An Unorthodox Mechanism Underlying Voltage Sensitivity of TRPV1 Ion Channel

Total Page:16

File Type:pdf, Size:1020Kb

An Unorthodox Mechanism Underlying Voltage Sensitivity of TRPV1 Ion Channel bioRxiv preprint doi: https://doi.org/10.1101/2020.01.04.894980; this version posted January 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 An unorthodox mechanism underlying voltage sensitivity of TRPV1 ion channel 2 Fan Yang1¶,2, Lizhen Xu1, Bo Hyun Lee2, Xian Xiao2,3, Vladimir Yarov-Yarovoy2 and 3 Jie Zheng2¶ 4 1Department of Biophysics and Kidney Disease Center, First Affiliated Hospital, 5 Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, 6 Zhejiang University School of Medicine, Hangzhou 310058, China. 2Department of 7 Physiology and Membrane Biology, University of California, Davis, California 95616, 8 USA. 3Institute for Basic Medical Sciences, Westlake Institute for Advanced Study, 9 Westlake University, Shilongshan Road No. 18, Xihu District, Hangzhou 310064, 10 Zhejiang Province, China. 11 ¶ Correspondence and requests for materials should be addressed to F.Y. (email: 12 [email protected]) or J.Z. (email: [email protected]) 13 14 Abstract 15 While the capsaicin receptor TRPV1 channel is a polymodal nociceptor for heat, 16 capsaicin, and proton, the channel’s responses to each of these stimuli are 17 profoundly regulated by membrane potential, damping or even prohibiting its 18 response at negative voltages and amplifying its response at positive voltages. 19 Though voltage sensitivity plays an important role is shaping pain responses, 20 how voltage regulates TRPV1 activation remains unknown. Here we showed that 21 the voltage sensitivity of TRPV1 does not originate from the S4 segment like 22 classic voltage-gated ion channels; instead, outer pore acidic residues directly 23 partake in voltage-sensitive activation, with their negative charges collectively 24 constituting the observed gating charges. Voltage-sensitive outer pore movement 25 is titratable by extracellular pH and is allosterically coupled to channel 26 activation, likely by influencing the upper gate in the ion selectivity 27 filter. Elucidating this unorthodox voltage-gating process provides a mechanistic 28 foundation for understanding polymodal gating and opens the door to novel 29 approaches regulating channel activity for pain managements. 30 31 When the lipid bilayer emerged to enclose living cells more than three billion years 32 ago1, this diffusion barrier between cytoplasmic milieu and external environment 33 allowed the establishment of transmembrane ion concentration gradients, which in 34 turn yielded a transmembrane electric potential. Such a membrane potential (Vm) has 35 been widely utilized in cellular signaling: voltage-gated ion channels alter Vm to elicit 36 electric signals for rapid communications2,3; voltage-sensitive enzymes, e.g., Ci-VSP4, 37 couple changes in Vm to the regulation of enzymatic activities and intracellular 38 signaling. For these “classic” voltage-sensing proteins, high sensitivity to voltage (5- 39 fold/mV) has been attributed to a conserved, densely charged “voltage-sensor” 40 domain in the transmembrane region5. Other membrane proteins—including G 41 protein-coupled receptors6, ion channels and transporters7—have also evolved to take 42 cues from Vm to perform their biological functions. Understanding the origin and 43 operation of voltage sensitivity in these membrane proteins is of fundamental 44 importance. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.04.894980; this version posted January 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 45 Transient receptor potential vanilloid 1 (TRPV1) channel, a polymodal nociceptor in 46 higher species8, is a good representative of the non-classic voltage-sensitive 47 membrane proteins. TRPV1 is activated by noxious heat above 40°C9, however, its 48 response to heat at depolarized Vm is markedly larger than that at the resting Vm even 49 when the driving force for its non-selective cation current is equal in magnitude (Fig. 50 1a). Similarly, TRPV1’s responses to capsaicin and proton—which elicits spiciness 51 sensation9 and the sustained phase of pain sensation10, respectively—are also 52 substantially asymmetrical (Fig. 1b). Tuning of TRPV1’s nociceptive sensitivity by 53 Vm is a highly dynamic process occurring at human body temperature, with the range 54 of voltage dependence (reflected by the conductance-voltage, or G-V, relationship) 55 shifting over a more than 200 mV range in the presence of an activation stimulus11 56 (Fig. 1c). Dynamic voltage sensitivity makes TRPV1 more sensitive to noxious 57 stimuli when its host sensory neuron has been previously excited (primed) or 58 damaged, a general feature for nociception known as hyperalgesia12. On the flip side, 59 membrane hyperpolarization is expected to inhibit pain responses, offering 60 opportunities for novel clinical intervention. Despite its physiological significance, 61 how TRPV1 senses Vm remains largely elusive. 