Studies on Colour Tests for Field Detection of Narcotic Drugs and Psychotropic Substances Under International Control (No

Total Page:16

File Type:pdf, Size:1020Kb

Studies on Colour Tests for Field Detection of Narcotic Drugs and Psychotropic Substances Under International Control (No UNITED NATIONS INTERNATIONAL DRUG CONTROL PROGRAMME SCIENTIFIC AND TECHNICAL NOTES SCITEC/13 December 1996 Studies on Colour Tests for Field Detection of Narcotic Drugs and Psychotropic Substances under International Control (No. II) Screening Colour Test and Specific Colour Test for the Detection of Non-barbiturate Sedatives and Hypnotics Methaqualone and Mecloqualone Keizo Watanabe prepared by LABORATORY SECTION TECHNICAL SERVICES BRANCH - 1 - Table of Contents Purpose of this note......................................................................................................... 2 Manufacture and international control 2 Medical use 3 Chemical identification 6 Synthesis 7 Colour test 9 Experimental 10 Results and discussion ................................................................................................... 14 References...........................................................................................................................23 - 2 - Purpose of this note 1. In view of the increasing interest expressed by Member States in the possibility of identifying methaqualone and mecloqualone by means of a simple colour reaction, a study was carried out to explore such a possibility at the UNDCP laboratory. This note summarizes the results of that study. Manufacture and international control (1,2) 2. In 1972, methaqualone emerged as a major drug of non-medical use in the United States and subject of widespread publicity and public concern. It also had a similar history in other countries, particularly in Great Britain, Germany and Japan. Methaqualone was first synthesized in 1951 and introduced in Europe in 1956. In 1959, it was introduced in Great Britain and marketed as Melsedin in 150 mg tablets by the Boots Pure Drug Company. This preparation was never widely prescribed. 3. Methaqualone was introduced to the former West Germany in 1960, marketed by Merck as Revonal in 200 and 300 mg tablets. Two years later, the drug became available in the former East Germany, marketed under the trade name Dormutil. In both East and West Germany, methaqualone was sold over the counter, unlike barbiturates which required a prescription, and quickly became widely used and abused, particularly by young people. In the decade following methaqualone's introduction into the world market, it became a drug of non-medical use in France, Italy, Sweden, Argentina, Norway, Ireland and Australia. Overdose from methaqualone was considered to be a serious problem. 4. Methaqualone was introduced to Japan in October 1960 by the Eisai Company and marketed under the trade name Hyminal. Freely available without prescription, methaqualone was widely used for non-medical purposes. 5. In 1965, Roussel introduced a combination tablet, Mandrax, which contained 250 mg of methaqualone base and 25 mg of diphenhydramine hydrochloride. Mandrax rapidly achieved a considerable popularity and a survey in 1968 showed that it was the most commonly used hypnotic, accounting for 30 of all hypnotic prescriptions. Other preparations were marketed, but none reached equal popularity. It is surprising that Mandrax, a methaqualone preparation marketed six years after the first methaqualone containing product, became so much more widely used. It is claimed that this is because methaqualone together with diphenhydramine is a more efficient hypnotic. The apparent effect of diphenhydramine in promoting the absorption and increasing the peak plasma methaqualone concentration can be seen in comparative studies on Melsedin versus Mandrax. 6. The major episodes of methaqualone misuse and the most fully documented, occurred in Great Britain, Germany and Japan. Until 1973, however, federal officials in the United States did not give much weight to the foreign reports on methaqualone misuse and dependence liability. The warning statement to doctors accompanying methaqualone products, approved by the FDA in 1967 and unchanged until the imposition of Schedule II control in 1973, stated only that "psychological dependence has been rarely reported; physical dependence has not clearly been demonstrated". Despite the British, German and Japanese reports available at that time, in 1967, the FDA approved the marketing of a new 300 mg methaqualone preparation, Quaalude. 