Science on the Fly! the Importance of Venus Flyby Observations

Total Page:16

File Type:pdf, Size:1020Kb

Science on the Fly! the Importance of Venus Flyby Observations Science on the fly! The importance of Venus flyby observations C. Gray1, P. K. Byrne2, S. Curry3, J. G. O’Rourke4, Emilie Royer5 1Ne Mexi#o S$a$e Uni&ersi$y – Apa#he Point O,'er&a$ory, 1780 E Uni&ersi$y A&e, La' Cruce', N! 88003, 2Nor$+ Carolina S$a$e Uni&ersi$y, Raleigh, NC 27695, 3Spa#e S#ience Labora$ory, %ni&ersi$y of Cali4ornia, Berkeley, C) 94720, 4S#hool of Ear$h and Spa#e Explora$ion, Ari6ona S$a$e Uni&ersi$y, Tempe, A8 85281, 5Plane$ary S#ience Ins$i$ute, Tuc'on, A8 85719 Canda#e Gray 575-646-6399 Ne Mexi#o S$a$e Uni&ersi$y – Apa#he Point O,'er&a$ory #anda#e1;nm'u.edu 1 Goal 7he impor$ance of e"e#uting flyby s#ience, typi#ally wi$+ mi''ions tha$ are per4orming a gravi$y a''i'$ or maneu&er, cannot be unders$a$e5. Making s#ience ob'er&a$ions during a gravi$y a''i'$ #an provide= • >eedba#k and calibra$ion for t+e individual ins$rument'? • ) primary s#ience tar1e$ to te'$ ins$rument heal$h when colle#$in1 da$a simul$aneously? • S#ience from s$a$e of the ar$ ins$rument', whi#+ broaden t+e number of da$a point' we ha&e a$ Venus o&er diAerent sea'ons, solar cy#le' and orbi$'? and • Compara$i&e paleon$olo1y be$ een Venu' and primary mi''ion tar1e$. In this white paper, we urge two recommendation for future missions: 1. Require any mission that plans to fly by Venus to take data at Venus 2. Require the mission team to have a dedicated Flyby Coordinator either as an existing team member or via a solicitation similar to a Participating Scientist otivation )' mi''ion <i1+$ pa$+' are kno n ell in a5&ance, @enus <yby '#ience #an be #oordina$e5 i$+ o$her '#ience $eam', ins$i$ute', and 4a#ili$ie', increa'in1 $+e '#ience re$urn of $he mi''ion a' ell a' improvin1 our unders$andin1 of @enus. By havin1 a dedi#a$e5 member on a mi''ion $eam $o promo$e and #oordina$e ob'er&a$ions, $he +ighe'$ priori$y ins$rument' $o @enus '#ience #an be utili6e5. >ur$+ermore, a dedi#a$e5 >lyby Coordina$or #an or1ani6e 1round-ba'e5 #oordina$e5 #am*aign' and e&en o$her 'pa#e#ra4$ mi''ions i$+ mi''ion <yby', improvin1 $he o&erall im*a#$ of the mi''ion. ) num,er of '#ience in&e'$i1a$ions are ell 'ui$e5 4or @enus <yby #am*aigns. >or e"ample, $he intera#$ion of $he 'olar ind i$+ upper a$mo'phere Bincludin1 a$mospheri# e'#apeC #an be '$udie5 i$+ pla'ma mea'urement', 'uc+ a' mea'urin1 ions, ele#$rons, 'olar ener1e$i# par$i#le', pla'ma a&e', and magne$i# Del5' usin1 ele#$ros$a$i# analy6ers, 'oli5 '$a$e de$e#$ors, 0angmuir probe', and magne$ome$ers, re'pe#$i&ely. In $he 'ame &ein, radio oc#ul$a$ions #an be per4orme5 dependin1 on $he orbi$ 1eome$ry $o infer informa$ion about $he lo er and middle neutral a$mo'pheri# densi$ie'. )ddi$ionally, neutral ma'' 'pe#$rome$ers #an make #ri$i#al mea'urement' about i'o$ope' and maEor and minor neutral #ons$i$uent' in $he a$mos*+ere. Infrare5 imagin1 #an be e'pe#ially impor$ant 4or unders$andin1 $he 1eomorpholo1y and 'igna$ure' of mineral' $ha$ 4orm in $+e pre'ence of a$er. Ima1in1 in infrared, vi'ible, and $he ul$raviole$ #an #a*$ure #loud 5ynami#' o&er a lar1e ran1e of al$i$ude a' ell a' upper a$mo'pheri# 5ynami#' via airglo and aurora. !igure " 'ho ' all mi''ions $o ha&e #olle#$e5 da$a a$ @enu' he$her a' an orbi$er, lander, probe or <yby. 9$ #an be 'een $ha$ hile @enus mi''ions ha&e de#rea'ed, @enu' <yby '#ience ha' increa'e5. Table " li'$' all <yby mi''ions tha$ ha&e colle#$ed da$a a' well a' ins$rumenta$ion hi#+ wa' use5. 