AMR: Antimicrobial Resistance Data Analysis
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
A Computational Drug Repositioning Case Study Prashant S. Kharkar1*, Ponnadurai Ramasami2, Yee S
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016 Discovery of Anti-Ebola Drugs: A Computational Drug Repositioning Case Study Prashant S. Kharkar1*, Ponnadurai Ramasami2, Yee Siew Choong3, Lydia Rhyman2 and Sona Warrier1 1SPP School of Pharmacy and Technology Management, SVKM’s NMIMS, V. L. Mehta Road, Vile Parle (West), Mumbai-400 056. INDIA. 2 Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius 3Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Malaysia Contents Sr. No. Description Page No. 1 Table 1S 1 2 Figure 1S 28 3 Figure 2S 29 4 Figure 3S 30 5 Figure 4S 31 6 Figure 5S 32 Table 1S. Top hits (#100) identified from EON screening using query 1 Estimated Sr. EON_ Shape Free Energy Drug Structure ET_pb ET_coul ET_combo Rank No. Tanimoto of Binding (kcal/mol) OH O Br N O 1 1 S -9.88 HO O O O S O O 2 Sitaxentan S 0.633 0.914 0.926 0.294 1 -14.37 HN O Cl O N O HO 3 Alitretinoina 0.66 0.91 0.906 0.246 2 -3.91 NH 2 S N N O O HN 4 Ceftriaxone S 0.606 0.937 0.823 0.217 3 -12.33 N O S N O HO O N N O H O a 5 Acitretin O 0.637 0.936 0.809 0.172 4 -3.71 OH HO NH 2 HO N N 6 Cidofovir P O 0.473 0.633 0.783 0.31 5 -4.21 HO O O N N N N 7 Telmisartan 0.601 0.908 0.775 0.174 6 -6.46 OH O 8 Nateglinidea HN 0.54 0.874 0.745 0.205 7 -3.78 OH O O H N 2 S OH N O N S O 9 Ceftizoxime N 0.557 0.88 0.735 0.178 8 -11.35 H O N O OH O 10 Treprostinil OH 0.432 0.846 0.732 0.301 9 -3.41 O HO O O S -
Redalyc.Patterns of Antimicrobial Therapy in Acute Tonsillitis: a Cross
Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil JOHN, LISHA J.; CHERIAN, MEENU; SREEDHARAN, JAYADEVAN; CHERIAN, TAMBI Patterns of Antimicrobial therapy in acute tonsillitis: A cross-sectional Hospital-based study from UAE Anais da Academia Brasileira de Ciências, vol. 86, núm. 1, enero-marzo, 2014, pp. 451-457 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32730090032 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anais da Academia Brasileira de Ciências (2014) 86(1): 451-457 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201420120036 www.scielo.br/aabc Patterns of Antimicrobial therapy in acute tonsillitis: A cross-sectional Hospital-based study from UAE LISHA J. JOHN1, MEENU CHERIAN2, JAYADEVAN SREEDHARAN3 and TAMBI CHERIAN2 1Department of Pharmacology, Gulf Medical University, 4184, Ajman, United Arab Emirates 2Department of ENT, Gulf Medical College Hospital, 4184, Ajman, United Arab Emirates 3Statistical Support Facility, Centre for Advanced Biomedical Research and Innovation, Gulf Medical University, 4184, Ajman, United Arab Emirates Manuscript received on December 20, 2012; accepted for publication on October 14, 2013 ABSTRACT Background: Diseases of the ear, nose and throat (ENT) are associated with significant impairment of the daily life and a major cause for absenteeism from work. -
Efficacy of Amoxicillin and Amoxicillin/Clavulanic Acid in the Prevention of Infection and Dry Socket After Third Molar Extraction
Med Oral Patol Oral Cir Bucal. 2016 Jul 1;21 (4):e494-504. Amoxicillin in the prevention of infectious complications after tooth extraction Journal section: Oral Surgery doi:10.4317/medoral.21139 Publication Types: Review http://dx.doi.org/doi:10.4317/medoral.21139 Efficacy of amoxicillin and amoxicillin/clavulanic acid in the prevention of infection and dry socket after third molar extraction. A systematic review and meta-analysis María-Iciar Arteagoitia 1, Luis Barbier 2, Joseba Santamaría 3, Gorka Santamaría 4, Eva Ramos 5 1 MD, DDS, PhD, Associate Professor, Stomatology I Department, University of the Basque Country (UPV/EHU), BioCruces Health Research Institute, Spain; Consolidated research group (UPV/EHU IT821-13) 2 MD PhD, Chair Professor, Maxillofacial Surgery Department, BioCruces Health Research Institute, Cruces University Hos- pital, University of the Basque Country (UPV/EHU), Spain; Consolidated research group (UPV/EHU IT821-13) 3 MD, DDS, PhD, Professor and Chair, Maxillofacial Surgery Department, Bio Cruces Health Research Institute, Cruces University Hospital, University of the Basque Country (UPV/EHU), Bizkaia, Spain; Consolidated research group (UPV/EHU IT821-13) 4 DDS, PhD, Associate Professor, Stomatology I Department, University of the Basque Country (UPV/EHU), BioCruces Health Research Institute, Spain; Consolidated research group (UPV/EHU IT821-13) 5 PhD, Degree in Farmacy, BioCruces Health Research Institute, Cruces University Hospital. Spain Correspondence: Servicio Cirugía Maxilofacial Hospital Universitario de Cruces Plaza de Cruces s/n Arteagoitia MI, Barbier L, Santamaría J, Santamaría G, Ramos E. Ef- Barakaldo, Bizkaia, Spain ficacy of amoxicillin and amoxicillin/clavulanic acid in the prevention [email protected] of infection and dry socket after third molar extraction. -
