Malaria Policy Advisory Committee and is not an official document of the World Health Organization. WHO/HTM/GMP/MPAC/201712 Page 2 of 35 Minutes of the Technical Expert Group on Drug Efficacy and Response Contents Acknowledgments ................................................................................................................................... 4 Abbreviations .......................................................................................................................................... 4 Summary and recommendations............................................................................................................ 5 1 Welcome and introduction of guest speakers ................................................................................ 9 2 Declarations of interest................................................................................................................... 9 3 Minutes and action points of TEG 2015 .......................................................................................... 9 4 Session 1. Molecular markers: genotyping and monitoring drug resistance ................................. 9 4.1 Molecular markers of piperaquine resistance .......................................................................
    [Show full text]
  • Understanding Key Determinants of Drug Activity
    CASE STUDY Dr. Kevin Lustig, President and CEO, The Assay Depot, Inc. Greater San Diego Area Understanding Key Determinants of Drug Activity SUMMARY This article highlights the increasing role that drug metabolism and transport proteins have in the drug approval process. CASE STUDY: The Assay Depot, Inc. The dynamics of drug metabolizing enzymes and transporters is critical to the development of personalized medicine strategies. Abstract / Summary The dynamics of drug metabolizing enzymes and transporters is critical to the develop- ment of personalized medicine strategies. A multitude of factors regulate enzymes and transporters, which in turn affect the pharmacokinetic properties of drugs and medi- ate drug interactions. Evaluation of drug interaction profiles is a critical step in drug development and necessitates detailed in vitro and in vivo studies along with predictive modeling. PharmaPendium® via its Metabolizing Enzymes and Transporters Module provides unprecedented depth of data on drug metabolizing enzymes and transporters and offers a unique platform for modeling advanced drug interactions. This Module will prove to be a valuable resource capable of improving workflows and accelerating devel- opment by enabling intelligent, in silico drug design. By providing scientists with all of the available knowledge about drug metabolism, we can significantly reduce the need for costly and time-consuming lab work and animal models. Requiring these only to answer the true unknowns where no one else has gone before. Introduction Every successful drug discovery and development effort needs to factor in drug efficacy Dr. Kevin Lustig, Author and safety, both of which are intimately linked to drug metabolism. Hence knowledge President & CEO, The Assay Depot Inc.
    [Show full text]
  • Pharmacokinetics and Pharmacology of Drugs Used in Children
    Drug and Fluid Th erapy SECTION II Pharmacokinetics and Pharmacology of Drugs Used CHAPTER 6 in Children Charles J. Coté, Jerrold Lerman, Robert M. Ward, Ralph A. Lugo, and Nishan Goudsouzian Drug Distribution Propofol Protein Binding Ketamine Body Composition Etomidate Metabolism and Excretion Muscle Relaxants Hepatic Blood Flow Succinylcholine Renal Excretion Intermediate-Acting Nondepolarizing Relaxants Pharmacokinetic Principles and Calculations Atracurium First-Order Kinetics Cisatracurium Half-Life Vecuronium First-Order Single-Compartment Kinetics Rocuronium First-Order Multiple-Compartment Kinetics Clinical Implications When Using Short- and Zero-Order Kinetics Intermediate-Acting Relaxants Apparent Volume of Distribution Long-Acting Nondepolarizing Relaxants Repetitive Dosing and Drug Accumulation Pancuronium Steady State Antagonism of Muscle Relaxants Loading Dose General Principles Central Nervous System Effects Suggamadex The Drug Approval Process, the Package Insert, and Relaxants in Special Situations Drug Labeling Opioids Inhalation Anesthetic Agents Morphine Physicochemical Properties Meperidine Pharmacokinetics of Inhaled Anesthetics Hydromorphone Pharmacodynamics of Inhaled Anesthetics Oxycodone Clinical Effects Methadone Nitrous Oxide Fentanyl Environmental Impact Alfentanil Oxygen Sufentanil Intravenous Anesthetic Agents Remifentanil Barbiturates Butorphanol and Nalbuphine 89 A Practice of Anesthesia for Infants and Children Codeine Antiemetics Tramadol Metoclopramide Nonsteroidal Anti-infl ammatory Agents 5-Hydroxytryptamine
    [Show full text]
  • Comparison of Pharmacokinetics and Efficacy of Oral and Injectable Medicine Outline