62 TRPV1 belongs to the voltage-gated-like (VGL) ion channel superfamily (Fig. 1d)13, 63 for which three voltage-sensing mechanisms have been established. For voltage-gated 64 potassium (Kv), sodium (Nav) and calcium (Cav) channels (blue sections in Fig. 1d), 65 multiple regularly spaced basic residues on the transmembrane S4 helix enable it to 14 66 move in response to Vm changes . For two-pore domain potassium channels (K2P) 67 without a voltage-sensor domain (green section in Fig. 1d), permeant cations have 68 been proposed to bestow voltage sensitivity15. For inward-rectifier potassium channels 69 (Kir) (purple section in Fig. 1d), voltage-dependent pore block by endogenous 70 polyamines and Mg2+ ions introduces voltage sensitivity16. These three mechanisms 71 are applicable to about three-fourth of the VGL superfamily; voltage-sensing is less 72 understood for a significant portion of the family (red section) that is composed of 73 cellular sensor TRP channels including TRPV1. Our study began by determining 74 whether TRPV1 employs one of these three known mechanisms or a new mechanism 75 to detect Vm. 76 Characterizing TRPV1’s voltage sensitivity 77 A fundamental parameter for voltage sensitivity is the total charge movement, q, 78 which determines the steepness of voltage response5. TRPV1 is known to exhibit 79 shallow voltage dependence11. By fitting a Boltzmann function to the G-V curve of 80 mouse TRPV1 recorded in HEK293 cells (Fig. 1c), the apparent q was estimated to be 81 0.72 ± 0.05 e0 (n = 4). Applying this approach to Kv channels yielded an apparent q of 17 82 5.3 e0 . However, it is well known that fitting the shape of G-V curves could yield an 83 under-estimate of q, for example, when there are multiple voltage-dependent closed 84 states that the channel may traverse before reaching the open state17-19. Indeed, the 85 total gating charge of Kv, K2P and Kir channels are about 13 e0, 2.2 e0 and 2.2 e0, 86 respectively15,16,18. 87 The relatively weak voltage sensitivity of TRPV1 precluded direct measurement of q 88 from gating current. Alternatively, the limiting-slope method20,21 is a classic approach 2 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.04.894980; this version posted January 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 89 to estimate q, for which voltage dependence was measured at low open probabilities. 90 However, the voltage-driven transition of TRPV1 is allosterically coupled to 91 activation gating22, with the channel open probability approaching a stable level at 92 deep hyperpolarization (Fig. 1e and Extended Data Fig. 1) that reflected the 93 equilibrium of activation gate between the closed and open state23. To better estimate 94 q, we first calculated the derivative of the mean log open probability with respect to 95 voltage and fitted the Boltzmann smoothing function of voltage dependence of mean 96 log open probability (see Methods for details) (Fig. 1f), as was previously performed 97 on the allosteric large conductance calcium activated potassium (BK) channels23. This 98 approach yielded an estimated q of 0.93 e0, which is 30% larger than that measured 99 from fitting a Boltzmann function to the G-V curve (0.72 e0), yet much smaller than 23,24 100 that of BK channels (2.62 e0) . To estimate the potential deviation of the gating 101 charge estimate from its true value, we simulated the voltage sensitivity of TRPV1 102 open probability based on a simple allosteric scheme (Extended Data Figure 2a). With 103 the hypothetical gating charge value set to span a wide range from 1.0 e0 to 13.0 e0, 104 our estimations (Extended Data Figure 2b to 2e, dotted red curves) were close to the 105 true value, with deviations ranging from 3.3% to 5.3% (Extended Data Figure 2f). 106 When the method was applied to BK channels, for which total gating charge could be 107 directly measured from the gating current, an underestimation of 7.7% was seen23,24. 108 TRPV1 S4 does not serve as a voltage sensor 109 The S1-to-S4 domain of TRPV1 channels, like its counterpart in Kv channels25, forms 110 a compact domain surrounding the channel pore26,27. In Kv channels, this domain 111 serves as the voltage sensor28. To test whether TRPV1 also relies on the S1-to-S4 112 domain to sense Vm, we first compared the S4 sequences (Fig. 2a). The Kv channel 113 S4 segments contain seven regularly spaced charged residues. The corresponding 114 residues in TRPV1 are all uncharged except for R558, which matches to R6 of Kv at 115 the end of S4 thought to be insignificant for voltage-sensing28. To test for a potential 116 contribution of R558 to voltage sensitivity, we mutated this residue to leucine.