United States Patent ( 10 ) Patent No.: US 10,561,6759 B2 Griffith Et Al
US010561675B2 United States Patent ( 10 ) Patent No.: US 10,561,6759 B2 Griffith et al. (45 ) Date of Patent : * Feb . 18 , 2020 (54 ) CYCLIC BORONIC ACID ESTER ( 58 ) Field of Classification Search DERIVATIVES AND THERAPEUTIC USES CPC A61K 31/69 ; A61K 31/396 ; A61K 31/40 ; THEREOF A61K 31/419677 (71 ) Applicant: Rempex Pharmaceuticals , Inc. , (Continued ) Lincolnshire , IL (US ) (56 ) References Cited (72 ) Inventors : David C. Griffith , San Marcos, CA (US ) ; Michael N. Dudley , San Diego , U.S. PATENT DOCUMENTS CA (US ) ; Olga Rodny , Mill Valley , CA 4,194,047 A 3/1980 Christensen et al . ( US ) 4,260,543 A 4/1981 Miller ( 73 ) Assignee : REMPEX PHARMACEUTICALS , ( Continued ) INC . , Lincolnshire , IL (US ) FOREIGN PATENT DOCUMENTS ( * ) Notice : Subject to any disclaimer, the term of this EP 1550657 A1 7/2005 patent is extended or adjusted under 35 JP 2003-229277 A 8/2003 U.S.C. 154 ( b ) by 1129 days. (Continued ) This patent is subject to a terminal dis claimer . OTHER PUBLICATIONS Abdel -Magid et al. , “ Reductive Amination ofAldehydes and Ketones ( 21) Appl. No .: 13 /843,579 with Sodium Triacetoxyborohydride: Studies on Direct and Indirect Reductive Amination Procedures ” , J Org Chem . ( 1996 )61 ( 11 ): 3849 ( 22 ) Filed : Mar. 15 , 2013 3862 . (65 ) Prior Publication Data (Continued ) US 2013/0331355 A1 Dec. 12 , 2013 Primary Examiner — Shengjun Wang Related U.S. Application Data (74 ) Attorney, Agent, or Firm — Wilmer Cutler Pickering (60 ) Provisional application No.61 / 656,452 , filed on Jun . Hale and Dorr LLP 6 , 2012 (57 ) ABSTRACT (51 ) Int. Ci. A61K 31/69 ( 2006.01) Method of treating or ameliorating a bacterial infection A61K 31/00 ( 2006.01 ) comprising administering a composition comprising a cyclic (Continued ) boronic acid ester compound in combination with a car ( 52 ) U.S. -
The Antimycobacterial Activity of Hypericum Perforatum Herb and the Effects of Surfactants
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 8-2012 The Antimycobacterial Activity of Hypericum perforatum Herb and the Effects of Surfactants Shujie Shen Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Engineering Commons Recommended Citation Shen, Shujie, "The Antimycobacterial Activity of Hypericum perforatum Herb and the Effects of Surfactants" (2012). All Graduate Theses and Dissertations. 1322. https://digitalcommons.usu.edu/etd/1322 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. i THE ANTIMYCOBACTERIAL ACTIVITY OF HYPERICUM PERFORATUM HERB AND THE EFFECTS OF SURFACTANTS by Shujie Shen A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Biological Engineering Approved: Charles D. Miller, PhD Ronald C. Sims, PhD Major Professor Committee Member Marie K. Walsh, PhD Mark R. McLellan, PhD Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2012 ii Copyright © Shujie Shen 2012 All Rights Reserved iii ABSTRACT The Antimycobacterial Activity of Hypericum perforatum Herb and the Effects of Surfactants by Shujie Shen, Master of Science Utah State University, 2012 Major Professor: Dr. Charles D. Miller Department: Biological Engineering Due to the essential demands for novel anti-tuberculosis treatments for global tuberculosis control, this research investigated the antimycobacterial activity of Hypericum perforatum herb (commonly known as St. -
Revised Use-Function Classification (2007)