7. A review of the foreign experience with methaqualone misuse reveals certain pattern which were - 3 - later repeated in the United States. First, methaqualone was widely marketed as a new, safe sedative hypnotic superior to the barbiturates and other traditional sleeping medications. Secondly, it was readily accepted both by physicians and by the drug-using public because of its particular pharmacological properties, its free availability and its reputation for producing a pleasant, allegedly safe euphoria. As a result, methaqualone rapidly developed a following among recreational drug users. Thirdly, as methaqualone emerged as a high frequency drug of misuse, reports regarding its toxicity, its tolerance potential, and its dependence liability became more numerous. 8. In its 1964 report, the World Health Organization Expert Committee on Addiction Producing Drugs noted the "epidemic-like outbreak of abuse of hypnotic drugs in a particular region. Methaqualone is reported to constitute about 4/5 of the total amount of hypnotic drugs abuse in the group studied."(5) In 1979, the Commission on Narcotic Drugs decided to place methaqualone under international control, initially in Schedule IV and later transferred it to Schedule II of the 1971 Convention on Psychotropic Substances. 9. No diversion of substances included in Schedule II of the 1971 Convention from the licit manufacture and trade into the illicit channels has been identified since l990. However, although diversion of methaqualone last occurred in 1988, attempts at diversion of this substance has continued, mainly through the use of falsified import authorizations. Indeed, in summer 1991, a Swiss trading company approached a company in India in order to obtain 10 million tablets containing 400 mg of methaqualone and 40 mg of diphenhydramine hydrochloride each. When requested by the Indian company for the export permit, the Indian authorities informed the United Nations International Narcotics Control Board. Inquiry with the Swiss authorities revealed that the Swiss company interested in the purchase of methaqualone was not licensed to deal in pharmaceuticals and had never applied for the import permit. Investigations of the case continue in Switzerland.(6) 10. Only a few countries in Europe, namely Belgium, Spain and Switzerland, continue to use methaqualone in significant quantities for medical purposes. In recent years, the medical needs for methaqualone in those countries have been satisfied by using stocks in Switzerland or, occasionally, through manufacturing the substance in the Czech Republic (214 kg in 1994).(8) Mecloqualone has not been manufactured since 1980. Portugal, the only country that had reported having small stocks of the substance, exhausted those stocks in 1993. 11. Two international meetings took place recently on the subject of illicit traffic in methaqualone: 1) International Conference on the Illicit Traffic in Methaqualone between the Indian Sub-Continent and the East/Southern Region of Africa, organized by ICPO/Interpol, New Delhi, India, from 9 to 11 December 1992, and 2) Regional Seminar on Methaqualone, organized by UNDCP, Nairobi, Kenya, from 18 to 20 January 1993.(7) Medical use (I) Methaqualone 12. Methaqualone is a non-barbiturate sedative-hypnotic agent of the quinazoline group, used to produce sleep and daytime sedation in doses ranging from 150mg to 400mg.(9)(10)(11) Methaqualone is a central nervous system depressant, effective for sedation at dosage ranges of 75 mg four times daily. Onset of sedative-hypnotic action occurs within 30 min. of ingestion and lasts between 6 to 8 hours. (1) - 4 - 13. Virtually insoluble in water, methaqualone is unsuitable for intravenous injection and is administered orally. Adverse physiological reactions to methaqualone include headache, hangover, menstrual disturbance, dryness of the mouth, nosebleed, dizziness, numbness, diarrhea and anorexia,(12) neurotoxic effects have been discussed (15). Absorption and plasma levels of methaqualone after oral administration to man have been studied.(13) 14. Studies on methaqualone's metabolism in man were reported in 1960, and in animals in 1963.(12)(13) Methaqualone was introduced pharmaceutically in 1959 for use as a non-addictive, non- barbiturate sleeping pill. Metabolite detection for forensic science purposes was reported in 1976. 14. Pharmacokinetic studies on methaqualone have shown a wide subject variation in the rate of absorption and a faster absorption rate for the hydrochloride salt than for the free base.