Purification and Some Properties of Nitrite Reductase from Clostridium Perfringens1

Total Page:16

File Type:pdf, Size:1020Kb

Purification and Some Properties of Nitrite Reductase from Clostridium Perfringens1 J. Biochem. 94, 1053-1059 (1983) Purification and Some Properties of Nitrite Reductase from Clostridium perfringens1 Satoshi SEKIGUCHI,- Sachiko SEKI , and Makoto ISHIMOTO Department of Chemical Microbiology , Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo , Hokkaido 060 Received for publication, April 11, 1983 Nitrite reductase from Clostridium perfringens was purified by chromatographies on DEAE-cellulose, DEAE-Sephadex, Sephadex G-150, and hydroxylapatite and by isoelectric focussing to a homogeneous state, showing essentially a single protein band in disc gel electrophoresis and a single immuno-precipitation line in double diffusion against antiserum obtained from immunized rabbits. The reductase was induced in the presence of nitrate. It had a molecular weight of 54,000 and showed no absorption peak in the visible region. The pH optimum was 6.2 and Km for nitrite was 5 mm. Ferredoxin, as well as viologen dyes, was found to be an electron donor. The product of nitrite reduction was hydroxylamine. This reductase was inhibited by o-phenanthroline and azide but not by cyanide or diethyldithiocar bamate. Nitrate reduction in bacteria is carried out by of bacteria (6), fungi (7), and higher plants (8) molybdenum-containing reductase to produce ni reduce nitrate to the level of ammonia and contain trite, but further reduction of nitrite leads to the nitrite reductase which produces ammonia directly formation of nitric oxide, ammonia, or other from nitrite [EC 1.6.6.4, 1.7.7.1]. These enzymes products by different sorts of enzymes (1). In are siroheme proteins with iron-sulfur centers and denitrifying bacteria, two classes of nitrite reduc flavins, and use reduced pyridine nucleotide as an tase have been described, one containing c- and electron donor. d-type hemes [EC 1.9.3.2] (2, 3) and the other A strictly anaerobic bacterium, Clostridium copper [EC 1.7.2.1, 1.7.99.3] (4, 5), both of which perfringens, reduces nitrate to ammonia, promot form nitric oxide. On the other hand, a variety ing the oxidation of organic substrates (9). Ni trate reductase from this organism was purified and ferredoxin was found to play a role as an 1 This study was supported in part by a Grant-in-Aid electron donor (10). for Scientific Research from the Ministry of Education, The present paper describes the purification Science and Culture of Japan and by a grant from and characterization of nitrite reductase from C. Yakult Institute. 2 Present address: Department of Agricultural Chemis perfringens; this enzyme uses ferredoxin as an electron donor and forms hydroxylamine from try, Faculty of Agriculture, The University of Tokyo, nitrite as the main product. Yayoi, Bunkyo-ku, Tokyo 113. Vol. 94, No. 4, 1983 1053 1054 S. SEKIGUCHI, S. SEKI, and M. ISHIMOTO x g for 3 h was subjected to chromatography on EXPERIMENTAL PROCEDURES a DEAE-cellulose column (3.2 x 38 cm) previously equilibrated with TM buffer. The column was Organism and Cultivation-Clostridium per washed with TM buffer containing 0.1 M NaC1 and fringens, strain HM-l, isolated by Prof. H. Iida, then nitrite reductase was eluted with TM buffer was used throughout this work. containing 0.2 M NaCl. Culture medium contained, per liter; Poly Active fractions were pooled, diluted with pepton (Daigo Eiyo), 7.5 g; yeast extract (Daigo 200 ml of TM buffer, and adsorbed on a DEAE- Eiyo), 5.0 g; glucose, 2.5 g; thioglycolic acid, 0.5 Sephadex A-50 column (2.0 x 30 cm) equilibrated ml; and KNO,, 0.02 g. The pH was adjusted to with TM buffer containing 0. 