INTERNATIONAL PROGRAMME ON CHEMICAL SAFETY IPCS INTOX Data Management System (INTOX DMS) Revised Use-Function Classification (2007) The Use-Function Classification is used in two places in the INTOX Data Management System: the Communication Record and the Agent/Product Record. The two records are linked: if there is an agent record for a Centre Agent that is the subject of a call, the appropriate Intended Use-Function can be selected automatically in the Communication Record. The Use-Function Classification is used when generating reports, both standard and customized, and for searching the case and agent databases. In particular, INTOX standard reports use the top level headings of the Intended Use-Functions that were selected for Centre Agents in the Communication Record (e.g. if an agent was classified as an Analgesic for Human Use in the Communication Record, it would be logged as a Pharmaceutical for Human Use in the report). The Use-Function classification is very important for ensuring harmonized data collection. In version 4.4 of the software, 5 new additions were made to the top levels of the classification provided with the system for the classification of organisms (items XIV to XVIII). This is a 'convenience' classification to facilitate searching of the Communications database. A taxonomic classification for organisms is provided within the INTOX DMS Agent Explorer. In May/June 2006 INTOX users were surveyed to find out whether they had made any changes to the Use-Function Classification. These changes were then discussed at the 4th and 5th Meetings of INTOX Users. Version 4.5 of the INTOX DMS includes the revised pesticides classification (shown in full below). -
AMR Surveillance in Pharma: a Case-Study for Data Sharingauthor by Professor Barry Cookson
AMR Open Data Initiative AMR Surveillance in Pharma: a case-study for data sharingauthor by Professor Barry Cookson External Consultant to Project eLibrary • Division of Infection and Immunity, Univ. College London ESCMID• Dept. of Microbiology, © St Thomas’ Hospital Background of “90 day Project” Addressed some recommendations of the first Wellcome funded multi-disciplinary workshop (included Pharma Academia & Public Health invitees: 27thauthor July 2017 (post the Davos Declaration): by 1) Review the landscape of existing Pharma AMR programmes, their protocols,eLibrary data standards and sets 2) Develop a "portal" (register/platform) to access currently available AMR Surveillance data ESCMID Important ©to emphasise that this is a COLLABORATION between Pharma and others Overview of Questionnaire Content • General information - including name,author years active, countries, antimicrobials, microorganisms.by • Methodology - including accreditation, methodology for; surveillance, isolate collection, organism identification, breakpointseLibrary used, • Dataset - including data storage methodology, management and how accessed. ESCMID © 13 Company Responses author 7 by 3 3 eLibrary ESCMID © Structure of register Companies can have different ways of referring to their activities: We had to choose a consistent framework. author Companies Companyby 1 Programmes Programme A Programme B eLibrary Antimicrobials 1 2 3 4 5 company’s product comparator company’s product antimicrobials Programmes canESCMID contain multiple studies (e.g. Pfizer has© single -
)&F1y3x PHARMACEUTICAL APPENDIX to THE
)&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE -
Pharmaceutical Applications Notebook
Pharmaceutical Applications Notebook Antibiotics Table of Contents Index of Analytes .......................................................................................................................................................................3 Introduction to Pharmaceuticals ................................................................................................................................................4 UltiMate 3000 UHPLC+ Systems .............................................................................................................................................5 IC and RFIC Systems ................................................................................................................................................................6 MS Instruments .........................................................................................................................................................................7 Chromeleon 7 Chromatography Data System Software ..........................................................................................................8 Process Analytical Systems and Software ................................................................................................................................9 Automated Sample Preparation ..............................................................................................................................................10 Analysis of Antibiotics ...........................................................................................................................................................11 -