(14) It is known that methaqualone is concentrated in body fat and brain and that it is metabolised at a rate which ensures 80 elimination in 24 hours. Methaqualone is readily absorbed from the gastrointestinal tract and metabolized almost entirely in the liver.(15) It is very rapidly and extensively metabolized in man via hydroxylation, so that very little unchanged drug, usually less than 5, is excreted in urine. 16. Metabolic pathways involving formation of dihydroxy- and hydroxy-methoxy-derivatives exist. However, the major pathway is monohydroxylation at any one of ten possible sites (14). and the five most common monohydroxy metabolites in human urine are shown in Figure 1. 17. Methaqualone is particularly attractive
Recommended publications
  • Metamizol Suicide - Lethal Outcome Despite Maximum Therapy
    Toxichem Krimtech 2012;79(2):71 Report from the Clinical Toxicology Committee of the Society of Toxicological and Forensic Chemistry (GTFCh) Metamizol Suicide - Lethal Outcome Despite Maximum Therapy Detlef Haase, Sabine Hübner, Silke Kunellis, Gerlinde Kotzerke, Harald König Helios Hospital Schwerin, Institute for Laboratory and Transfusion Medicine, Toxicology Department, Wismarsche Straße 393-397, D-19049 Schwerin, Germany Abstract A 70 year old female patient, suffering for years from rheumatoid arthritis and associated chronic pain was referred to the hospital by an emergency physician. Her blood pressure was no longer measurable; a hemiparesis has developed. A preliminary examination was carried out in the emergency department by a neurologist and a cerebral CT was requested. Immediately after examination, the patient suffered from hypodynamic cardiac arrest and had to be cardiopulmonary resuscitated. After stabilisation she was transferred to the Stroke Unit, where tonic-clonic convulsive seizures occurred. Toxicological general-unknown analysis of the patient's serum confirmed a suspected metamizol intoxication. Despite a maximum permissible dose of noradrenaline, she died four days after hospitalisation due to multiple organ failure. 1. Introduction 1.1. Metamizol Metamizol (novaminsulfone), closely related to phenazone and propyphenazone, is the most powerful analgesic and antipyretic of the pyrazolone derivatives and still on the market. 4-N- methyl-aminoantipyrine (MAA) is also effective, but formed through metamizol hydrolysis in the body. Patients with glucose-6-dehydrogenase deficiency should never use metamizol, be- cause a haemolytic crisis could be triggered. In addition, metamizol has a considerable poten- tial for side-effects, of which agranulocytosis is the most significant [1]. Therefore, metamizol is no more licensed in many countries.
    [Show full text]
  • The In¯Uence of Medication on Erectile Function
    International Journal of Impotence Research (1997) 9, 17±26 ß 1997 Stockton Press All rights reserved 0955-9930/97 $12.00 The in¯uence of medication on erectile function W Meinhardt1, RF Kropman2, P Vermeij3, AAB Lycklama aÁ Nijeholt4 and J Zwartendijk4 1Department of Urology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; 2Department of Urology, Leyenburg Hospital, Leyweg 275, 2545 CH The Hague, The Netherlands; 3Pharmacy; and 4Department of Urology, Leiden University Hospital, P.O. Box 9600, 2300 RC Leiden, The Netherlands Keywords: impotence; side-effect; antipsychotic; antihypertensive; physiology; erectile function Introduction stopped their antihypertensive treatment over a ®ve year period, because of side-effects on sexual function.5 In the drug registration procedures sexual Several physiological mechanisms are involved in function is not a major issue. This means that erectile function. A negative in¯uence of prescrip- knowledge of the problem is mainly dependent on tion-drugs on these mechanisms will not always case reports and the lists from side effect registries.6±8 come to the attention of the clinician, whereas a Another way of looking at the problem is drug causing priapism will rarely escape the atten- combining available data on mechanisms of action tion. of drugs with the knowledge of the physiological When erectile function is in¯uenced in a negative mechanisms involved in erectile function. The way compensation may occur. For example, age- advantage of this approach is that remedies may related penile sensory disorders may be compen- evolve from it. sated for by extra stimulation.1 Diminished in¯ux of In this paper we will discuss the subject in the blood will lead to a slower onset of the erection, but following order: may be accepted.