2 !igure 1: 7imeline of all mi''ion $ha$ ha&e #ollec$ed da$a a$ @enus. Only $hose mi''ions $ha$ 'ucce''4ully #onduc$ed some '#ience a$ @enus are 'ho n here; 4or a more #omple$e $able 'ho ing all mi''ions, bo$h a$$em*$ed and 'ucce''4ul, $o ob'er&e @enus, plea'e 'ee +$$*'=FF5ri&e.1oo1le.#omF DleF5F1-iEhoBr81zW!)mmOG0@c3c+6aL!qJe7SF&ie ?us*J'harin1. Kere, >= >lyby? P= Probe? O= Orbi$er? 0= 0ander? B= Balloon. Groups of $ o le$$er' 5eno$e mul$i:pla$4orm mi''ions. !i''ions are #olor:#oded ,y na$ional 'pace a1ency= blue: N)S)? red: Sovie$ %nion; purple: European Space )1ency? oran1e: Japane'e )erospace Explora$ion )1ency. 0 4 5 7 9 1 2 3 6 8 0 2 3 4 1 5 0 7 2 9 0 0 0 2 7 9 1 3 4 5 6 8 1 3 4 8 1 2 3 4 5 6 7 8 9 2 5 6 7 9 1 2 3 6 7 8 4 5 9 0 1 2 0 0 0 0 1 1 1 1 2 2 2 0 0 0 0 0 1 1 1 1 1 2 2 6 8 6 6 7 9 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Mariner 2 F Venera 4 P Mariner 5 F Venera 5 P Venera 6 P Venera 7 L Venera 8 P Mariner 10 F Venera 9 OL Venera 10 OL PV 1 O PV 2 P Venera 11 FL Venera 12 FL Venera 13 FL Venera 14 FL Venera 15 O Venera 16 O Vega 1 LB Vega 2 LB Magellan O Galileo F Cassini F MESSENGER F F VEx O Akatsuki O PSP F F F F F F BepiColombo F F F Solar Orbiter F F F F 3 Table 1: @enus <yby mi''ions and ins$rument' used $o #ollec$ da$a. >or a more de$ailed $able, please 'ee +$$*'=FF5ri&e.1oo1le.#omFDleF5F1y5HG"2LWq5M8dnbb5ntG1QyvB)OM4aD3/vie ?us*J'harin1. #ates Mission $aunch Venus !lyby Instruments !agne$ome$er 7elevi'ion Pho$o1raphy Experimen$ !ariner 10 1973-11-03 1974-02-05 9nfrared radiome$er %l$raviole$ 'pec$rome$er' Plasma 5e$ec$or' Solid S$a$e 9ma1er BSS9C Near:9R !apping Spec$rome$er %@FE%@ Spec$rome$er Spec$rome$er 7ele'#ope 4or 9maging N:ray' BS79NC Galileo 1989-10-18 1990-02-10 Lu'$ Le$ec$or Sub'y'$em BLLSC !agne$ome$er B!)GC Plasma Ga&e Sub'y'$em BPGSC Plasma Sub'y'$em BP0SC Plasma Sub'y'$em BP0SC Ener1e$ic Par$i#le' Le$ec$or BEPLC !agne$ospheric 9ma1in1 9ns$rument B!9!9C Radio and Plasma Ga&e Science BRPGSC 9ma1ing S#ience Sub'y'$em Narro )n1le Camera B9SSN)C Ca''ini 1997-10-15 1999-08-18 9ma1ing S#ience Sub'y'$em Gi5e )n1le #amera B9SSG)C @i'ible and 9nfrared !apping Spec$rome$er B@9!S:9R and @9!S:@i'C !er#ury Lual 9ma1ing Sy'$em Narro )n1le Camera B!L9S:N)CC !er#ury Lual 9ma1ing Sy'$em Gi5e )n1le Camera B!L9S:G)CC !er#ury )$mospheric and Sur4ace Composi$ion Spec$rome$er B!)SCSC %@F@9SF9R 2006-10-24 Radio 'cience BRRSC !ESSENGER 2004-/.:03 2007-/2:05 Gamma Ray Spec$rome$er BGRSC !er#ury 0aser )l$ime$er B!0)C Neutron Spec$rome$er BNSC N:Ray Spec$rome$er BNRSC !agne$ome$er B!)GC Ener1e$ic Par$i#le and Pla'ma Spec$rome$er BEPPSC 4 2018-10-03 Elec$romagne$ic >iel5' 9n&e'$i1a$ion B>9E0LSC 2019-12-26 9nte1ra$ed Science 9n&e'$i1a$ion o4 $he Sun 2020-/-:11 B9S 9SC Parker Solar Probe 2018-/.:12 2021-02-20 