15 M NaCl. Protein 7 by adding NaOH. This medium was inoculated was eluted with 300 ml of a linear gradient system with 0.4% of subculture and incubated without of 0.15-0.3 M NaCl in TM buffer. agitation in deep layer culture at 37°C. After a The active fractions thus eluted were pooled, 10-11 h incubation, cells in the early stationary concentrated to 6 ml by ultrafiltration with a Toyo phase were harvested by continuous centrifugation, membrane filter UK-10, and passed through a washed twice with 20 mm Tris-HCl buffer, pH 7.2, Sephadex G-150 column (2.8 x 88 cm) equilibrated containing 1 mm 2-mercaptoethanol (TM buffer) with TM buffer-0.2 M NaCl. and stored at - 80°C. Usually 500 g of wet cells Active fractions were then adsorbed on a were obtained from a 60 liters culture. hydroxylapatite column (1.2 x 9 cm) equilibrated Preparation of Crude Extract-The bacterial with 50 mm potassium phosphate buffer, pH 7.3, cells were suspended in TM buffer and disrupted containing 1 mm 2-mercaptoethanol. The column by sonic treatment in an Insonator (Kubota, was washed with the same buffer and then nitrite 200M) at 20 kHz at 180 W for 20 min. The reductase was eluted with 50 ml of a linear con supernatant after centrifugation at 17,000 x g was centration gradient system of 50-300 mm phos used as crude extract. phate buffer containing 1 mm 2-mercaptoethanol. Assay of Nitrite Reductase-The assay of The fractions with the highest activity contained nitrite reductase was run in open test tubes with proteins that could not be removed in the next chemically reduced methyl viologen as an electron purification step, so those fractions were not used donor. The reaction mixture contained, in 1 ml; for further purification; the fractions eluted before 0.2 M potassium phosphate buffer, pH 7.2, or Tris and after those fractions were pooled and dialyzed - HCl buffer, pH 6.9, 1 or 2 mm NaNO2, 6 mm against TM buffer. The dialyzed preparation was methyl viologen, 5 mm Na2S2O,, 10 mm KHCO3, subjected to isoelectric focussing on a 110 ml and enzyme. The reaction was started by adding column containing Pharmalyte giving a pH gra Na2S2O4-KHCO3. After 3 or 5 min of incuba dient of 4.5-6.0, and was electrophoresed for 47 h tion at 37°C the reaction was stopped by vigorous at a constant voltage of 1,000 V at 4°C. Enzyme shaking to oxidize reduced methyl viologen and fractions that gave a single protein band in disc the residual nitrite was determined colorimetrically gel electrophoresis were pooled. by the method of Nicholas and Nason (11). Dis- Other Assays-Hydroxylamine was deter- appearance of nitrite in the absence of enzyme or mined by Csaky's method (12). Ammonia was in the presence of boiled enzyme was also mea assayed by Chaney and Marbach's method (13). sured as a control. The activity was obtained Protein was determined by the method of Lowry from the difference between the amount of nitrite et at. (14) or of Bradford (15) with bovine serum decrease in the presence of enzyme and that in the albumin as a standard. absence of enzyme or in the presence of boiled Molecular Weight Estimation-Molecular enzyme. One unit of nitrite reductase was defined weight was estimated by gel filtration as described as the amount of enzyme which catalyzed the by Laurent and Killander (16) using a Sephadex reduction of 1 ƒÊmol of nitrite per min. G-150 column (2.7 x 86 cm) equilibrated with TM Purification of Nitrite