Klebsormidium Flaccidum, Preliminary Experiments in Culture Have Shown a Very Large Range of Morppghological Variation

Total Page:16

File Type:pdf, Size:1020Kb

Klebsormidium Flaccidum, Preliminary Experiments in Culture Have Shown a Very Large Range of Morppghological Variation Subaerial Algae in Tropical Rainforests, part II Juan M. Lopez‐Bautista The University of Alabama 1 Overview 9 Bidiiodivers ity and systematics of subilbaerial algae 9 Collection and study of subaerial algae •Molecular systematics of subaerial microchlorophytes •Evolution of subaerial microchlorophytes 2 Molecular systematics of subaerial microchlorophytes 3 Klebsormidium Klebsormidium is one of the most common genera of terrestrial Charophyta It consists of few species of green algae occurring on soil, subaerial surfaces and semi- aquatic habitats all around the world Pisa Italy 2005 The systematics of this genus has been entirely based on traditional morphology. The species-level relationships in Klebsormidium have not been examined with molecular tools Klebsormidium Galway Ireland 2004 Klebsormidium - One of the most widespread genera of terrestrial and freshwater green algae - Cosmopolitan distribution - Uniseriate filaments; no differentiated holdfast; one parietal chloroplast covering a half- 2/3 of the cell wall, with a single pyrenoid - 22 species currently described - Species-level systematics based almost entirely on morphology - Reproduction by biflagellate zoospores Principal morphological characters used for species identification in Klebsormidium 1) Width of filaments 2)Length of filaments 3) Cell shape 4) Presence/absence of constrictions between adjacent cells 5) Occasional presence/absence of biseriate parts 6) Presence of H-shaped pieces 7) Shape of the chloroplast Long Short Characters observable in culture 1)Growth habit: filamentous or fragmented 2) Presence/absence of a superficial hydrorepellent layer 3) Inducibility of zoospore release 4) Morphology of the zoosporangial aperture 5) Germination pattern of sporelings Fragmented Filamentous CITIES SAMPLED - Bergen (Norway) - Stockholm (Sweden) - Copenhagen ( Denmark) - Galway (Ireland) - London, Plymouth and Manchester (England) - HbHamburg, RtkRostock and Konstanz (Germany) - Bordeaux and Marseilles (()France) - Porto (Portugal) - Pisa, Siena and Pavia (Italy) - La Valletta (Malta) - Koper (Slovenia) - Prague (Czech Republic) Morphology (field) Very uniform morphology; virtually no differences between strains from different cities • Filaments mostly long, sometimes mixed with short fragments • Filaments unbranched, 6-9 µm wide • Slight constrictions between adjacent cells present in many strains • Cells regularly cylindrical • Chloroplast with smooth margin • Globular enlargements present in one strain (Pisa) • No biseriate parts or pseudo-branches Morphology (culture) • All strains growing well in both media used • Production of superficial hydrorepellent layer observed in the strains from Bergen, Galway , Hamburg and Konstanz • The strains from Marseilles, Pisa, La Valletta, Hamburg and Porto showed a marked tendency to fragmentation; after a few weeks the strains from Pisa and Marseilles consisted entirely of short fragments (2-5 cells) • Release of zoospores easily inducible only in the strain from Galway; release aperture indistinct • Sporelings in the Galway strain germinating with unipolar and bipolar pattern Although the morphology of the field material was virtually identical to Klebsormidium flaccidum, preliminary experiments in culture have shown a very large range of morppghological variation • Most strains produce only 3D filaments that remain submerged • Others populations produce also a superficial layer of parallel filaments that cover completely the surface of the medium, • In other strains, the filaments get fragmented into many short fragments, giving the cultures the appearance of a green “soup” Submerged