Gide:Deld☉ 9ma1er 4or Solar Probe BG9SPRC 2021-10-16 Solar Gind Elec$rons )lphas and Pro$ons 2023-/.:21 BSGE)PC 2024-11-/2 BepiColombo 0aser )l$ime$er BBE0)C 9$alian Sprin1 )ccelerome$er B9S)C !er#ury !agne$ome$er B!PO:!)G, !ER!)GC !er#ury Radiome$er and 7hermal 9n4rared Spec$rome$er B!ER79SC, !er#ury Gamma-ray and Neutron Spec$rome$er B!GNSC !er#ury 9maging N:ray Spec$rome$er B!9NSC BepiColombo 2020-10-15 !er#ury Orbi$er Radio-'cience Experiment !er#ury Plane$ary 2018-10-20 2021-/.:11 B!OREC Orbi$er B!POC Probing of Kermean E"osphere ,y %l$raviole$ Spec$ros#opy BPKEB%SC Sear#h 4or E"osphere Refilling and Emi$$ed Neutral )bundance' BSEREN)C Spec$rome$er' and 9ma1er' 4or !PO BepiColombo 9n$e1ra$ed O,'er&a$ory Sy'$em BS9!B9O:SOSC Solar 9ntensi$y N:ray and Par$i#le Spec$rome$er BS9NSC !er#ury Pla'ma Par$i#le Experimen$ B!PPEC BepiColombo !er#ury !agne$ome$er B!!O:!G>C !er#ury 2020-10-15 Plasma Ga&e 9n&e'$i1a$ion BPG9C 2018-10-20 !agne$ospheri# 2021-/.:11 !er#ury Sodium )$mosphere Spec$ral 9ma1er Orbi$er B!io) B!S)S9C !er#ury Lus$ !oni$or B!L!C Solar Gind Pla'ma )naly'er BSG)C Ener1e$ic Par$i#le Le$ec$or BELPC !agne$ome$er B!)GC 2020-12-26 Radio and Plasma Ga&e' BRPGC 2021-/.:/.
Recommended publications
  • Mission to Jupiter
    This book attempts to convey the creativity, Project A History of the Galileo Jupiter: To Mission The Galileo mission to Jupiter explored leadership, and vision that were necessary for the an exciting new frontier, had a major impact mission’s success. It is a book about dedicated people on planetary science, and provided invaluable and their scientific and engineering achievements. lessons for the design of spacecraft. This The Galileo mission faced many significant problems. mission amassed so many scientific firsts and Some of the most brilliant accomplishments and key discoveries that it can truly be called one of “work-arounds” of the Galileo staff occurred the most impressive feats of exploration of the precisely when these challenges arose. Throughout 20th century. In the words of John Casani, the the mission, engineers and scientists found ways to original project manager of the mission, “Galileo keep the spacecraft operational from a distance of was a way of demonstrating . just what U.S. nearly half a billion miles, enabling one of the most technology was capable of doing.” An engineer impressive voyages of scientific discovery. on the Galileo team expressed more personal * * * * * sentiments when she said, “I had never been a Michael Meltzer is an environmental part of something with such great scope . To scientist who has been writing about science know that the whole world was watching and and technology for nearly 30 years. His books hoping with us that this would work. We were and articles have investigated topics that include doing something for all mankind.” designing solar houses, preventing pollution in When Galileo lifted off from Kennedy electroplating shops, catching salmon with sonar and Space Center on 18 October 1989, it began an radar, and developing a sensor for examining Space interplanetary voyage that took it to Venus, to Michael Meltzer Michael Shuttle engines.