Choline Esters As Absorption-Enhancing Agents for Drug Delivery Through Mucous Membranes of the Nasal, Buccal, Sublingual and Vaginal Cavities
J|A Europaisches Patentamt 0 214 ® ^KUw ^uroPean Patent O^ice (fl) Publication number: 898 Office europeen des brevets A2 © EUROPEAN PATENT APPLICATION @ Application number: 86401812.2 (3) Int. CI.4: A 61 K 47/00 @ Date of filing: 13.08.86 @ Priority: 16.08.85 US 766377 © Applicant: MERCK & CO. INC. 126, East Lincoln Avenue P.O. Box 2000 @ Date of publication of application : Rahway New Jersey 07065 (US) 18.03.87 Bulletin 87/12 @ Inventor: Alexander, Jose @ Designated Contracting States : 2909 Westdale Court CH DE FR GB IT LI NL Lawrence Kansas 66044 (US) Repta, A.J. Route 6, Box 100N Lawrence Kansas 66046 (US) Fix, Joseph A. 824 Mississippi Lawrence Kansas 66044 (US) @ Representative: Ahner, Francis et al CABINET REGIMBEAU 26, avenue Kleber F-75116 Paris (FR) |j) Choline esters as absorption-enhancing agents for drug delivery through mucous membranes of the nasal, buccal, sublingual and vaginal cavities. @ Choline esters are used as drug absorption enhancing agents for drugs which are poorly absorbed from the nasal, oral, and vaginal cavities. ! r ■ i ■ I njndesdruckerei Berlin 0 214 898 Description CHOLINE ESTERS AS ABSORPTION-ENHANCING AGENTS FOR DRUG DELIVERY THROUGH MUCOUS MEMBRANES OF THE NASAL, BUCCAL, SUBLINGUAL AND VAGINAL CAVITIES 5 BACKGROUND OF THE INVENTION The invention relates to a novel method and compositions for enhancing absorption of drugs from the nasal, buccal, sublingual and vaginal cavities by incorporating therein a choline ester absorption enhancing agent. The use of choline esters to promote nasal, buccal, sublingual and vaginal drug delivery offers several advantages over attempts to increase drug absorption from the gastrointestinal tract. -
G Genito Urinary System and Sex Hormones
WHO/EMP/RHT/TSN/2018.2 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. Learning clinical pharmacology with the use of INNs and their stems. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.2). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris. Sales, rights and licensing. To purchase WHO publications, see http://apps.who.int/bookorders. To submit requests for commercial use and queries on rights and licensing, see http://www.who.int/about/licensing. -
P147-Bioorgchem-Kanamycin Nucleotidyltransferase-1999.Pdf
Bioorganic Chemistry 27, 395±408 (1999) Article ID bioo.1999.1144, available online at http://www.idealibrary.com on Kinetic Mechanism of Kanamycin Nucleotidyltransferase from Staphylococcus aureus1 Misty Chen-Goodspeed,* Janeen L. Vanhooke,² Hazel M. Holden,² and Frank M. Raushel*,2 *Department of Chemistry, Texas A&M University, College Station, Texas 77843; and ²Department of Biochemistry, Institute for Enzyme Research, University of Wisconsin, Madison, Wisconsin 53705 Received December 16, 1998 Kanamycin nucleotidyltransferase (KNTase) catalyzes the transfer of the adenyl group from MgATP to either the 4Ј or 4Љ-hydroxyl group of aminoglycoside antibiotics. The steady state kinetic parameters of the enzymatic reaction have been measured by initial velocity, product, and dead-end inhibition techniques. The kinetic mechanism is ordered where the antibiotic binds prior to MgATP and the modified antibiotic is the last product to be released. The effects of altering the relative solvent viscosity are consistent with the release of the products as the rate-limiting step. The pH profiles for Vmax and V/KATP show that a single ionizable group with apK of ϳ8.9 must be protonated for catalysis. The V/K profile for kanamycin as a function of pH is bell-shaped and indicates that one group must be protonated with a pK value of 8.5, while another group must be unprotonated with a pK value of 6.6. An analysis of the kinetic constants for 10 different aminoglycoside antibiotics and 5 nucleotide triphosphates indicates very little difference in the rate of catalysis or substrate binding among these substrates. ᭧ 1999 Academic Press Key Words: kanamycin nucleotidyltransferase; antibiotic modification.