Submerged Short Fragmented filaments Filaments + filaments Superficial layer Samples originally corresponding to Klebsormidium flaccidum are spread along the rbcL tree Samples originally corresponding to Klebsormidium flaccidum are spread along the rbcLtree On the other hand , samples corresponding to different morphological species are grouped together Samples originally corresponding to Klebsormidium flaccidum are spread along the rbcLtree On the other hand, samples corresponding to different morphological species are grouped together Furthermore, specimens not possible to ascribe to any known taxa, and from distant locations, are found to be genetically similar! Conclusions • The populations of Klebsormidium occurring in European cities belong to at least 4 different evolutionary lineages • In the field material, these show an almost identical morphology and there are no morphological characters useful to distinguish them • More differentiation observed in culture, in which different strains show different growth habits • The taxonomy of Klebsormidium needs critical reconsideration; none of the morphological characters used for identification have phylogenetic relevance • The chtitiharacterization of Kleb sormidi um flacc idum, type species of the genus, is a taxonomic mess that can be solved only sequencing the type specimen; depending on its identity, the whole genus may require a radical reassessment Lessons learned 9 Overall, these experiments and analyses indicated that a great deal of genetic diversity is hidden behind a very similar morphology 9 Morphology and cytology, even in “simple” and “common” forms, can be misleading 9 Unialgal cultures and phylogenetic analyses are needed to re-evaluate these so called cosmopolitan species Spongiochrysis hawaiiensis Dense yellow-orange coating believed to be Trentepohlia by the local scientists Interesting unicellular green alga, reproducing with a budding-like mechanism known only in two subaerial species of the class Trebouxiophyceae: • Marvania geminata Hindák 1976 • Marvania aerophytica Neustupa & Sehjonová 2003/Stichococcus ampulliformis Handa et al. 2003 •However, sequences of the 18S rRNA, showed unequivocally that this alga is a member of the Cladophorales Siphonocladales lineage (Ulvophyceae) •Since this group was so far known to include basically marine species with complex thalli, this was a discovery of exceptional interest, that shed new light on the phylogeny of this algal group •AtAutosporu ltilation hihas arisen separately at least 3 times (twice in Trebouxiophyceae and once in Ulvophyceae) Phylogenetic tree for a 18S rDNA sequence alignment of 1732 characters, with 55 representatives of the Viridiplantae and Spongiochrysis hawaiiensis. In a restricted analysis limited to 41 representat ives o f t his group, * * our samples were included in * the “Aegggagrop ila-clade” with high support 100/1.00 ML tree 18S rDNA (BS/Bayesian) Phylogenetic tree for an 18S rDNA sequence alignment of 1595 characters, with 41 representatives of the Siphonocladales Cladophorales complex, two outgroup taxa, and Spongiochrysis hawaiiensis * * * These data suggest that a marine ancestor gave origin to Spongiochrysis • Simplification of the thallus • Carotenoid production Similar trends during the colonization of terrestrial habitats have been found in the evolution of green algae Phylogenetic tree for an 18S rDNA sequence alignment of 1595 characters, with 41 representatives of the Siphonocladales Cladophorales complex, two outgroup taxa, and Spongiochrysis hawaiiensis Phylogenetic Considerations This alga represents a new subaerial lineage from the class Ulvophyceae It is the first known subaerial member of the Cladophorales Siphonocladales lineage For the un ice llu lar ha bit and f or th e sub aeri al h abi tat thi s speci es i s well differentiated from all other members of this lineage and can be considered the first