Penrose: from Mathematical Notation to Beautiful Diagrams
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Networkx Tutorial
5.03.2020 tutorial NetworkX tutorial Source: https://github.com/networkx/notebooks (https://github.com/networkx/notebooks) Minor corrections: JS, 27.02.2019 Creating a graph Create an empty graph with no nodes and no edges. In [1]: import networkx as nx In [2]: G = nx.Graph() By definition, a Graph is a collection of nodes (vertices) along with identified pairs of nodes (called edges, links, etc). In NetworkX, nodes can be any hashable object e.g. a text string, an image, an XML object, another Graph, a customized node object, etc. (Note: Python's None object should not be used as a node as it determines whether optional function arguments have been assigned in many functions.) Nodes The graph G can be grown in several ways. NetworkX includes many graph generator functions and facilities to read and write graphs in many formats. To get started though we'll look at simple manipulations. You can add one node at a time, In [3]: G.add_node(1) add a list of nodes, In [4]: G.add_nodes_from([2, 3]) or add any nbunch of nodes. An nbunch is any iterable container of nodes that is not itself a node in the graph. (e.g. a list, set, graph, file, etc..) In [5]: H = nx.path_graph(10) file:///home/szwabin/Dropbox/Praca/Zajecia/Diffusion/Lectures/1_intro/networkx_tutorial/tutorial.html 1/18 5.03.2020 tutorial In [6]: G.add_nodes_from(H) Note that G now contains the nodes of H as nodes of G. In contrast, you could use the graph H as a node in G. -
Networkx: Network Analysis with Python
NetworkX: Network Analysis with Python Salvatore Scellato Full tutorial presented at the XXX SunBelt Conference “NetworkX introduction: Hacking social networks using the Python programming language” by Aric Hagberg & Drew Conway Outline 1. Introduction to NetworkX 2. Getting started with Python and NetworkX 3. Basic network analysis 4. Writing your own code 5. You are ready for your project! 1. Introduction to NetworkX. Introduction to NetworkX - network analysis Vast amounts of network data are being generated and collected • Sociology: web pages, mobile phones, social networks • Technology: Internet routers, vehicular flows, power grids How can we analyze this networks? Introduction to NetworkX - Python awesomeness Introduction to NetworkX “Python package for the creation, manipulation and study of the structure, dynamics and functions of complex networks.” • Data structures for representing many types of networks, or graphs • Nodes can be any (hashable) Python object, edges can contain arbitrary data • Flexibility ideal for representing networks found in many different fields • Easy to install on multiple platforms • Online up-to-date documentation • First public release in April 2005 Introduction to NetworkX - design requirements • Tool to study the structure and dynamics of social, biological, and infrastructure networks • Ease-of-use and rapid development in a collaborative, multidisciplinary environment • Easy to learn, easy to teach • Open-source tool base that can easily grow in a multidisciplinary environment with non-expert users -
Mathematics in Language
cognitive semantics 6 (2020) 243-278 brill.com/cose Mathematics in Language Richard Hudson University College London, London, England [email protected] Abstract Elementary mathematics is deeply rooted in ordinary language, which in some respects anticipates and supports the learning of mathematics, but which in other re- spects hinders this learning. This paper explores a number of areas of arithmetic and other elementary areas of mathematics, considering for each area whether it helps or hinders the young learner: counting and larger numbers, sets and brackets, algebra and variables, zero and negation, approximation, scales and relationships, and probability. The conclusion is that ordinary language anticipates the mathematics of counting, arithmetic, algebra, variables and brackets, zero and probability; but that negation, approximation and probability are particularly problematic because mathematics de- mands a different way of thinking, and different mental capacity, compared with ordi- nary language. School teachers should be aware of the mathematics already built into language so as to build on it; and they should also be able to offer special help in the conflict zones. Keywords numbers – grammar – semantics – negation – probability 1 Introduction1 This paper is about the area of language that we might call ‘mathematical language’, and has a dual function, as a contribution to cognitive semantics and as an exercise in pedagogical linguistics. Unlike earlier discussions of 1 I should like to acknowledge detailed comments on an earlier version of this paper from Neil Sheldon, as well as those of an anonymous reviewer. © Richard Hudson, 2020 | doi:10.1163/23526416-bja10005 This is an open access article distributed under the terms of the CC BY 4.0Downloaded License. -
Graph Database Fundamental Services
Bachelor Project Czech Technical University in Prague Faculty of Electrical Engineering F3 Department of Cybernetics Graph Database Fundamental Services Tomáš Roun Supervisor: RNDr. Marko Genyk-Berezovskyj Field of study: Open Informatics Subfield: Computer and Informatic Science May 2018 ii Acknowledgements Declaration I would like to thank my advisor RNDr. I declare that the presented work was de- Marko Genyk-Berezovskyj for his guid- veloped independently and that I have ance and advice. I would also like to thank listed all sources of information used Sergej Kurbanov and Herbert Ullrich for within it in accordance with the methodi- their help and contributions to the project. cal instructions for observing the ethical Special thanks go to my family for their principles in the preparation of university never-ending support. theses. Prague, date ............................ ........................................... signature iii Abstract Abstrakt The goal of this thesis is to provide an Cílem této práce je vyvinout webovou easy-to-use web service offering a database službu nabízející databázi neorientova- of undirected graphs that can be searched ných grafů, kterou bude možno efektivně based on the graph properties. In addi- prohledávat na základě vlastností grafů. tion, it should also allow to compute prop- Tato služba zároveň umožní vypočítávat erties of user-supplied graphs with the grafové vlastnosti pro grafy zadané uži- help graph libraries and generate graph vatelem s pomocí grafových knihoven a images. Last but not least, we implement zobrazovat obrázky grafů. V neposlední a system that allows bulk adding of new řadě je také cílem navrhnout systém na graphs to the database and computing hromadné přidávání grafů do databáze a their properties. -