Reductase-All opera buffer containing 0.2 M NaC1. As markers, cyto tions were carried out at 4°C. A soluble fraction chrome c (molecular weight 12,500), chymotryp isolated by centrifuging the crude extract at 63,000 sinogen A (25,000), ovalbumin (45,000), and bo- J. Biochem. NITRITE REDUCTASE FROM Clostridium perfringens 1055 vine serum albumin (68,000) were used. obtained from Pharmacia, DEAE-cellulose from Polyacrylamide Gel Electrophoresis-Disc Brown, and hydroxylapatite from Bio Rad (HTP). polyacrylamide get electrophoresis was performed by the method of Williams and Reisfeld (17) using RESULTS 7.5 % polyacrylamide gel (5 x 75 mm) at 2 mA/ tube at 4°C. Protein was stained with Coomassie Induction of Nitrite Reductase in C. perfringens brilliant blue G250 in perchloric acid according -When C. perfringens was grown in a medium to the procedure described by Reisner et al. (18). containing 2 mm or 20 mm nitrate, nitrite accumu Nitrite reductase activity in gels was detected by lated at a concentration of 1 mm at the end of activity staining as described by Vega and Kamin exponential growth and then decreased. While (8). nitrate reductase activity reached its maximum at Preparation of Antibody and Immunological the time of maximal accumulation of nitrite and Tests-Antiserum against nitrite reductase was then decreased sharply, nitrite reductase had its raised in rabbits by subcutaneous injection of 0.22 maximum after the peak of nitrite concentration mg of purified enzyme per rabbit, in emulsion and decreased only partly. Since nitrite reductase containing 50% Freund's complete adjuvant. Im activity was 7-fold higher in the presence of nitrate munization was repeated twice with intervals of added to the medium, cells grown in the medium two and three weeks, A week after the last containing nitrate were used for the preparation treatment antisera were taken. A y-globulin frac of nitrite reductase. tion precipitated at 40% saturation of ammonium Purification of Nitrite Reductase-Nitrite re sulfate was used as the antibody preparation. ductase causing a decrease of nitrite in the presence Double immuno-diffusion was carried out by of dithionite and methyl viologen was extracted the method of Ouchterlony (19). For inhibition from cells by sonic treatment. This enzyme was tests, 0.2 ml of the supernatant at 63,000 x g from soluble, and was purified by DEAE-cellulose, crude extract and 0.8 ml of phosphate buffer- DEAE-Sephadex A-50, Sephadex G-150, and hy saline containing various amounts of antibodies droxylapatite chromatographies and by isoelectric were mixed and incubated at 4°C for 16 h.
Recommended publications
  • Supplementary Material Temporal Dynamics of Bacterial Communities
    Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017 Supplementary Material Temporal dynamics of bacterial communities and predicted nitrogen metabolism genes in a full-scale wastewater treatment plant Xiao-Yan Fan, Jing-Feng Gao *, Kai-Ling Pan, Ding-Chang Li, Hui-Hui Dai, Xing Li National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China *Corresponding author: Dr. Jingfeng Gao, E-mail: [email protected] or [email protected], Tel.: 0086-10-67391918; Fax: 0086-10-67391983. Tel: +86-10-6739-2627(office); Fax: +86-10-6739-1983 E-mail: [email protected] or [email protected] Contents 1. Tables Table S1 Detailed information concerning variation of water quality indexes (WQI), operational parameters (OP) and temperature (T) during sampling period. Table S2 Primers, thermal programs and standard curves of qPCR in this study. Table S3 The KOs of nitrogen cycle. Table S4 Raw and effective reads, plus numbers of OTUs, Good’s coverage, Shannon, Chao1, ACE, and Simpson of the five Groups. 