Recommended publications
  • Molecular Basis for Heat Desensitization of TRPV1 Ion Channels
    ARTICLE https://doi.org/10.1038/s41467-019-09965-6 OPEN Molecular basis for heat desensitization of TRPV1 ion channels Lei Luo1,2,5, Yunfei Wang1,2,5, Bowen Li1,5, Lizhen Xu3, Peter Muiruri Kamau1,2, Jie Zheng 4, Fan Yang3, Shilong Yang1 & Ren Lai1 The transient receptor potential vanilloid 1 (TRPV1) ion channel is a prototypical molecular sensor for noxious heat in mammals. Its role in sustained heat response remains poorly 1234567890():,; understood, because rapid heat-induced desensitization (Dh) follows tightly heat-induced activation (Ah). To understand the physiological role and structural basis of Dh, we carried out a comparative study of TRPV1 channels in mouse (mV1) and those in platypus (pV1), which naturally lacks Dh. Here we show that a temperature-sensitive interaction between the N- and C-terminal domains of mV1 but not pV1 drives a conformational rearrangement in the pore leading to Dh. We further show that knock-in mice expressing pV1 sensed heat normally but suffered scald damages in a hot environment. Our findings suggest that Dh evolved late during evolution as a protective mechanism and a delicate balance between Ah and Dh is crucial for mammals to sense and respond to noxious heat. 1 Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China. 2 University of Chinese Academy of Sciences, Beijing 100049, China. 3 Key Laboratory of Medical Neurobiology, Department of Biophysics and Kidney Disease Center, First Affiliated Hospital, Institute of Neuroscience, National Health Commission and Chinese Academy of Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
    [Show full text]
  • Sérgio José Macedo Júnior
    Sérgio José Macedo Júnior MECANISMOS ENVOLVIDOS NA NOCICEPÇÃO INDUZIDA PELO VENENO DA BOTHROPS JARARACA EM CAMUNDONGOS: EVIDÊNCIAS DA PARTICIPAÇÃO DOS RECEPTORES DE POTENCIAL TRANSITÓRIO TIPO ANQUIRINA 1 Tese apresentada ao Programa de Pós-graduação em Farmacologia do Centro de Ciências Biológicas da Universidade Federal de Santa Catarina como requisito para a obtenção do título de Doutor em Farmacologia. Orientador: Prof. Dr. Juliano Ferreira Florianópolis 2018 Agradecimentos À Deus, por me proporcionar as vivências, o aprendizado e os amigos que tive durante esse período valioso de minha vida. Aos meus pais Sérgio e Rita, por todo amor e dedicação. Obrigado pelo incentivo, apoio e por tudo que fizeram para que hoje eu pudesse estar vivendo este momento. Meu eterno obrigado. À minha irmã Ana Luiza (In memorian). Obrigado por guiar os meus passos, iluminar o meu caminho e continuar me ensinando que devemos valorizar cada momento e cada conquista no nosso dia. Ao meu orientador Professor Juliano. Obrigado por ter me acolhido nesses últimos quatro anos e por ter compartilhado comigo o seu conhecimento e principalmente a sua paixão pela ciência. Aos meus amigos do laboratório, Bauru, Débora, Marcella, Kharol, Camila e Muryel, obrigado pela ajuda nos experimentos, pelas discussões científicas, pelo cafés, pela conversa agradável e principalemente pela amizade. Aprendi muito com cada um de vocês e agradeço por terem passado em minha vida neste momento. Aos amigos que fizeram parte do lab Ferreira, Raquel (eterna chefa), Gerusa, Ney, Suélen e Mallone obrigado por compartilharem comigo seus conhecimentos, pela ajuda nos experimentos e pela amizade. Foi um prazer ter a companhia de vocês durante os últimos anos.