    [Show full text]
  • Designer Drugs SUBJECT FORENSIC SCIENCE
    SUBJECT FORENSIC SCIENCE Paper No. and Title PAPER No. 9: Drugs of Abuse Module No. and Title MODULE No. 17: Designer Drugs Module Tag FSC_P9_M17 FORENSIC SCIENCE PAPER No. 9: Drugs of Abuse MODULE No. 17: Designer Drugs TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Forensic Issues 4. Classification of Designer Drugs 5. Some Notable Designer Drugs 6. Forensic Analysis of Designer Drugs 7. Summary FORENSIC SCIENCE PAPER No. 9: Drugs of Abuse MODULE No. 17: Designer Drugs 1. Learning Outcomes After studying this module, you shall be able to know about: The significance of Designer Drugs Classification of Designer Drugs Forensic analysis of Designer Drugs 2. Introduction Over ages, humans fortunately discovered that certain ingested plants were a source of unique satisfying feelings, beyond satiety. Some were mildly affecting (e.g. nicotine, caffeine), others enhanced mood or altered perception, reduced pain, intoxicated, or produced euphoria (e.g. alcohol, marijuana, hallucinogens, opiates, cocaine). In the past two centuries, consumption of these psychoactive substances expanded rapidly. Decontamination of the active chemicals, distribution by manoeuvres for maximum effect and global marketing contributed to this expansion. Modern chemistry has produced a huge range of variations of these plant products, paralleled by an unprecedented level of adverse biological, behavioural, medical and social consequences. Following this phenomenon, Designer drugs are produced to be similar to, but not identical with Psychoactive Drugs that are illegal to possess or sell for human consumption, unless for medical purposes. A recurring threat to public health, the Designer Drug sub-culture has burst out over the past decade.
    [Show full text]
  • Interactions Medicamenteuses Index Des Classes Pharmaco
    INTERACTIONS MEDICAMENTEUSES INDEX DES CLASSES PHARMACO-THERAPEUTIQUES Mise à jour avril 2006 acides biliaires (acide chenodesoxycholique, acide ursodesoxycholique) acidifiants urinaires adrénaline (voie bucco-dentaire ou sous-cutanée) (adrenaline alcalinisants urinaires (acetazolamide, sodium (bicarbonate de), trometamol) alcaloïdes de l'ergot de seigle dopaminergiques (bromocriptine, cabergoline, lisuride, pergolide) alcaloïdes de l'ergot de seigle vasoconstricteurs (dihydroergotamine, ergotamine, methylergometrine) alginates (acide alginique, sodium et de trolamine (alginate de)) alphabloquants à visée urologique (alfuzosine, doxazosine, prazosine, tamsulosine, terazosine) amidons et gélatines (gelatine, hydroxyethylamidon, polygeline) aminosides (amikacine, dibekacine, gentamicine, isepamicine, kanamycine, netilmicine, streptomycine, tobramycine) amprénavir (et, par extrapolation, fosamprénavir) (amprenavir, fosamprenavir) analgésiques morphiniques agonistes (alfentanil, codeine, dextromoramide, dextropropoxyphene, dihydrocodeine, fentanyl, hydromorphone, morphine, oxycodone, pethidine, phenoperidine, remifentanil, sufentanil, tramadol) analgésiques morphiniques de palier II (codeine, dextropropoxyphene, dihydrocodeine, tramadol) analgésiques morphiniques de palier III (alfentanil, dextromoramide, fentanyl, hydromorphone, morphine, oxycodone, pethidine, phenoperidine, remifentanil, sufentanil) analogues de la somatostatine (lanreotide, octreotide) androgènes (danazol, norethandrolone, testosterone) anesthésiques volatils halogénés
    [Show full text]
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist.
    [Show full text]
  • Benzodiazepine Group ELISA Kit
    Benzodiazepine Group ELISA Kit Benzodiazepine Background Since their introduction in the 1960s, benzodiazepines have been widely prescribed for the treatment of anxiety, insomnia, muscle spasms, alcohol withdrawal, and seizure-prevention as they are depressants of the central nervous system. Despite the fact that they are highly effective for their intended use, benzodiazepines are prescribed with caution as they can be highly addictive. In fact, researchers at NIDA (National Institute on Drug Abuse) have shown that addiction for benzodiazepines is similar to that of opioids, cannabinoids, and GHB. Common street names of benzodiazepines include “Benzos” and “Downers”. The five most encountered benzodiazepines on the illicit market are alprazolam (Xanax), lorazepam (Ativan), clonazepam (Klonopin), diazepam (Valium), and temazepam (Restori). The method of abuse is typically oral or snorted in crushed form. The DEA notes a particularly high rate of abuse among heroin and cocaine abusers. Designer benzodiazepines are currently offered in online shops selling “research chemicals”, providing drug abusers an alternative to prescription-only benzodiazepines. Data defining pharmacokinetic parameters, drug metabolisms, and detectability in biological fluids is limited. This lack of information presents a challenge to forensic laboratories. Changes in national narcotics laws in many countries led to the control of (phenazepam and etizolam), which were marketed by pharmaceutical companies in some countries. With the control of phenazepam and etizolam, clandestine laboratories have begun researching and manufacturing alternative benzodiazepines as legal substitutes. Delorazepam, diclazepam, pyrazolam, and flubromazepam have emerged as compounds in this class of drugs. References Drug Enforcement Administration, Office of Diversion Control. “Benzodiazepines.” http://www.deadiversion.usdoj.gov/drugs_concern/benzo_1.