2. Figures Fig. S1 Bacterial communitiy difference across 12 activated sludge samples collected from different seasons as revealed by cluster analysis. Fig. S2 Shifts in bacterial functions as revealed by PCoA. Fig. S3 Relative abundance of different bacterial functions across 12 activated sludge samples. Fig. S4 Top 35 potential functions of the microbes in different Groups. Table S1 Detailed information
    [Show full text]
  • Supplementary Informations SI2. Supplementary Table 1
    Supplementary Informations SI2. Supplementary Table 1. M9, soil, and rhizosphere media composition. LB in Compound Name Exchange Reaction LB in soil LBin M9 rhizosphere H2O EX_cpd00001_e0 -15 -15 -10 O2 EX_cpd00007_e0 -15 -15 -10 Phosphate EX_cpd00009_e0 -15 -15 -10 CO2 EX_cpd00011_e0 -15 -15 0 Ammonia EX_cpd00013_e0 -7.5 -7.5 -10 L-glutamate EX_cpd00023_e0 0 -0.0283302 0 D-glucose EX_cpd00027_e0 -0.61972444 -0.04098397 0 Mn2 EX_cpd00030_e0 -15 -15 -10 Glycine EX_cpd00033_e0 -0.0068175 -0.00693094 0 Zn2 EX_cpd00034_e0 -15 -15 -10 L-alanine EX_cpd00035_e0 -0.02780553 -0.00823049 0 Succinate EX_cpd00036_e0 -0.0056245 -0.12240603 0 L-lysine EX_cpd00039_e0 0 -10 0 L-aspartate EX_cpd00041_e0 0 -0.03205557 0 Sulfate EX_cpd00048_e0 -15 -15 -10 L-arginine EX_cpd00051_e0 -0.0068175 -0.00948672 0 L-serine EX_cpd00054_e0 0 -0.01004986 0 Cu2+ EX_cpd00058_e0 -15 -15 -10 Ca2+ EX_cpd00063_e0 -15 -100 -10 L-ornithine EX_cpd00064_e0 -0.0068175 -0.00831712 0 H+ EX_cpd00067_e0 -15 -15 -10 L-tyrosine EX_cpd00069_e0 -0.0068175 -0.00233919 0 Sucrose EX_cpd00076_e0 0 -0.02049199 0 L-cysteine EX_cpd00084_e0 -0.0068175 0 0 Cl- EX_cpd00099_e0 -15 -15 -10 Glycerol EX_cpd00100_e0 0 0 -10 Biotin EX_cpd00104_e0 -15 -15 0 D-ribose EX_cpd00105_e0 -0.01862144 0 0 L-leucine EX_cpd00107_e0 -0.03596182 -0.00303228 0 D-galactose EX_cpd00108_e0 -0.25290619 -0.18317325 0 L-histidine EX_cpd00119_e0 -0.0068175 -0.00506825 0 L-proline EX_cpd00129_e0 -0.01102953 0 0 L-malate EX_cpd00130_e0 -0.03649016 -0.79413596 0 D-mannose EX_cpd00138_e0 -0.2540567 -0.05436649 0 Co2 EX_cpd00149_e0
    [Show full text]
  • Discovery of Industrially Relevant Oxidoreductases
    DISCOVERY OF INDUSTRIALLY RELEVANT OXIDOREDUCTASES Thesis Submitted for the Degree of Master of Science by Kezia Rajan, B.Sc. Supervised by Dr. Ciaran Fagan School of Biotechnology Dublin City University Ireland Dr. Andrew Dowd MBio Monaghan Ireland January 2020 Declaration I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of Master of Science, is entirely my own work, and that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge breach any law of copyright, and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work. Signed: ID No.: 17212904 Kezia Rajan Date: 03rd January 2020 Acknowledgements I would like to thank the following: God, for sending me angels in the form of wonderful human beings over the last two years to help me with any- and everything related to my project. Dr. Ciaran Fagan and Dr. Andrew Dowd, for guiding me and always going out of their way to help me. Thank you for your patience, your advice, and thank you for constantly believing in me. I feel extremely privileged to have gotten an opportunity to work alongside both of you. Everything I’ve learnt and the passion for research that this project has sparked in me, I owe it all to you both. Although I know that words will never be enough to express my gratitude, I still want to say a huge thank you from the bottom of my heart.