    [Show full text]
  • New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period
    Hayabusa2 Extended Mission: New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period M. Hirabayashi1, Y. Mimasu2, N. Sakatani3, S. Watanabe4, Y. Tsuda2, T. Saiki2, S. Kikuchi2, T. Kouyama5, M. Yoshikawa2, S. Tanaka2, S. Nakazawa2, Y. Takei2, F. Terui2, H. Takeuchi2, A. Fujii2, T. Iwata2, K. Tsumura6, S. Matsuura7, Y. Shimaki2, S. Urakawa8, Y. Ishibashi9, S. Hasegawa2, M. Ishiguro10, D. Kuroda11, S. Okumura8, S. Sugita12, T. Okada2, S. Kameda3, S. Kamata13, A. Higuchi14, H. Senshu15, H. Noda16, K. Matsumoto16, R. Suetsugu17, T. Hirai15, K. Kitazato18, D. Farnocchia19, S.P. Naidu19, D.J. Tholen20, C.W. Hergenrother21, R.J. Whiteley22, N. A. Moskovitz23, P.A. Abell24, and the Hayabusa2 extended mission study group. 1Auburn University, Auburn, AL, USA ([email protected]) 2Japan Aerospace Exploration Agency, Kanagawa, Japan 3Rikkyo University, Tokyo, Japan 4Nagoya University, Aichi, Japan 5National Institute of Advanced Industrial Science and Technology, Tokyo, Japan 6Tokyo City University, Tokyo, Japan 7Kwansei Gakuin University, Hyogo, Japan 8Japan Spaceguard Association, Okayama, Japan 9Hosei University, Tokyo, Japan 10Seoul National University, Seoul, South Korea 11Kyoto University, Kyoto, Japan 12University of Tokyo, Tokyo, Japan 13Hokkaido University, Hokkaido, Japan 14University of Occupational and Environmental Health, Fukuoka, Japan 15Chiba Institute of Technology, Chiba, Japan 16National Astronomical Observatory of Japan, Iwate, Japan 17National Institute of Technology, Oshima College, Yamaguchi, Japan 18University of Aizu, Fukushima, Japan 19Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 20University of Hawai’i, Manoa, HI, USA 21University of Arizona, Tucson, AZ, USA 22Asgard Research, Denver, CO, USA 23Lowell Observatory, Flagstaff, AZ, USA 24NASA Johnson Space Center, Houston, TX, USA 1 Highlights 1.
    [Show full text]
  • Arxiv:2006.00776V1 [Physics.Space-Ph] 1 Jun 2020
    manuscript submitted to Geophysical Research Letters Dust impact voltage signatures on Parker Solar Probe: influence of spacecraft floating potential S. D. Bale1,2, K. Goetz3, J. W. Bonnell1, A. W. Case4, C. H. K. Chen5,T. Dudok de Wit6, L. C. Gasque1,2, P. R. Harvey1, J. C. Kasper 7,4, P. J. Kellogg3, R. J. MacDowall8, M. Maksimovic9, D. M. Malaspina10, B. F. Page1,2, M. Pulupa1, M. L. Stevens4, J. R. Szalay11, A. Zaslavsky9 1Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450, USA 2Physics Department, University of California, Berkeley, CA 94720-7300, USA 3School of Physics and Astronomy, University of Minnesota, Minneapolis, 55455, USA 4Smithsonian Astrophysical Observatory, Cambridge, MA 02138 USA 5School of Physics and Astronomy, Queen Mary University of London, London E1 4NS, UK 6LPC2E, CNRS and University of Orleans,´ Orleans,´ France 7Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109, USA 8Solar System Exploration Division, NASA/Goddard Space Flight Center, Greenbelt, MD, 20771 9LESIA, Observatoire de Paris, Universit PSL, CNRS, Sorbonne Universit, Universit de Paris, 5 place Jules Janssen, 92195 Meudon, France 10Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, 80303, USA 11Department of Astrophysical Sciences, Princeton University, Princeton, NJ, 08544, USA Key Points: • The Parker Solar Probe (PSP) FIELDS instrument measures millisecond volt- ages impulses associated with dust impacts • The sign of the largest monopole voltage response is a function of the spacecraft floating potential • These measurements are consistent with models of dynamic charge balance following dust impacts Submitted : June 2, 2020 arXiv:2006.00776v1 [physics.space-ph] 1 Jun 2020 Corresponding author: Stuart D.