    [Show full text]
  • Smumedical Journal
    SMU Medical Journal ISSN : 2349 – 1604 (Volume – 4, No. 1, January 2017) Review Article Indexed in SIS (USA), ASI (Germany), I2OR & i-Scholar (India), SJIF (Morocco) and Cosmos Foundation (Germany) databases. Impact Factor: 3.835 (SJIF) Analytical Aspects with Brief Overview of Depressants Sandeep Kumar1 Nand Gopal Giri2 Ashok Kumar Jaiswal3* Anil Kumar Jaiswal4 1M.Sc. (Forensic Science), LNJN NICFS, New Delhi 110085, 2Assistant Professor, Department of Chemistry, Shivaji College (University of Delhi) Raja Garden, New Delhi 110 027, 3Dept. of Forensic Medicine and toxicology, All India institute of Medical Sciences, New Delhi 110 029.4Assistant Professor, Department of Mathematics, St. Andrew’s PG College, Gorakhpur, UP. *Corresponding author Manuscript received : 30.10.2016 Manuscript accepted: 21.11.2016 Abstract Depressants are drugs that slow down the functions of the central nervous system (CNS). These drugs are used to reduce anxiety and insomnia without drowsiness. The depressants cause relaxed feeling if used in small quantity but cause unconsciousness, vomiting and even death if taken in high quantity. It affects concentration and coordination of a person by slowing down his/ her ability to respond in unexpected situations. These drugs are also attributed for their physiological and psychological effects, eventually in large dose it become lethal. The different 142 SMU Medical Journal, Volume – 4, No. – 1, January, 2017 physical and chemical features of some very often used depressants are discussed in this manuscript. Keyword: Depressant, TLC, UV spectroscopy, HPLC, GLC etc. Introduction The classical depressants are hypnotics (which induce sleep), most antianxiety medicine (diazepam or valium), muscle spasm prevent seizure, but these drugs rapidly develop dependence and tolerance which finally leads to coma and death, so use of these drugs is highly unsafe.
    [Show full text]
  • Prohibited Substances List
    Prohibited Substances List This is the Equine Prohibited Substances List that was voted in at the FEI General Assembly in November 2009 alongside the new Equine Anti-Doping and Controlled Medication Regulations(EADCMR). Neither the List nor the EADCM Regulations are in current usage. Both come into effect on 1 January 2010. The current list of FEI prohibited substances remains in effect until 31 December 2009 and can be found at Annex II Vet Regs (11th edition) Changes in this List : Shaded row means that either removed or allowed at certain limits only SUBSTANCE ACTIVITY Banned Substances 1 Acebutolol Beta blocker 2 Acefylline Bronchodilator 3 Acemetacin NSAID 4 Acenocoumarol Anticoagulant 5 Acetanilid Analgesic/anti-pyretic 6 Acetohexamide Pancreatic stimulant 7 Acetominophen (Paracetamol) Analgesic/anti-pyretic 8 Acetophenazine Antipsychotic 9 Acetylmorphine Narcotic 10 Adinazolam Anxiolytic 11 Adiphenine Anti-spasmodic 12 Adrafinil Stimulant 13 Adrenaline Stimulant 14 Adrenochrome Haemostatic 15 Alclofenac NSAID 16 Alcuronium Muscle relaxant 17 Aldosterone Hormone 18 Alfentanil Narcotic 19 Allopurinol Xanthine oxidase inhibitor (anti-hyperuricaemia) 20 Almotriptan 5 HT agonist (anti-migraine) 21 Alphadolone acetate Neurosteriod 22 Alphaprodine Opiod analgesic 23 Alpidem Anxiolytic 24 Alprazolam Anxiolytic 25 Alprenolol Beta blocker 26 Althesin IV anaesthetic 27 Althiazide Diuretic 28 Altrenogest (in males and gelidngs) Oestrus suppression 29 Alverine Antispasmodic 30 Amantadine Dopaminergic 31 Ambenonium Cholinesterase inhibition 32 Ambucetamide Antispasmodic 33 Amethocaine Local anaesthetic 34 Amfepramone Stimulant 35 Amfetaminil Stimulant 36 Amidephrine Vasoconstrictor 37 Amiloride Diuretic 1 Prohibited Substances List This is the Equine Prohibited Substances List that was voted in at the FEI General Assembly in November 2009 alongside the new Equine Anti-Doping and Controlled Medication Regulations(EADCMR).