    [Show full text]
  • Investigation of Iron's Role in Alginate Production And
    INVESTIGATION OF IRON’S ROLE IN ALGINATE PRODUCTION AND MUCOIDY BY PSEUDOMONAS AERUGINOSA by JACINTA ROSE SCHRAUFNAGEL B.S., University of Colorado Denver, 2003 M.S., University of Colorado Denver, 2006 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Molecular Biology Program 2013 This thesis for the Doctor of Philosophy degree by Jacinta Rose Schraufnagel has been approved for the Molecular Biology Program by David Barton, Chair Michael Vasil, Advisor Mair Churchill Jerry Schaack Michael Schurr Martin Voskuil Date 10/30/13 ii Schraufnagel, Jacinta R. (Ph.D., Molecular Biology) Investigation of Iron’s Role in Alginate Production and Mucoidy by Pseudomonas aeruginosa. Thesis directed by Professor Michael Vasil. ABSTRACT Iron, an essential nutrient, influences the production of major virulence factors and the development of structured non-alginate biofilms in Pseudomonas aeruginosa. Fur, pyoverdine and various concentrations of iron sources have all been shown to affect non-alginate biofilm formation. Remarkably however, the role of iron in alginate biofilm formation and mucoidy is unknown. Because of alginate’s association with biofilms in chronic cystic fibrosis (CF) lung infections, we examined the influence of iron on alginate production and mucoidy in P. aeruginosa. Herein, we identify and characterize a novel iron-regulated protein that affects the transcription of alginate biosynthesis genes. Further, contrary to what is known about non-alginate biofilms, we discovered that biologically relevant concentrations of iron (10 µM – 300 µM), in various forms (e.g. FeCl3, Ferric Citrate, Heme), led to the decreased expression of alginate biosynthesis genes and the dispersion of alginate biofilms in mucoid P.
    [Show full text]
  • TRPV Channels and Their Pharmacological Modulation
    Cellular Physiology Cell Physiol Biochem 2021;55(S3):108-130 DOI: 10.33594/00000035810.33594/000000358 © 2021 The Author(s).© 2021 Published The Author(s) by and Biochemistry Published online: online: 28 28 May May 2021 2021 Cell Physiol BiochemPublished Press GmbH&Co. by Cell Physiol KG Biochem 108 Press GmbH&Co. KG, Duesseldorf SeebohmAccepted: 17et al.:May Molecular 2021 Pharmacology of TRPV Channelswww.cellphysiolbiochem.com This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Interna- tional License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. Review Beyond Hot and Spicy: TRPV Channels and their Pharmacological Modulation Guiscard Seebohma Julian A. Schreibera,b aInstitute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany, bInstitut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Münster, Germany Key Words TRPV • Molecular pharmacology • Capsaicin • Ion channel modulation • Medicinal chemistry Abstract Transient receptor potential vanilloid (TRPV) channels are part of the TRP channel superfamily and named after the first identified member TRPV1, that is sensitive to the vanillylamide capsaicin. Their overall structure is similar to the structure of voltage gated potassium channels (Kv) built up as homotetramers from subunits with six transmembrane helices (S1-S6). Six TRPV channel subtypes (TRPV1-6) are known, that can be subdivided into the thermoTRPV 2+ (TRPV1-4) and the Ca -selective TRPV channels (TRPV5, TRPV6). Contrary to Kv channels, TRPV channels are not primary voltage gated. All six channels have distinct properties and react to several endogenous ligands as well as different gating stimuli such as heat, pH, mechanical stress, or osmotic changes.