    [Show full text]
  • View Conducted by Its Standing Review Board (SRB)
    Science Committee Report Dr. Wes Huntress, Chair 1 Science Committee Members Wes Huntress, Chair Byron Tapley, (Vice Chair) University of Texas-Austin, Chair of Earth Science Alan Boss, Carnegie Institution, Chair of Astrophysics Ron Greeley, Arizona State University, Chair of Planetary Science Gene Levy, Rice University , Chair of Planetary Protection Roy Torbert, University of New Hampshire, Chair of Heliophysics Jack Burns, University of Colorado Noel Hinners, Independent Consultant *Judith Lean, Naval Research Laboratory Michael Turner, University of Chicago Charlie Kennel, Chair of Space Studies Board (ex officio member) * = resigned July 16, 2010 2 Agenda • Science Results • Programmatic Status • Findings & Recommendations 3 Unusual Thermosphere Collapse • Deep drop in Thermospheric (50 – 400 km) density • Deeper than expected from solar cycle & CO2 4 Aeronomy of Ice in the Mesosphere (AIM) unlocking the secrets of Noctilucent Clouds (NLCs) Form 50 miles above surface in polar summer vs ~ 6 miles for “norm79al” clouds. NLCs getting brighter; occurring more often. Why? Linked to global change? AIM NLC Image June 27, 2009 - AIM measured the relationship between cloud properties and temperature - Quantified for the first time, the dramatic response to small changes, 10 deg C, in temperature - T sensitivity critical for study of global change effects on mesosphere Response to Gulf Oil Spill UAVSAR 23 June 2010 MODIS 31 May 2010 ASTER 24 May 2010 Visible Visible/IR false color Satellite instruments: continually monitoring the extent of
    [Show full text]
  • Stardust Comet Flyby
    NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Stardust Comet Flyby Press Kit January 2004 Contacts Don Savage Policy/Program Management 202/358-1727 NASA Headquarters, Washington DC Agle Stardust Mission 818/393-9011 Jet Propulsion Laboratory, Pasadena, Calif. Vince Stricherz Science Investigation 206/543-2580 University of Washington, Seattle, WA Contents General Release ……………………………………......………….......................…...…… 3 Media Services Information ……………………….................…………….................……. 5 Quick Facts …………………………………………..................………....…........…....….. 6 Why Stardust?..................…………………………..................………….....………......... 7 Other Comet Missions ....................................................................................... 10 NASA's Discovery Program ............................................................................... 12 Mission Overview …………………………………….................……….....……........…… 15 Spacecraft ………………………………………………..................…..……........……… 25 Science Objectives …………………………………..................……………...…........….. 34 Program/Project Management …………………………...................…..…..………...... 37 1 2 GENERAL RELEASE: NASA COMET HUNTER CLOSING ON QUARRY Having trekked 3.2 billion kilometers (2 billion miles) across cold, radiation-charged and interstellar-dust-swept space in just under five years, NASA's Stardust spacecraft is closing in on the main target of its mission -- a comet flyby. "As the saying goes, 'We are good to go,'" said project manager Tom Duxbury at NASA's Jet
    [Show full text]
  • Probes to the Inferior Planets – a New Dawn for Neo and Ieo Detection Technology Demonstration from Heliocentric Orbits Interior to the Earth’S?