    [Show full text]
  • Control Substance List
    Drugs DrugID SubstanceName DEANumbScheNarco OtherNames 1 1-(1-Phenylcyclohexyl)pyrrolidine 7458 I N PCPy, PHP, rolicyclidine 2 1-(2-Phenylethyl)-4-phenyl-4-acetoxypiperidine 9663 I Y PEPAP, synthetic heroin 3 1-[1-(2-Thienyl)cyclohexyl]piperidine 7470 I N TCP, tenocyclidine 4 1-[1-(2-Thienyl)cyclohexyl]pyrrolidine 7473 I N TCPy 5 13Beta-ethyl-17beta-hydroxygon-4-en-3-one 4000 III N 6 17Alpha-methyl-3alpha,17beta-dihydroxy-5alpha-androstane 4000 III N 7 17Alpha-methyl-3beta,17beta-dihydroxy-5alpha-androstane 4000 III N 8 17Alpha-methyl-3beta,17beta-dihydroxyandrost-4-ene 4000 III N 9 17Alpha-methyl-4-hydroxynandrolone (17alpha-methyl-4-hyd 4000 III N 10 17Alpha-methyl-delta1-dihydrotestosterone (17beta-hydroxy- 4000 III N 17-Alpha-methyl-1-testosterone 11 19-Nor-4-androstenediol (3beta,17beta-dihydroxyestr-4-ene; 4000 III N 12 19-Nor-4-androstenedione (estr-4-en-3,17-dione) 4000 III N 13 19-Nor-5-androstenediol (3beta,17beta-dihydroxyestr-5-ene; 4000 III N 14 19-Nor-5-androstenedione (estr-5-en-3,17-dione) 4000 III N 15 1-Androstenediol (3beta,17beta-dihydroxy-5alpha-androst-1- 4000 III N 16 1-Androstenedione (5alpha-androst-1-en-3,17-dione) 4000 III N 17 1-Methyl-4-phenyl-4-propionoxypiperidine 9661 I Y MPPP, synthetic heroin 18 1-Phenylcyclohexylamine 7460 II N PCP precursor 19 1-Piperidinocyclohexanecarbonitrile 8603 II N PCC, PCP precursor 20 2,5-Dimethoxy-4-(n)-propylthiophenethylamine 7348 I N 2C-T-7 21 2,5-Dimethoxy-4-ethylamphetamine 7399 I N DOET 22 2,5-Dimethoxyamphetamine 7396 I N DMA, 2,5-DMA 23 3,4,5-Trimethoxyamphetamine
    [Show full text]
  • 124.210 Schedule IV — Substances Included. 1
    1 CONTROLLED SUBSTANCES, §124.210 124.210 Schedule IV — substances included. 1. Schedule IV shall consist of the drugs and other substances, by whatever official name, common or usual name, chemical name, or brand name designated, listed in this section. 2. Narcotic drugs. Unless specifically excepted or unless listed in another schedule, any material, compound, mixture, or preparation containing any of the following narcotic drugs, or their salts calculated as the free anhydrous base or alkaloid, in limited quantities as set forth below: a. Not more than one milligram of difenoxin and not less than twenty-five micrograms of atropine sulfate per dosage unit. b. Dextropropoxyphene (alpha-(+)-4-dimethylamino-1,2-diphenyl-3-methyl-2- propionoxybutane). c. 2-[(dimethylamino)methyl]-1-(3-methoxyphenyl)cyclohexanol, its salts, optical and geometric isomers and salts of these isomers (including tramadol). 3. Depressants. Unless specifically excepted or unless listed in another schedule, any material, compound, mixture, or preparation which contains any quantity of the following substances, including its salts, isomers, and salts of isomers whenever the existence of such salts, isomers, and salts of isomers is possible within the specific chemical designation: a. Alprazolam. b. Barbital. c. Bromazepam. d. Camazepam. e. Carisoprodol. f. Chloral betaine. g. Chloral hydrate. h. Chlordiazepoxide. i. Clobazam. j. Clonazepam. k. Clorazepate. l. Clotiazepam. m. Cloxazolam. n. Delorazepam. o. Diazepam. p. Dichloralphenazone. q. Estazolam. r. Ethchlorvynol. s. Ethinamate. t. Ethyl Loflazepate. u. Fludiazepam. v. Flunitrazepam. w. Flurazepam. x. Halazepam. y. Haloxazolam. z. Ketazolam. aa. Loprazolam. ab. Lorazepam. ac. Lormetazepam. ad. Mebutamate. ae. Medazepam. af. Meprobamate. ag. Methohexital. ah. Methylphenobarbital (mephobarbital).