    [Show full text]
  • Genomic Insights Into the Carbon and Energy Metabolism of A
    Genomic Insights into the Carbon and Energy Metabolism of a Thermophilic Deep-Sea Bacterium Deferribacter autotrophicus Revealed New Metabolic Traits in the Phylum Deferribacteres Alexander Slobodkin, Galina Slobodkina, Maxime Allioux, Karine Alain, Mohamed Jebbar, Valerian Shadrin, Ilya Kublanov, Stepan Toshchakov, Elizaveta Bonch-Osmolovskaya To cite this version: Alexander Slobodkin, Galina Slobodkina, Maxime Allioux, Karine Alain, Mohamed Jebbar, et al.. Genomic Insights into the Carbon and Energy Metabolism of a Thermophilic Deep-Sea Bacterium Deferribacter autotrophicus Revealed New Metabolic Traits in the Phylum Deferribacteres. Genes, MDPI, 2019, 10 (11), pp.849. 10.3390/genes10110849. hal-02359529 HAL Id: hal-02359529 https://hal.archives-ouvertes.fr/hal-02359529 Submitted on 16 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. G C A T T A C G G C A T genes Article Genomic Insights into the Carbon and Energy Metabolism of a Thermophilic Deep-Sea Bacterium Deferribacter autotrophicus Revealed New Metabolic Traits in the Phylum Deferribacteres
    [Show full text]
  • <I>Campylobacter Curvus</I>
    Clemson University TigerPrints All Theses Theses 8-2016 An Analysis of the Putative rHURM Pathway in Campylobacter curvus Marco Valera Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Valera, Marco, "An Analysis of the Putative rHURM Pathway in Campylobacter curvus" (2016). All Theses. 3039. https://tigerprints.clemson.edu/all_theses/3039 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. Campylobacter curvus AN ANALYSIS OF THE PUTATIVE rHURM PATHWAY IN A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Microbiology by Marco Valera August 2016 Accepted by: Dr. Barbara Campbell, Committee Chair Dr. Mike Henson Dr. Harry D. Kurtz, Jr. Abstract Recent genomic studies within the Epsilonproteobacteria have uncovered a potentially novel mechanism for chemotrophic respiration: the reverse Hydroxylamine Ubiquinone Redox Module (rHURM), a dissimilatory nitrate reduction pathway utilizing a hydroxylamine intermediate. Originally discovered in the chemoautolithotroph Nautilia profundicola, genes indicative of the rHURM pathway have been identified in several species of Campylobacter, including C. curvus. In the absence of classic nitrite reductase genes, a hydroxylamine oxidoreductase (hao) homolog encodes a periplasmic octoheme potentially capable of reducing nitrite, a product of periplasmic nitrate reductase (NapA), to hydroxylamine, which is then converted to ammonium by a putative hydroxylamine reductase hybrid cluster protein (Hcp). This research assesses the expression of these genes in nitrate amended cultures compared to fumarate amended cultures.
    [Show full text]
  • Depth-Dependent Transcriptomic Response of Diatoms During Spring
    www.nature.com/scientificreports OPEN Depth-dependent transcriptomic response of diatoms during spring bloom in the western subarctic Received: 10 April 2019 Accepted: 24 September 2019 Pacifc Ocean Published: xx xx xxxx Shigekatsu Suzuki1, Takafumi Kataoka2, Tsuyoshi Watanabe3, Haruyo Yamaguchi 1, Akira Kuwata3 & Masanobu Kawachi1 Diatoms play important roles in primary production and carbon transportation in various environments. Large-scale diatom bloom occurs worldwide; however, metabolic responses of diatoms to environmental conditions have been little studied. Here, we targeted the Oyashio region of the western subarctic Pacifc where diatoms bloom every spring and investigated metabolic response of major diatoms to bloom formation by comparing metatranscriptomes between two depths corresponding to diferent bloom phases. Thalassiosira nordenskioeldii and Chaetoceros debilis are two commonly occurring species at the study site. The gene expression profle was drastically diferent between the surface (late decline phase of the bloom; 10 m depth) and the subsurface chlorophyll maximum (SCM, initial decline phase of the bloom; 30 m depth); in particular, both species had high expression of genes for nitrate uptake at the surface, but for ammonia uptake at the SCM. Our culture experiments using T. nordenskioeldii imitating the environmental conditions showed that gene expression for nitrate and ammonia transporters was induced by nitrate addition and active cell division, respectively. These results indicate that the requirement for diferent nitrogen compounds is a major determinant of diatom species responses during bloom maturing. Diatoms contribute up to 20–40% of oceanic primary productivity forming large-scale blooms mainly in coastal and upwelling regions1–3. Tey are key organisms for carbon fux in the ocean, acting as large carbon sinks by ver- tical carbon transportation by sinking to deeper layers4.