known successful step of these algae into subaerial habitats New genus, new species: Spongiochrysis hawaiiensis Lessons learned 9 The subaerial habit has developed in an algal group that was formerly believed to be entirely aquatic (the Cladophorales) 9 A new subaerial lineage exists in the class Ulvophyceae 9 It also showed that identical morphologies and identical mechanisms of reproduction have developed independently in separated green algal lineages 9 Most importantly, great evolutionary surprises can be found in forest environmen ts, if ifdtild detailed surveys based on mod ern me thdlthodologi es are carri ided out The Order Trentepohliales The group is unusual (to say the least!) in many respects Unusual features 1. Exclusively terrestrial and orange-red (unlike the majority of green algae, which are aquatic and green) 2. Differentiated sexual and asexual reproductive structures including an absolutely intriguing, unique zoosporangial abscission process 3. Remarkable bilaterally keeled flagella and flagellar apparatus (i.e. basal bodies and associated components), and 4. Evolutionarily puzzling phragmoplast-mediated cytokinesis found no where else in the entire chlorophyte lineage and analogous to but distinct from the phhltragmoplast-meditddiated cyt tkiokinesi s of some green al gae and dthl the land pl ant s i n the charophycean lineage The order Trentepohliales Five genera currently recognized: Phycopeltis Printzina Trentepohlia Cephaleuros Discoid Prostrate Erect Discoid Reduced Epiphytic Epiphytic or Epiphytic or Obligated Endophytic epilithic epilithic epiphyte Isomorphic Isomorphic Isomorphic Heteromorphic Heteromorphic 28 species 8 species 38 species 15 species 4 species Trentepohlia Martius 1817 The genus Trentepohlia is the most diversified of the trentepohliacean algae, consisting of branched heterotrichous filaments, growing epilithic or epiphytic on the bark of trees, or in lichenic associations at exposed habitats forming conspicuous masses, usua
Recommended publications
  • Plant-Parasitic Algae (Chlorophyta: Trentepohliales) in American Samoa1
    Plant-Parasitic Algae (Chlorophyta: Trentepohliales) in American Samoa1 Fnd E. Erooks 2 Abstract: A survey conducted betweenJune 2000 and May 2002 on the island of Tutuila, American Samoa, recorded filamentous green algae of the order Tren­ tepohliales (CWorophyta) and their plant hosts. Putative pathogenicity of the parasitic genus Cephaleuros and its lichenized state, Strig;ula, was also inves­ tigated. Three genera and nine species were identified: Cephaleuros (five spp.), Phycopeltis (two spp.), and Stomatochroon (two spp.). A widely distributed species of Trentepohlia was not classified. These algae occurred on 146 plant species and cultivars in 101 genera and 48 families; 90% of the hosts were dicotyledonous plants. Cephaleuros spp. have aroused worldwide curiosity, confusion, and con­ cern for over a century. Their hyphaelike filaments, sporangiophores, and as­ sociated plant damage have led unsuspecting plant pathologists to misidentify them as fungi, and some phycologists question their parasitic ability. Of the five species of Cephaleuros identified, C. virescens was the most prevalent, followed by C. parasiticus. Leaf tissue beneath thalli of Cephaleuros spp. on 124 different hosts was dissected with a scalpel and depth of necrosis evaluated using a four­ point scale. No injury was observed beneath thalli on 6% of the hosts, but full­ thickness necrosis occurred on leaves of 43% of hosts. Tissue damage beneath nonlichenized Cephaleuros thalli was equal to or greater than damage beneath lichenized thalli (Strig;ula elegans). In spite of moderate to severe leaf necrosis caused by Cephaleuros spp., damage was usually confined to older leaves near the base of plants. Unhealthy, crowded, poorly maintained plants tended to have the highest percentage of leaf surface area affected by TrentepoWiales.