    PROBES TO THE INFERIOR PLANETS – A NEW DAWN FOR NEO AND IEO DETECTION TECHNOLOGY DEMONSTRATION FROM HELIOCENTRIC ORBITS INTERIOR TO THE EARTH’S? 2011 IAA Planetary Defense Conference 09-12 May 2011 Bucharest, Romania Jan Thimo Grundmann(1), Stefano Mottola(2), Maximilian Drentschew(6), Martin Drobczyk(1), Ralph Kahle(3), Volker Maiwald(4), Dominik Quantius(4), Paul Zabel(4), Tim van Zoest(5) (1)DLR German Aerospace Center - Institute of Space Systems - Department of Satellite Systems Robert-Hooke-Straße 7, 28359 Bremen, Germany Email: [email protected], [email protected] (2)DLR German Aerospace Center - Institute of Planetary Research - Department Asteroids and Comets Rutherfordstraße 2, 12489 Berlin, Germany Email: [email protected] (3)DLR German Aerospace Center - Space Operations and Astronaut Training - Space Flight Technology Dept. 82234 Oberpfaffenhofen-Wesseling, Germany Email: [email protected] (4)DLR German Aerospace Center - Institute of Space Systems - Dept. System Analysis Space Segments (SARA) Robert-Hooke-Straße 7, 28359 Bremen, Germany Email: [email protected], [email protected], [email protected] (5)DLR German Aerospace Center - Institute of Space Systems - Department of Exploration Systems Robert-Hooke-Straße 7, 28359 Bremen, Germany Email: [email protected] (6)ZFT Zentrum für Telematik Allesgrundweg 12, 97218 Gerbrunn, Germany Email: [email protected] ABSTRACT With the launch of MESSENGER and VENUS EXPRESS, a new wave of exploration of the inner solar system has begun. Noting the growing number of probes to the inner solar system, it is proposed to connect the expertise of the respective spacecraft teams and the NEO and IEO survey community to best utilize the extended cruise phases and to provide additional data return in support of pure science as well as planetary defence.
    [Show full text]
  • Bepicolombo - a Mission to Mercury
    BEPICOLOMBO - A MISSION TO MERCURY ∗ R. Jehn , J. Schoenmaekers, D. Garc´ıa and P. Ferri European Space Operations Centre, ESA/ESOC, Darmstadt, Germany ABSTRACT BepiColombo is a cornerstone mission of the ESA Science Programme, to be launched towards Mercury in July 2014. After a journey of nearly 6 years two probes, the Magneto- spheric Orbiter (JAXA) and the Planetary Orbiter (ESA) will be separated and injected into their target orbits. The interplanetary trajectory includes flybys at the Earth, Venus (twice) and Mercury (four times), as well as several thrust arcs provided by the solar electric propulsion module. At the end of the transfer a gravitational capture at the weak stability boundary is performed exploiting the Sun gravity. In case of a failure of the orbit insertion burn, the spacecraft will stay for a few revolutions in the weakly captured orbit. The arrival conditions are chosen such that backup orbit insertion manoeuvres can be performed one, four or five orbits later with trajectory correction manoeuvres of less than 15 m/s to compensate the Sun perturbations. Only in case that no manoeuvre can be performed within 64 days (5 orbits) after the nominal orbit insertion the spacecraft will leave Mercury and the mission will be lost. The baseline trajectory has been designed taking into account all operational constraints: 90-day commissioning phase without any thrust; 30-day coast arcs before each flyby (to allow for precise navigation); 7-day coast arcs after each flyby; 60-day coast arc before orbit insertion; Solar aspect angle constraints and minimum flyby altitudes (300 km at Earth and Venus, 200 km at Mercury).