    [Show full text]
  • Centipede Venoms As a Source of Drug Leads
    Title Centipede venoms as a source of drug leads Authors Undheim, EAB; Jenner, RA; King, GF Description peerreview_statement: The publishing and review policy for this title is described in its Aims & Scope. aims_and_scope_url: http://www.tandfonline.com/action/journalInformation? show=aimsScope&journalCode=iedc20 Date Submitted 2016-12-14 Centipede venoms as a source of drug leads Eivind A.B. Undheim1,2, Ronald A. Jenner3, and Glenn F. King1,* 1Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia 2Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia 3Department of Life Sciences, Natural History Museum, London SW7 5BD, UK Main text: 4132 words Expert Opinion: 538 words References: 100 *Address for correspondence: [email protected] (Phone: +61 7 3346-2025) 1 Centipede venoms as a source of drug leads ABSTRACT Introduction: Centipedes are one of the oldest and most successful lineages of venomous terrestrial predators. Despite their use for centuries in traditional medicine, centipede venoms remain poorly studied. However, recent work indicates that centipede venoms are highly complex chemical arsenals that are rich in disulfide-constrained peptides that have novel pharmacology and three-dimensional structure. Areas covered: This review summarizes what is currently know about centipede venom proteins, with a focus on disulfide-rich peptides that have novel or unexpected pharmacology that might be useful from a therapeutic perspective. We also highlight the remarkable diversity of constrained three- dimensional peptide scaffolds present in these venoms that might be useful for bioengineering of drug leads. Expert opinion: The resurgence of interest in peptide drugs has stimulated interest in venoms as a source of highly stable, disulfide-constrained peptides with potential as therapeutics.
    [Show full text]
  • Sjitilijse CATTLE Receipts, 6,000; Ehipments, COO
    - - -- - - - " TCr s tTv - s'.'' av Vg.; 25&e WBcMla Bailtj ugle: gtusfflng wcnm'tiijbtv 23, 1888. , . """ hi Kansas CUy Live Stock. E. 11 OONEXHr, M. D. CHHESE COOKERY. AD notices of Employment Situations Wsnua. FOB BENT-liESIDE- Kansas city, Oct. 22. General practitioner of medicine, surgery, gynas-colo- willbecaarsedfortth rate ot t osnts perlias - and obstetrics. Treat all chronic and private BENT Honso of S voonw. good cellar. 5 The Llvo Stock Indicator reports- glTen required. per week: no notice for leas taaa 23 oeata. FOR diseases, oxygen treatment wnea wQl bo well on back porch, with or without Sjitilijse CATTLE Receipts, 6,000; ehipments, COO. Good Plea and all diseases of the rectum a specialty. WICHITA All For Bales or other bneinesa notice bam. at 2S N. Emporia. Call at SH . Emporta. OF A RESTAU- The EAGLE grass range weak, slow and 5c lower; canners and Office removed to 134 North Main street, over Kan- KITCHEN SUPPLIES charted tor at the rata ot 1C cents per line par weelc 1S46S e cow b V 12 a. m.. 1 a ml cows In better demand and steady; good n m sas National Bank. Offlce Hours to to co business notice Tor SO fae 7 8 dur-t- MOTT caien less rMn cent. common; and p. RANT ON STREET. COMMERCE-- . active and steady; ve&x; stcckers and t m. f T?OK RENT A new six room hous for five dollar FINANCE AND feeders slow and weak. Good to cholc corn fed. I- per month in Butler and rWhcr's addition.
    [Show full text]
  • Pain-Causing Venom Peptides: Insights Into Sensory Neuron Pharmacology
    toxins Review Pain-Causing Venom Peptides: Insights into Sensory Neuron Pharmacology Sina Jami 1, Andelain Erickson 2,3, Stuart M. Brierley 2,3 and Irina Vetter 1,4,* ID 1 Institute for Molecular Bioscience, the University of Queensland, St. Lucia, QLD 4072, Australia; [email protected] 2 Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia; [email protected] (A.E.); stuart.brierley@flinders.edu.au (S.M.B.) 3 Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia 4 School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4103, Australia * Correspondence: [email protected]; Tel.: +61-7-3346-2660 Received: 10 November 2017; Accepted: 20 December 2017; Published: 27 December 2017 Abstract: Venoms are produced by a wide variety of species including spiders, scorpions, reptiles, cnidarians, and fish for the purpose of harming or incapacitating predators or prey. While some venoms are of relatively simple composition, many contain hundreds to thousands of individual components with distinct pharmacological activity. Pain-inducing or “algesic” venom compounds have proven invaluable to our understanding of how physiological nociceptive neural networks operate. In this review, we present an overview of some of the diverse nociceptive pathways that can be modulated by specific venom components to evoke pain. Keywords: animal venom; pain; ASIC; sodium channel; TRP channel; pore forming toxin 1. Venoms and Their Pharmacological Effects Venoms can be defined broadly as toxins secreted by an animal for the purpose of harming or incapacitating predators or prey.