    [Show full text]
  • Pharmaceuticals Appendix
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ADAPALENE 106685-40-9 ABANOQUIL 90402-40-7 ADAPROLOL 101479-70-3 ABECARNIL 111841-85-1 ADEMETIONINE 17176-17-9 ABLUKAST 96566-25-5 ADENOSINE PHOSPHATE 61-19-8 ABUNIDAZOLE 91017-58-2 ADIBENDAN 100510-33-6 ACADESINE 2627-69-2 ADICILLIN 525-94-0 ACAMPROSATE 77337-76-9 ADIMOLOL 78459-19-5 ACAPRAZINE 55485-20-6 ADINAZOLAM 37115-32-5 ACARBOSE 56180-94-0 ADIPHENINE 64-95-9 ACEBROCHOL 514-50-1 ADIPIODONE 606-17-7 ACEBURIC ACID 26976-72-7 ADITEREN 56066-19-4 ACEBUTOLOL 37517-30-9 ADITOPRIME 56066-63-8 ACECAINIDE 32795-44-1 ADOSOPINE 88124-26-9 ACECARBROMAL 77-66-7 ADOZELESIN 110314-48-2 ACECLIDINE 827-61-2 ADRAFINIL 63547-13-7 ACECLOFENAC 89796-99-6 ADRENALONE 99-45-6 ACEDAPSONE 77-46-3 AFALANINE 2901-75-9 ACEDIASULFONE SODIUM 127-60-6 AFLOQUALONE 56287-74-2 ACEDOBEN 556-08-1 AFUROLOL 65776-67-2 ACEFLURANOL 80595-73-9 AGANODINE 86696-87-9 ACEFURTIAMINE 10072-48-7 AKLOMIDE 3011-89-0 ACEFYLLINE CLOFIBROL 70788-27-1
    [Show full text]
  • 2015 Harmonized Tariff Schedule of the United States Chapter 29
    Harmonized Tariff Schedule of the United States (2015) Annotated for Statistical Reporting Purposes CHAPTER 29 ORGANIC CHEMICALS VI 29-1 Notes 1. Except where the context otherwise requires, the headings of this chapter apply only to: (a) Separate chemically defined organic compounds, whether or not containing impurities; (b) Mixtures of two or more isomers of the same organic compound (whether or not containing impurities), except mixtures of acyclic hydrocarbon isomers (other than stereoisomers), whether or not saturated (chapter 27); (c) The products of headings 2936 to 2939 or the sugar ethers, sugar acetals and sugar esters, and their salts, of heading 2940, or the products of heading 2941, whether or not chemically defined; (d) Products mentioned in (a), (b) or (c) above dissolved in water; (e) Products mentioned in (a), (b) or (c) above dissolved in other solvents provided that the solution constitutes a normal and necessary method of putting up these products adopted solely for reasons of safety or for transport and that the solvent does not render the product particularly suitable for specific use rather than for general use; (f) The products mentioned in (a), (b), (c), (d) or (e) above with an added stabilizer (including an anticaking agent) necessary for their preservation or transport; (g) The products mentioned in (a), (b), (c), (d), (e) or (f) above with an added antidusting agent or a coloring or odoriferous substance added to facilitate their identification or for safety reasons, provided that the additions do not render the product particularly suitable for specific use rather than for general use; (h) The following products, diluted to standard strengths, for the production of azo dyes: diazonium salts, couplers used for these salts and diazotizable amines and their salts.
    [Show full text]