    [Show full text]
  • Appendix 1: Venus Missions
    Appendix 1: Venus Missions Sputnik 7 (USSR) Launch 02/04/1961 First attempted Venus atmosphere craft; upper stage failed to leave Earth orbit Venera 1 (USSR) Launch 02/12/1961 First attempted flyby; contact lost en route Mariner 1 (US) Launch 07/22/1961 Attempted flyby; launch failure Sputnik 19 (USSR) Launch 08/25/1962 Attempted flyby, stranded in Earth orbit Mariner 2 (US) Launch 08/27/1962 First successful Venus flyby Sputnik 20 (USSR) Launch 09/01/1962 Attempted flyby, upper stage failure Sputnik 21 (USSR) Launch 09/12/1962 Attempted flyby, upper stage failure Cosmos 21 (USSR) Launch 11/11/1963 Possible Venera engineering test flight or attempted flyby Venera 1964A (USSR) Launch 02/19/1964 Attempted flyby, launch failure Venera 1964B (USSR) Launch 03/01/1964 Attempted flyby, launch failure Cosmos 27 (USSR) Launch 03/27/1964 Attempted flyby, upper stage failure Zond 1 (USSR) Launch 04/02/1964 Venus flyby, contact lost May 14; flyby July 14 Venera 2 (USSR) Launch 11/12/1965 Venus flyby, contact lost en route Venera 3 (USSR) Launch 11/16/1965 Venus lander, contact lost en route, first Venus impact March 1, 1966 Cosmos 96 (USSR) Launch 11/23/1965 Possible attempted landing, craft fragmented in Earth orbit Venera 1965A (USSR) Launch 11/23/1965 Flyby attempt (launch failure) Venera 4 (USSR) Launch 06/12/1967 Successful atmospheric probe, arrived at Venus 10/18/1967 Mariner 5 (US) Launch 06/14/1967 Successful flyby 10/19/1967 Cosmos 167 (USSR) Launch 06/17/1967 Attempted atmospheric probe, stranded in Earth orbit Venera 5 (USSR) Launch 01/05/1969 Returned atmospheric data for 53 min on 05/16/1969 M.
    [Show full text]
  • Science: Planetary Science Outyears Are Notional
    Science: Planetary Science Outyears are notional ($M) 2019 2020 2021 2022 2023 Planetary Science $2,235 $2,200 $2,181 $2,162 $2,143 Ø Creates a robotic Lunar Discovery and Exploration program, that supports commercial partnerships and innovative approaches to achieving human and science exploration goals. Ø Continues development of Mars 2020 and Europa Clipper. Ø Establishes a Planetary Defense program, including the Double Asteroid Redirection Test (DART) and Near-Earth Object Observations. Ø Studies a potential Mars Sample Return mission incorporating commercial partnerships. Ø Formulates the Lucy and Psyche missions. Ø Selects the next New Frontiers mission. Ø Invests in CubeSats/SmallSats that can achieve entirely new science at lower cost. Ø Operates 10 Planetary missions. § OSIRIS-REx will map asteroid Bennu. § New Horizons will fly by its Kuiper belt target. Dawn Image of Ceres on January 13, 2015 20 Science: Astrophysics Outyears are notional ($M) 2019 2020 2021 2022 2023 Astrophysics $1,185 $1,185 $1,185 $1,185 $1,185 Ø Launches the James Webb Space Telescope. Ø Moves Webb into the Cosmic Origins Program within the Astrophysics Account. Ø Terminates WFIRST due to its significant cost and higher priorities elsewhere within NASA. Increases funding for future competed missions and research. Ø Supports the TESS exoplanet mission following launch by June 2018. Ø Formulates or develops, IXPE, GUSTO, XARM, Euclid, and a new MIDEX mission to be selected in FY 2019. Ø Operates ten missions and the balloon project. Ø Invests in CubeSats/SmallSats that can achieve entirely new science at lower cost. Ø All Astrophysics missions beyond prime operations (including SOFIA) will be subject to senior review in 2019.