    [Show full text]
  • Carrizozo News, 09-05-1919 J.A
    University of New Mexico UNM Digital Repository Carrizozo News, 1908-1919 New Mexico Historical Newspapers 9-5-1919 Carrizozo News, 09-05-1919 J.A. Haley Follow this and additional works at: https://digitalrepository.unm.edu/carrizozo_news Recommended Citation Haley, J.A.. "Carrizozo News, 09-05-1919." (1919). https://digitalrepository.unm.edu/carrizozo_news/273 This Newspaper is brought to you for free and open access by the New Mexico Historical Newspapers at UNM Digital Repository. It has been accepted for inclusion in Carrizozo News, 1908-1919 by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. OLDEST AND LEADING NEWSPAPER IN CIRCULATION IN THE COUNTY OF LINCOLN, NEW MEXICO tAKKI'.O.O. LINCOLN COUNTY. NKW MUXICO. FRIDAY. SISPTISMIIICK 5, Wi NUMHER jC C'ARRIZOZO SCHOOL NOIFS New Mexico to Build 483,28? Your Home Paper and trie High Institute Resolutions Oscuro News Notes birthday cake baked by Mrst lllack was a beauty. Miss Orltilc ) Miles ol Roads Cost ol living (It. Iv. li Tri-Coti- rccolved quite a number of pres- h' Oil The Institute ol In some localities there has been Tlie public school (if Carriinio Otero, Doua Ana and Lincoln ents. Santa I'V. New Mexico, Sept. I. Shoe uii'ii predict that bv nest uire rains, and griming is good, opened Monday morning with counties is drawing to a close Dr. West, wife and two little A of thirty-nin- e we once paid lor Stock is fat, gardens flue, orchards .'UIU pupils in attendance. total federal spring shoes it atmilt Your committee, in all honest splendid, though not n large daughters left Tuesday for their enrollment, assignment to aid highway project have been will he around $15 and $2U, After muleavor to learn the sentiments yield.
    [Show full text]
  • The Role of Toxins in the Pursuit for Novel Analgesics
    toxins Review The Role of Toxins in the Pursuit for Novel Analgesics Yossi Maatuf †, Matan Geron † and Avi Priel * The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; [email protected] (Y.M.); [email protected] (M.G.) * Correspondence: [email protected]; Tel.: +972-2-675-7299 † These authors contributed equally to this work. Received: 24 January 2019; Accepted: 20 February 2019; Published: 23 February 2019 Abstract: Chronic pain is a major medical issue which reduces the quality of life of millions and inflicts a significant burden on health authorities worldwide. Currently, management of chronic pain includes first-line pharmacological therapies that are inadequately effective, as in just a portion of patients pain relief is obtained. Furthermore, most analgesics in use produce severe or intolerable adverse effects that impose dose restrictions and reduce compliance. As the majority of analgesic agents act on the central nervous system (CNS), it is possible that blocking pain at its source by targeting nociceptors would prove more efficient with minimal CNS-related side effects. The development of such analgesics requires the identification of appropriate molecular targets and thorough understanding of their structural and functional features. To this end, plant and animal toxins can be employed as they affect ion channels with high potency and selectivity. Moreover, elucidation of the toxin-bound ion channel structure could generate pharmacophores for rational drug design while favorable safety and analgesic profiles could highlight toxins as leads or even as valuable therapeutic compounds themselves.
    [Show full text]
  • TRPV1 Pore Turret Dictates Distinct Dktx and Capsaicin Gating
    TRPV1 pore turret dictates distinct DkTx and capsaicin gating Matan Gerona,1, Rakesh Kumara,1, Wenchang Zhoub, José D. Faraldo-Gómezb, Valeria Vásquezc,2, and Avi Priela,2 aThe Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Karem, 9112102 Jerusalem, Israel; bTheoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and cDepartment of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163 Edited by Ramon Latorre, Universidad de Valparaíso, Valparaíso, Chile, and approved October 25, 2018 (received for review June 5, 2018) Many neurotoxins inflict pain by targeting receptors expressed on inflammation (22). This toxin has a unique bivalent structure which nociceptors, such as the polymodal cationic channel TRPV1. The consists of two highly homologous inhibitory cysteine knot (ICK) tarantula double-knot toxin (DkTx) is a peptide with an atypical motifs connected by a linker, bestowing the toxin its name (13). bivalent structure, providing it with the unique capability to lock As was shown in the structures obtained by cryo-EM and TRPV1 in its open state and evoke an irreversible channel activation. molecular dynamics simulations of the TRPV1–DkTx/RTX Here, we describe a distinct gating mechanism of DkTx-evoked and TRPV1–DkTx complexes, respectively, the two ICK motifs of TRPV1 activation. Interestingly, DkTx evokes significantly smaller DkTx bind two homologous binding sites in adjacent subunits of TRPV1 macroscopic currents than capsaicin, with a significantly the tetrameric channel, while its linker adopts a taut and con- lower unitary conductance. Accordingly, while capsaicin evokes strained conformation (21, 23, 24).