    [Show full text]
  • 50 Annual Meeting of the Phycological Society of America
    50th Annual Meeting of the Phycological Society of America August 10-13 Drexel University Philadelphia, PA The Phycological Society of America (PSA) was founded in 1946 to promote research and teaching in all fields of Phycology. The society publishes the Journal of Phycology and the Phycological Newsletter. Annual meetings are held, often jointly with other national or international societies of mutual member interest. PSA awards include the Bold Award for the best student paper at the annual meeting, the Lewin Award for the best student poster at the annual meeting, the Provasoli Award for outstanding papers published in the Journal of Phycology, The PSA Award of Excellence (given to an eminent phycologist to recognize career excellence) and the Prescott Award for the best Phycology book published within the previous two years. The society provides financial aid to graduate student members through Croasdale Fellowships for enrollment in phycology courses, Hoshaw Travel Awards for travel to the annual meeting and Grants-In-Aid for supporting research. To join PSA, contact the membership director or visit the website: www.psaalgae.org LOCAL ORGANIZERS FOR THE 2015 PSA ANNUAL MEETING: Rick McCourt, Academy of Natural Sciences of Drexel University Naomi Phillips, Arcadia University PROGRAM DIRECTOR FOR 2015: Dale Casamatta, University of North Florida PSA OFFICERS AND EXECUTIVE COMMITTEE President Rick Zechman, College of Natural Resources and Sciences, Humboldt State University Past President John W. Stiller, Department of Biology, East Carolina University Vice President/President Elect Paul W. Gabrielson, Hillsborough, NC International Vice President Juliet Brodie, Life Sciences Department, Genomics and Microbial Biodiversity Division, Natural History Museum, Cromwell Road, London Secretary Chris Lane, Department of Biological Sciences, University of Rhode Island, Treasurer Eric W.
    [Show full text]
  • Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
    Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, f g h i,j,k e Pavel Skaloud , Charles F. Delwiche , Andrew H. Knoll , John A. Raven , Heroen Verbruggen , Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2, and Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium; bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium; cVlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium; dBioinformatics Institute Ghent, Ghent University, 9052 Zwijnaarde, Belgium; eSchool of Biosciences, University of Melbourne, Melbourne, VIC 3010, Australia; fDepartment of Botany, Faculty of Science, Charles University, CZ-12800 Prague 2, Czech Republic; gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom; jSchool of Biological Sciences, University of Western Australia, WA 6009, Australia; kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia; and lMeise Botanic Garden, 1860 Meise, Belgium Edited by Pamela S. Soltis, University of Florida, Gainesville, FL, and approved December 13, 2019 (received for review June 11, 2019) The Neoproterozoic Era records the transition from a largely clear interpretation of how many times and when green seaweeds bacterial to a predominantly eukaryotic phototrophic world, creat- emerged from unicellular ancestors (8). ing the foundation for the complex benthic ecosystems that have There is general consensus that an early split in the evolution sustained Metazoa from the Ediacaran Period onward.
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • Cephaleuros Species, the Plant-Parasitic Green Algae
    Plant Disease Aug. 2008 PD-43 Cephaleuros Species, the Plant-Parasitic Green Algae Scot C. Nelson Department of Plant and Environmental Protection Sciences ephaleuros species are filamentous green algae For information on other Cephaleuros species and and parasites of higher plants. In Hawai‘i, at least their diseases in our region, please refer to the technical twoC of horticultural importance are known: Cephaleu- report by Fred Brooks (in References). To see images of ros virescens and Cephaleuros parasiticus. Typically Cephaleuros minimus on noni in American Samoa, visit harmless, generally causing minor diseases character- the Hawai‘i Pest and Disease Image Gallery (www.ctahr. ized by negligible leaf spots, on certain crops in moist hawaii.edu/nelsons/Misc), and click on “noni.” environments these algal diseases can cause economic injury to plant leaves, fruits, and stems. C. virescens is The pathogen the most frequently reported algal pathogen of higher The disease is called algal leaf spot, algal fruit spot, and plants worldwide and has the broadest host range among green scurf; Cephaleuros infections on tea and coffee Cephaleuros species. Frequent rains and warm weather plants have been called “red rust.” These are aerophilic, are favorable conditions for these pathogens. For hosts, filamentous green algae. Although aerophilic and ter- poor plant nutrition, poor soil drainage, and stagnant air restrial, they require a film of water to complete their are predisposing factors to infection by the algae. life cycles. The genus Cephaleuros is a member of the Symptoms and crop damage can vary greatly depend- Trentepohliales and a unique order, Chlorophyta, which ing on the combination of Cephaleuros species, hosts and contains the photosynthetic organisms known as green environments.