    [Show full text]
  • Nitrogen Assimilation
    Nitrogen assimilation By Dr. Sandeep Kumar Department of Botany D.D.U. College University of Delhi Nitrogen is a very important constituent of cellular components. Alkaloids, amides, amino acids, proteins, DNA, RNA, enzymes, vitamins, hormones and many other cellular compounds contain nitrogen as one of the elements. It is not exaggerating to say that Nitrogen is the key element for it is the most important constituent of proteins and nucleic acids. Thus N2 plays a significant role in the formation of the above said compounds which in turn control cellular activities. Without nitrogen, no living organism can survive. Paradoxically all the living organisms are virtually submerged in a sea of atmospheric nitrogen (i.e. 78%), but unfortunately not all organisms are endowed with the potentiality to utilize this abundantly available molecular N2 directly. Only some organisms like certain bacteria, blue green algae and few fungi, have the potentiality to utilize molecular N2 directly and fix it. However, most of the plants are capable of utilizing other forms of nitrogen with ease and facility. The biological process, where ammonium gets converted into nitrate is called as nitrification. Further, when this nitrate is converted or reduced into nitrogen gas, it is called as denitrification. These steps involve various microorganisms, and it is important biologically as well as economically. Both the steps are a significant part of the nitrogen cycle, which is one of the most important cycles for our atmosphere. Around 78% of the atmosphere contains nitrogen, which is even essential biological molecule found in proteins and nucleic acid and thus marking it important part of all living being.
    [Show full text]
  • Û¡¿A"Rdr-Af Aî-V"F6 T
    WAITE INSTIT'UTE tt,8.96 LIBRARY IN THB ENZYMBS OF NITRATE ASSII',IILATION SCLEROT IN T A SCLEROT I ORU I'1 by ì4askuntjir Abdul Rachim, B'Sc" Tr' A thesis submitted in fulfilment of the'requirements for the degree of Nlaster of Agricultural Science Departmenr of Agricultural Biochemistry Waite Agricultural Research Institute The UniversitY of Adelaide' FebruarY, 1986 û¡¿a"rdr-af Aî-v"f6 t- PREFACE Part of the work described in this thesis has been pre- sented at the Australian þiochemical Society Conference (Canberra, 1985) and published in the following journals: I Some properties of glutamine synthetase and glutamate synthase from ScTerotinia scl-er otiorun. M.A. Rachirn and D.J.D. Nicholas (f985) Proc. Aust. Biochen. Soc. !, 2I 2. Glutamine synthetase and glutamate synthase from Sc-lerotinia sclerotiorun. M.A. Rachim and D.J.D. Nicholas (1985) Phytochemistry 4, 254I-2548 3 Some properties of nitrate reductase from Sclerotinia scTerotiorun. M.A. Rachim and D.J.D. Nicholas (1986) Phytochenistry ë- (i" Press) 1L ACKNO\^II-EDGEMENTS f wish to express my deepest and sincerest thanks to my supervisor, Prof. D.J"D. Nicholas, chairman of the Department of Agricultural.Bio- The University of chemistry , lrlai-te Agricultural Research Institute ' and constructive criticism Adelaide for his constant encouragement ' guidance throughout the progress of the present investigation and in the preparation of manuscriPt. I would also like to thank Mr. D. Hein for his assistance with the 15N Mr. B.A. Palk for preparing the photographic prints' "*p"riments, others who l"Irs. 1"1. Brock for the skrlful typing of the thesis and to a1I helped me from time to time.