    Comparison of pharmacokinetics and efficacy of oral and injectable medicine Outline • Background • Results – Antibiotics – Non steroidal anti-inflammatory drugs (NSAIDs) – Vitamins • Conclusions and recommendations Outline • Background • Results – Antibiotics – Non steroidal anti-inflammatory drugs (NSAIDs) – Vitamins • Conclusions and recommendations Injections given with sterile and reused South America (lower mortality) equipment worldwide Central Europe South America (higher mortality) West Africa Injections given with non-sterile equipment East and Southern Africa Injections given with sterile equipment South East Asia Regions China and Pacific Eastern Europe and Central Asia South Asia Middle East Crescent - 2.0 4.0 6.0 8.0 10.0 12.0 Number of injections per person and per year Injections: A dangerous engine of disease • Hepatitis B – Highly infectious virus – Highest number of infections (21 million annually) – 32% of HBV infections • Hepatitis C – More than 2 million infections each year – More than 40% of HCV infections • HIV – More than 260 000 infections – Approximately 5% of HIV infections Reported common conditions leading to injection prescription • Infections • Asthma – Fever • Other – Upper Respiratory – Malaise Infection/ Ear Infection – Fatigue – Pneumonia – Old Age – Tonsillitis – Pelvic Inflammatory Disease – Skin Infections – Diarrhea – Urinary tract infection Simonsen et al. WHO 1999 Reported injectable medicines commonly used • Antibiotics • Anti-inflammatory agents / Analgesics • Vitamins Simonsen et al. WHO 1999
    [Show full text]
  • Rex-Outterson
    Clinical trial designs for non-traditional antibiotics John H. Rex, MD Kevin Outterson, JD Chief Medical Officer, F2G Ltd; Executive Director, CARB-X Expert-in-Residence, Wellcome Trust Professor of Law, Boston University Operating Partner, Advent Life Sciences Email: [email protected] Email: [email protected] Newsletter: http://amr.solutions Note: We are going to cover a LOT of material fairly quickly and taking notes will be hard. These slides will be available shortly via a newsletter and blog post on John’s website (see above). 2018-06-14 - Rex-Outterson - Duke-Margolis - Non-traditional antibiotic intro 1 Agenda • Defining scope: • The core problem • Language to guide conversation • Discussion of non-traditional products that… • Seek to treat infections • Seek to prevent infections • Why this matters to CARB-X: Summary & next steps • Supplemental slides • Useful literature, both general and from Animal Health 2018-06-14 - Rex-Outterson - Duke-Margolis - Non-traditional antibiotic intro 2 The core problem • All products must showcase their distinctive value • This is not a regulatory issue per se. Rather, this is what we naturally ask of anything • Prove to me that it works! • How is it better / useful? • In what settings can that advantage be seen? • For antibiotics, limits on the routinely possible studies (next slides) create a substantial hurdle • Superiority is (usually) out of reach • Non-inferiority studies are relatively unsatisfying • Beg for the bad news*: If you’re not clear on this, you are heading into a world of hurt *Swanson’s Rule #27 from Swanson's2018 Unwritten-06-14 - Rex Rules-Outterson of Management - Duke-Margolis.
    [Show full text]
  • Antibiotic Resistance Threats in the United States, 2019
    ANTIBIOTIC RESISTANCE THREATS IN THE UNITED STATES 2019 Revised Dec. 2019 This report is dedicated to the 48,700 families who lose a loved one each year to antibiotic resistance or Clostridioides difficile, and the countless healthcare providers, public health experts, innovators, and others who are fighting back with everything they have. Antibiotic Resistance Threats in the United States, 2019 (2019 AR Threats Report) is a publication of the Antibiotic Resistance Coordination and Strategy Unit within the Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention. Suggested citation: CDC. Antibiotic Resistance Threats in the United States, 2019. Atlanta, GA: U.S. Department of Health and Human Services, CDC; 2019. Available online: The full 2019 AR Threats Report, including methods and appendices, is available online at www.cdc.gov/DrugResistance/Biggest-Threats.html. DOI: http://dx.doi.org/10.15620/cdc:82532. ii U.S. Centers for Disease Control and Prevention Contents FOREWORD .............................................................................................................................................V EXECUTIVE SUMMARY ........................................................................................................................ VII SECTION 1: THE THREAT OF ANTIBIOTIC RESISTANCE ....................................................................1 Introduction .................................................................................................................................................................3
    [Show full text]