    [Show full text]
  • Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
    bioRxiv preprint doi: https://doi.org/10.1101/668475; this version posted June 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, Pavel Škaloudf, Charles F. Delwicheg, Andrew H. Knollh, John A. Raveni,j,k, Heroen Verbruggene, Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2 Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium cVIB Center for Plant Systems Biology, Technologiepark 71, 9052 Zwijnaarde, Belgium dBioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium eSchool of Biosciences, University of Melbourne, Melbourne, Victoria, Australia fDepartment of Botany, Faculty of Science, Charles University, Benátská 2, CZ-12800 Prague 2, Czech Republic gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138, USA. iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK jSchool of Biological Sciences, University of Western Australia (M048), 35 Stirling Highway, WA 6009, Australia kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia lMeise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium 1To whom correspondence may be addressed. Email [email protected], [email protected], [email protected] or [email protected].
    [Show full text]
  • Comparative Analysis of Growth and Carotenoid Accumulation of Trentepohlia Arborum in Aerial, Subaerial, and Aquatic Cultivation
    J Appl Phycol DOI 10.1007/s10811-014-0436-x Comparative analysis of growth and carotenoid accumulation of Trentepohlia arborum in aerial, subaerial, and aquatic cultivation Lin Chen & Lanlan Zhang & Wei Zhang & Tianzhong Liu Received: 17 June 2014 /Revised and accepted: 30 September 2014 # Springer Science+Business Media Dordrecht 2014 Abstract The aerial filamentous microalga, Trentepohlia Introduction arborum (Chlorophyta), was cultured in three habitats - an aerial, a subaerial and an aquatic one - using different types of The algal genus Trentepohlia is widespread in different loca- bioreactors. The growth, carotenoid productivity, and morpho- tions such as tropical, subtropical, and temperate regions, even logic differences of T. arborum in different habitats were inves- in frigid zones (Allali et al. 2013;Nashetal.1987; Jorgensen tigated. The maximum specific growth rate (μ)ofthealga and Tonsberg 1988; Liu et al. 2012). The colonies of obtained in the logarithmic phase in the subaerial habitat was Trentepohlia generally grow on the surface of rocks, soil, 0.034 h−1. HPLC analysis also demonstrated that T. arborum walls, or tree trunks, to form a spectacular orange or red accumulated a high content of carotenoids. Zeaxanthin was the “carpet” named “Red stone” (Liu et al. 2012), because it is primary carotenoid in subaerial culture, while β,β-carotene was rich in carotenoid content, especially β-carotene (Kjosen et al. dominant in aerial culture. The maximum carotenoid produc- 1972; Czeczuga and Maximov 1996; Abe et al. 1998; tivity, 67.7 mg m−2 day−1, was reached when T. arborum was Mukherjee et al. 2010). Moreover, some carotenoids, unique cultured in the subaerial habitat under nitrogen depletion using to this group, have been found in Trentepohlia gobii a novel attached cultivation bioreactor.
    [Show full text]
  • Angiactis, a New Crustose Lichen Genus in the Roccellaceae, with Species from Bermuda, the Galápagos Islands and Australia
    Angiactis, a new crustose lichen genus in the Roccellaceae, with species from Bermuda, the Gala´pagos Islands and Australia ANDRE´ APTROOT ABL Herbarium, Gerrit van der Veenstraat 107, NL-3762 XK Soest, The Netherlands e-mail: [email protected] LAURENS B. SPARRIUS BIO.DIV, Vrijheidslaan 27, NL-2806 KE Gouda, The Netherlands e-mail: [email protected] SCOTT LAGRECA Department of Botany, the Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom e-mail: [email protected] FRANK BUNGARTZ Botany Department, Charles Darwin Research Station, Isla Santa Cruz, Gala´pagos; Postal Address: Charles Darwin Foundation, Av. 6 de Diciembre N 36-109 y Pasaje California, Post Box 17-01-3891, Quito, Ecuador e-mail: [email protected] ABSTRACT. The new genus Angiactis Aptroot & Sparrius is described, with three species, A. bermudensis LaGreca sp. nov. from Bermuda, A. littoralis (Kantvilas) Aptroot & Sparrius comb. nov. from Australia and A. spinicola Aptroot & Sparrius sp. nov. from the Gala´pagos. The new genus differs from Lecanographa in the presence of a thalline exciple, and from Llimonaea in the non-corticate thallus and presence of a thalline exciple. KEYWORDS. Angiactis, Arthoniales, Lecanographa, Llimonaea. ¤¤¤ During the last decade, a number of old crustose example, Egea and Torrente (1994) split Lecanactis Roccellaceae genera have been revised by various s.l. into several taxa, based on apothecium shape and workers, revealing new characters. As part of this pigments, and gave more attention to ascospore and process, several larger genera in the family have been ascus characters. As part of this work, related genera reduced in size, such as Enterographa (Sparrius 2004) such as Llimonaea (Torrente & Egea 1991) were and Plectocarpon (Ertz et al.