    [Show full text]
  • THE LANDSCAPE of COMET HALLEY Hungarian Academy of Sciences CENTRAL RESEARCH INSTITUTE for PHYSICS
    KFKI 1939-35/C E. MERÉNYI L. FÖLDY K. SZEGŐ I. TÓTH A. KONDOR THE LANDSCAPE OF COMET HALLEY Hungarian Academy of Sciences CENTRAL RESEARCH INSTITUTE FOR PHYSICS BUDAPEST KFKI-1989-35/C PREPRINT THE LANDSCAPE OF COMET HALLEY E. MERÉNYI, L. FÖLDY, K. SZEGŐ. I. TÓTH', A. KONDOR Central Research Institute for Physics H-1626 Budapest 114, P.O.B. 49 'Konkoly Thege Observatory H-1625 Budapest, P.O.B. 67 Comets in Post Hal ley area Bamberg (FRG). 24 28 April 1989 HU ISSN 0368 6330 E. Merényi, L. Földy. К. Szegő, I. Tóth. A. Kondor: The landscape of cornel Halley KFKM989 35/C ABSTRACT In this paper the three dimensional model of P/Halley's nucleus is constructed based on the results of the imaging experiments It has the following major characteristics: the overai' sizes are 7 2 km, 722 km, 15.3 km, its volume is 365 km3, the ratios of the inertfal momenta are 34:33:1, the longest Inorttal axis is siiyhlly inclined to the geometrical axis of the body. 3 3° in latitude and 1.1° In longitude if the geometrical axis is at zero latitude and longitude The shape is very irregular, it is not close to any regular body e g to a tri axial ellipsoid Several features on the images are interpreted as local slope variations of the nucleus. Э. Мерени; Л. Фёлди, К. Сегё, И. Тот, Л. Кондор: Форма и поверхность ядра кометы Галлея. КГКТ-198<?-35/С АННОТАЦИЯ Описывается трехмерная модель ядра кометы Галлея, основывающаяся на резуль­ татах телевизионного эксперимента КА "Вега".
    [Show full text]
  • + New Horizons
    Media Contacts NASA Headquarters Policy/Program Management Dwayne Brown New Horizons Nuclear Safety (202) 358-1726 [email protected] The Johns Hopkins University Mission Management Applied Physics Laboratory Spacecraft Operations Michael Buckley (240) 228-7536 or (443) 778-7536 [email protected] Southwest Research Institute Principal Investigator Institution Maria Martinez (210) 522-3305 [email protected] NASA Kennedy Space Center Launch Operations George Diller (321) 867-2468 [email protected] Lockheed Martin Space Systems Launch Vehicle Julie Andrews (321) 853-1567 [email protected] International Launch Services Launch Vehicle Fran Slimmer (571) 633-7462 [email protected] NEW HORIZONS Table of Contents Media Services Information ................................................................................................ 2 Quick Facts .............................................................................................................................. 3 Pluto at a Glance ...................................................................................................................... 5 Why Pluto and the Kuiper Belt? The Science of New Horizons ............................... 7 NASA’s New Frontiers Program ........................................................................................14 The Spacecraft ........................................................................................................................15 Science Payload ...............................................................................................................16
    [Show full text]
  • Giant Planet / Kuiper Belt Flyby
    Giant Planet / Kuiper Belt Flyby Amanda Zangari (SwRI) Tiffany Finley (SwRI) with Cecilia Leung (LPL/SwRI) Simon Porter (SwRI) OPAG: February 23, 2017 Take Away • New Horizons provided scientifically valuable exploration of the Kuiper Belt in the New Frontiers cost cap. • The Kuiper Belt is full of objects with a diverse range of stories that go beyond what we learned from Pluto. • Giant Planet flybys add scientific value to a Kuiper Belt mission • Found preliminary trajectory examples for high interest KBOs-- Haumea, Varuna, 2015 RR245 can be reached via Jupiter AND Saturn, Uranus or Neptune flyby in the 2030s. • To be a candidate New Frontiers mission, a 2 Giant planet+KBO mission must be endorsed by a decadal survey according to current rules. New Horizons Heritage NH Jupiter Encounter planned around Pluto flyby timing, which was dominated by achieving quadruple occultations, “interesting” side up. New Horizons Heritage Pluto flyby took advantage of Ecliptic crossing, enabling access to the cold classical belt (where 2014 MU69 is located). New Horizons Heritage 2014 MU69 discovered while in flight. Targeting was from spacecraft propulsion and took advantage of cold classical population density. Object is small, reddish ~40 km diameter. Saturn’s moons show incredible diversity NASA/JPL As do Uranus and Neptune Some Kuiper Belt Geography Where do we want to go? Getting there- JGA “anytime” New Horizons model: Fast Launch, Jupiter Flyby, Launch window every 11 years McGranaghan et al 2011 Can we go to more than just Jupiter? If so, where, what? New Horizons 2 • 2008 launch using New Horizons flight spares • Proposed Jupiter flyby, equinox flyby of Uranus, and flyby of (47171) 1999 TC36 (now know to be trinary).
    [Show full text]