    [Show full text]
  • Dr. Antônio Guilherme De Souza” Instituto Butantan
    Secretaria de Estado da Saúde de São Paulo Centro de Formação de Recursos Humanos para o SUS/SP “Dr. Antônio Guilherme de Souza” Instituto Butantan RAFAEL DE OLIVEIRA Toxinas animais seletivas a canais iônicos: uma revisão. São Paulo 2020 Rafael de Oliveira Toxinas animais seletivas a canais iônicos: uma revisão. Trabalho de conclusão de curso de especialização apresentado ao Instituto Butantan, unidade do Centro de Formação de Recursos Humanos para o SUS/SP “Doutor Antônio Guilherme de Souza”, como requisito parcial para a obtenção do título de Especialista em Toxinas de Interesse em Saúde. Orientador (a): Dr. Lanfranco Ranieri Paolo Troncone. São Paulo 2020 Oliveira, Rafael de Toxinas animais seletivas a canais iônicos: uma revisão. / Rafael de Oliveira; orientador Lanfranco Ranieri Paolo Troncone. – São Paulo, 2020. 48 f.: il. Trabalho de Conclusão de Curso (Especialização) – Secretaria de Estado da Saúde, Centro de Formação de Recursos Humanos para o SUS/SP “Doutor Antônio Guilherme de Souza” desenvolvido no Instituto Butantan para o Curso de Especialização em Toxinas de Interesse em Saúde. 1. Toxinologia. 2. Canais iônicos. I. Oliveira, Rafael de. II. Instituto Butantan. III. Curso de Especialização em Toxinas de Interesse em Saúde. IV. Título. AGRADECIMENTOS Meus sinceros e eternos agradecimentos: A meu orientador Dr Lanfranco Ranieri Paolo Troncone, pelo tempo, dedicação e aprendizado a mim fornecidos. A Dra Raif Musa Aziz e suas alunas, pela ajuda e disponibilidade. A Janaína Paola Schwerz e seus estagiários, pela aventura neurocientífica. A Aline, Lívia e Rafaela, as muçuranas do serpentário. Ao Pep V, pelas histórias e o ano de 2020. A minha companheira Rita de Cássia, pelas palavras e balas Fini (menos as de amora).
    [Show full text]
  • Animal Toxins Providing Insights Into TRPV1 Activation Mechanism
    toxins Review Animal Toxins Providing Insights into TRPV1 Activation Mechanism Matan Geron †, Adina Hazan † and Avi Priel * ID The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; [email protected] (M.G.); [email protected] (A.H.) * Correspondence: [email protected]; Tel.: +972-2-675-7299 † These authors contributed equally to this work. Academic Editor: Steve Peigneur Received: 28 September 2017; Accepted: 13 October 2017; Published: 16 October 2017 Abstract: Beyond providing evolutionary advantages, venoms offer unique research tools, as they were developed to target functionally important proteins and pathways. As a key pain receptor in the nociceptive pathway, transient receptor potential vanilloid 1 (TRPV1) of the TRP superfamily has been shown to be a target for several toxins, as a way of producing pain to deter predators. Importantly, TRPV1 is involved in thermoregulation, inflammation, and acute nociception. As such, toxins provide tools to understand TRPV1 activation and modulation, a critical step in advancing pain research and the development of novel analgesics. Indeed, the phytotoxin capsaicin, which is the spicy chemical in chili peppers, was invaluable in the original cloning and characterization of TRPV1. The unique properties of each subsequently characterized toxin have continued to advance our understanding of functional, structural, and biophysical characteristics of TRPV1. By building on previous reviews, this work aims to provide a comprehensive summary of the advancements made in TRPV1 research in recent years by employing animal toxins, in particular DkTx, RhTx, BmP01, Echis coloratus toxins, APHCs and HCRG21.
    [Show full text]