    [Show full text]
  • "Phycology". In: Encyclopedia of Life Science
    Phycology Introductory article Ralph A Lewin, University of California, La Jolla, California, USA Article Contents Michael A Borowitzka, Murdoch University, Perth, Australia . General Features . Uses The study of algae is generally called ‘phycology’, from the Greek word phykos meaning . Noxious Algae ‘seaweed’. Just what algae are is difficult to define, because they belong to many different . Classification and unrelated classes including both prokaryotic and eukaryotic representatives. Broadly . Evolution speaking, the algae comprise all, mainly aquatic, plants that can use light energy to fix carbon from atmospheric CO2 and evolve oxygen, but which are not specialized land doi: 10.1038/npg.els.0004234 plants like mosses, ferns, coniferous trees and flowering plants. This is a negative definition, but it serves its purpose. General Features Algae range in size from microscopic unicells less than 1 mm several species are also of economic importance. Some in diameter to kelps as long as 60 m. They can be found in kinds are consumed as food by humans. These include almost all aqueous or moist habitats; in marine and fresh- the red alga Porphyra (also known as nori or laver), an water environments they are the main photosynthetic or- important ingredient of Japanese foods such as sushi. ganisms. They are also common in soils, salt lakes and hot Other algae commonly eaten in the Orient are the brown springs, and some can grow in snow and on rocks and the algae Laminaria and Undaria and the green algae Caulerpa bark of trees. Most algae normally require light, but some and Monostroma. The new science of molecular biology species can also grow in the dark if a suitable organic carbon has depended largely on the use of algal polysaccharides, source is available for nutrition.
    [Show full text]
  • Habitat Diversity of the Genus Physolinum Printz, Burdwan, West Bengal (India)
    Journal of Acharaya Narendra Dev Research Institute l ISSN : 0976-3287 l Vol-27 (Jan 2019-Jun 2019) Habitat Diversity of the Genus Physolinum Printz, Burdwan, West Bengal (India) Habitat Diversity of the Genus Physolinum Printz, barks were found in different colour in different season, Primarily the colour was green and in course of time the colour had been changed to yellow to deep orange depend upon the host or substratum. Yellow colour Burdwan, West Bengal (India) noticed especially in smooth bark whereas orange colour in rough bark. Survey explore the distribution specificity and physiological alteration of the organism in different season which gives us a clue in respective Prasanta Mallick * niche .Observation is given accordingly. Sunlight, relative humidity, and rainfall were the important factors which played a major role in determining the diversity and distribution of subaerial algal communities Abstract Rock- sample : Green form Habitat is the very important aspect of all living creatures, starts from animals to plants and from cryptogams to phanerogams. Algae are the very promising biological organism in all ecosystem especially in Plant body with less branched or unbranched, Cells are elliptical or barrel shaped, length is more than marine or fresh water habitat but also even in terrestrial -sub aerial habitat. Terrestrial habitat is basically two times than width L. 29-37 µm, W.8-12 µm , cell wall is much stratified , Partitioned wall more or less depend upon some basic component like minerals nutrients, organic matter, water and air by different transverse, no constriction. Cell contains distinct discoid chloroplast. Mature intercalary cells containing composition and sub aerial habitats depend upon the existing substratum.