    [Show full text]
  • Reduced Nicotinamide-Adenine Dinucleotide-Nitrite Reductase from Azotobacter Chroococcum by J
    Biochem. J. (1973) 133, 701-708 701 Printed in Great Britain Reduced Nicotinamide-Adenine Dinucleotide-Nitrite Reductase from Azotobacter chroococcum By J. M. VEGA, M. G. GUERRERO, E. LEADBETTER* and M. LOSADA Departamento de Bioquimica, Facultad de Ciencias y Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, Seville, Spain (Received 12 February 1973) 1. The assimilatory nitrite reductase of the N2-fixing bacterium Azotobacter chroococcum was prepared in a soluble form from cells grown aerobically with nitrate as the nitrogen source, and some of its properties have been studied. 2. The enzyme is a FAD-dependent metalloprotein (mol.wt. about 67000), which stoicheiometrically catalyses the direct reduction ofnitrite to NH3 with NADH as the electron donor. 3. NADH-nitrite reductase can exist in two either active or inactive interconvertible forms. Inactivation in vitro can be achieved by preincubation with NADH. Nitrite can specifically protect theenzyme against this inactivation and reverse the process once it has occurred. 4. A. chroococcum nitrite reductase is an adaptive enzyme whose formation depends on the presence of either nitrate or nitrite in the nutrient solution. 5. Tungstate inhibits growth of the micro- organism very efficiently, by competition with molybdate, when nitrate is the nitrogen source, but does not interfere when nitrite or NH3 is substituted for nitrate. The addition of tungstate to the culture media results in the loss of nitrate reductase activity but does not affect nitrite reductase. The enzyme involved in the assimilatory reduction reduction of nitrite by the extracts was identified as of nitrite to NH3 in algae and higher plants has been NH3, whereas that of hydroxylamine reduction was thoroughly characterized in recent years and classi- not established.
    [Show full text]
  • Genomic Characterization and Environmental Distribution of A
    Supplementary material Genomic characterization and environmental distribution of a thermophilic anaerobe Dissulfurirhabdus thermomarina SH388T involved in disproportionation of sulfur compounds in shallow- sea hydrothermal vents Maxime Allioux 1, Stéven Yvenou 1, Galina Slobodkina 2, Alexander Slobodkin 2, Zongze Shao 3, Mohamed Jebbar 1 and Karine Alain 1,* 1 Univ Brest, CNRS, IFREMER, LIA1211, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; [email protected] (M.A.); [email protected] (S.Y.); [email protected] (M.J.); [email protected] (K.A.) 2 Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 117312 Moscow, Russia; [email protected] (G.S.); [email protected] (A.S.) 3 Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; [email protected] (Z.S.) * Correspondence: [email protected] Supplementary Material S1: Dissulfurirhabdus thermomarina SH388T genome locus tags, genomic islands composition, and results of comparative genomics. S1.1. Synthesis of the gene loci Table S1.1. Correspondences between the loci of the annotations by Prokka, Dfast, RAST, PGAP (2020-03- 30.build4489) and UniProtKB with the CDSs of the NCBI's online automated prokaryotic genome annotation pipeline. CDSs found with their associated loci, based on the assembly repository ASM1297923v1 (Abbreviation: NR, not
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • AEGL Meeting Minutes 09/21-23, 2004 (PDF)
    National Advisory Committee (NAC) for Acute Exposure Guideline Levels (AEGLs) for Hazardous Substances September 21-23, 2004 Final Meeting-34 Highlights U.S. Department of Labor, Room C5515 200 Constitution Avenue Washington, DC 20210 INTRODUCTION Chairman George Rusch welcomed the committee, as well as industry guests who included Andrew Jaques, Bill Gulledge,and Bill Snellings from the American Chemistry Council (ACC), and John Thomas (Texas), and Cynthia Mann (ExxonMobil). The draft NAC/AEGL-33 meeting highlights were reviewed. Several editorial corrections were suggested. A motion was made by Mark Ruijten and seconded by Robert Snyder to accept the meeting highlights as presented with the aforementioned revisions. The motion passed unanimously by a voice vote (Appendix A). The final version of the NAC/AEGL-33 meeting highlights is attached (Appendix B). George Rusch discussed the last COT meeting (August 2004, Woods Hole), at which 16 documents were reviewed and about 9 were finalized. The COT put together a list of items that need to be included as an addendum to the SOP. It was suggested that the Chemical Managers should take more careful notes during the TSD author’s presentation, to help capture the essence of the discussion such as the uncertainty factor rationale. Ernest Falke made some points regarding use of uncertainty factors (UFs). He noted that UFs >30 are generally too large, and that it would be worth knowing how often we have used a 3-fold reduction of the AEGL-3 values to obtain AEGL-2 values. EPA has some database information relevant to use of uncertainty factors.
    [Show full text]