    [Show full text]
  • New Insights Into Diversity and Selectivity of Trentepohlialean Lichen Photobionts from the Extratropics
    Symbiosis DOI 10.1007/s13199-014-0285-z New insights into diversity and selectivity of trentepohlialean lichen photobionts from the extratropics Christina Hametner & Elfriede Stocker-Wörgötter & Martin Grube Received: 7 March 2014 /Accepted: 13 June 2014 # The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Aerial green algae of Trentepohliaceae can form Keywords ITS region . Lichen symbioses . Photobionts . conspicuous free-living colonies, be parasites of plants or Phylogeny . Temperate regions . Trentepohliaceae photobionts of lichen-forming ascomycetes. So far, their di- versity in temperate regions is still poorly known as it has been mostly studied by phenotypic approaches only. We present 1 Introduction new insights in the phylogenetic relationships of lichenized representatives from temperate and Mediterranean parts of The Trentepohliaceae are a widespread family of aero- Europe by analysis of 18S rRNA and rbcL gene fragments, terrestrial green algae which differs from other green algae and nuclear ITS sequence data. For this purpose we isolated in terms of their reproductive structures, phragmoplast- the trentepohlialean photobionts from lichens representing mediated cytokinesis, the lack of pyrenoids in the chloroplast different genera. Algal cultures from lichenized and free- and other characters (Rindi et al. 2009). In particular, the living Trentepohliaceae were used to design new primers for phragmoplasts are otherwise only known from the amplification of the marker loci. We constructed a phyloge- Charophyceae and from land plants (Chapman et al. 2001). netic hypothesis to reveal the phylogenetic placements of Trentepohlia colonies and of their allied genera are frequent lichenized lineages with 18S rRNA and rbcL sequences. ITS on rocks, buildings, tree barks, leaves, stems, and fruits (Printz variation among the clades was substantial and did not allow 1939; Chapman 1984;López-Bautistaetal.2002;Chapman including them in the general phylogenetic assessment, yet and Waters 2004; López-Bautista et al.
    [Show full text]
  • Mainstreaming Biodiversity for Sustainable Development
    Mainstreaming Biodiversity for Sustainable Development Dinesan Cheruvat Preetha Nilayangode Oommen V Oommen KERALA STATE BIODIVERSITY BOARD Mainstreaming Biodiversity for Sustainable Development Dinesan Cheruvat Preetha Nilayangode Oommen V Oommen KERALA STATE BIODIVERSITY BOARD MAINSTREAMING BIODIVERSITY FOR SUSTAINABLE DEVELOPMENT Editors Dinesan Cheruvat, Preetha Nilayangode, Oommen V Oommen Editorial Assistant Jithika. M Design & Layout - Praveen K. P ©Kerala State Biodiversity Board-2017 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, transmitted in any form or by any means-graphic, electronic, mechanical or otherwise, without the prior written permission of the publisher. Published by - Dr. Dinesan Cheruvat Member Secretary Kerala State Biodiversity Board ISBN No. 978-81-934231-1-0 Citation Dinesan Cheruvat, Preetha Nilayangode, Oommen V Oommen Mainstreaming Biodiversity for Sustainable Development 2017 Kerala State Biodiversity Board, Thiruvananthapuram 500 Pages MAINSTREAMING BIODIVERSITY FOR SUSTAINABLE DEVELOPMENT IntroduCtion The Hague Ministerial Declaration from the Conference of the Parties (COP 6) to the Convention on Biological Diversity, 2002 recognized first the need to mainstream the conservation and sustainable use of biological resources across all sectors of the national economy, the society and the policy-making framework. The concept of mainstreaming was subsequently included in article 6(b) of the Convention on Biological Diversity, which called on the Parties to the
    [Show full text]