Writing Mathematical Expressions in Plain Text – Examples and Cautions Copyright © 2009 Sally J
Writing Mathematical Expressions in Plain Text – Examples and Cautions Copyright © 2009 Sally J. Keely. All Rights Reserved. Mathematical expressions can be typed online in a number of ways including plain text, ASCII codes, HTML tags, or using an equation editor (see Writing Mathematical Notation Online for overview). If the application in which you are working does not have an equation editor built in, then a common option is to write expressions horizontally in plain text. In doing so you have to format the expressions very carefully using appropriately placed parentheses and accurate notation. This document provides examples and important cautions for writing mathematical expressions in plain text. Section 1. How to Write Exponents Just as on a graphing calculator, when writing in plain text the caret key ^ (above the 6 on a qwerty keyboard) means that an exponent follows. For example x2 would be written as x^2. Example 1a. 4xy23 would be written as 4 x^2 y^3 or with the multiplication mark as 4*x^2*y^3. Example 1b. With more than one item in the exponent you must enclose the entire exponent in parentheses to indicate exactly what is in the power. x2n must be written as x^(2n) and NOT as x^2n. Writing x^2n means xn2 . Example 1c. When using the quotient rule of exponents you often have to perform subtraction within an exponent. In such cases you must enclose the entire exponent in parentheses to indicate exactly what is in the power. x5 The middle step of ==xx52− 3 must be written as x^(5-2) and NOT as x^5-2 which means x5 − 2 . -
Chapter 4 Mathematics As a Language
Chapter 4 Mathematics as a Language Peculiarities of Mathematical Language in the Texts of Pure Mathematics What is mathematics? Is mathematics, represented in all its modern variety, a single science? The answer to this clear-cut question was at- tempted by the French mathematicians who sign their papers with the name Nicolas Bourbaki. In their article "Architecture of Mathematics" published in Russian as an appendix to The History of Mathematics' (Bourbaki, 1948), they stated that mathematics (and certainly it is only pure mathematics that is referred to) is a uniform science. Its uniformity is given by the system of its logical constructions. A chracteristic feature of mathematics is the explicit axiomatico-deductive method of construct- ing judgments. Any mathematical paper is first of all characterized by containing a long chain of logical conclusions. But the Bourbaki say that such chaining of syllogisms is no more than a transforming mechanism. It may be applied to any system of premises. It is just an outer sign of a system, its dressing; it does not yet display the essential system of logical constructions given by the postulates. The system of postulates in mathematics is not in the least a colorful mosaic of separate initial statements. The peculiarity of mathematics lies in the ability of the system of postulates to form special concepts, mathematical structures, rich with logical consequences which may be derived from them deductively. Mathematics is principally an axioma- ' This is one of the volumes of the unique tractatus TheElernenrs of Marhernorrcs, which wos ro give the reader the fullest impression of modern mathematics, organized from the standpoint of one of the largest modern schools. -
Gephi Tools for Network Analysis and Visualization
Frontiers of Network Science Fall 2018 Class 8: Introduction to Gephi Tools for network analysis and visualization Boleslaw Szymanski CLASS PLAN Main Topics • Overview of tools for network analysis and visualization • Installing and using Gephi • Gephi hands-on labs Frontiers of Network Science: Introduction to Gephi 2018 2 TOOLS OVERVIEW (LISTED ALPHABETICALLY) Tools for network analysis and visualization • Computing model and interface – Desktop GUI applications – API/code libraries, Web services – Web GUI front-ends (cloud, distributed, HPC) • Extensibility model – Only by the original developers – By other users/developers (add-ins, modules, additional packages, etc.) • Source availability model – Open-source – Closed-source • Business model – Free of charge – Commercial Frontiers of Network Science: Introduction to Gephi 2018 3 TOOLS CINET CyberInfrastructure for NETwork science • Accessed via a Web-based portal (http://cinet.vbi.vt.edu/granite/granite.html) • Supported by grants, no charge for end users • Aims to provide researchers, analysts, and educators interested in Network Science with an easy-to-use cyber-environment that is accessible from their desktop and integrates into their daily work • Users can contribute new networks, data, algorithms, hardware, and research results • Primarily for research, teaching, and collaboration • No programming experience is required Frontiers of Network Science: Introduction to Gephi 2018 4 TOOLS Cytoscape Network Data Integration, Analysis, and Visualization • A standalone GUI application -
The Utility of Mathematics
THE UTILITY OF MATHEMATICS It is not without great surprise that we read of the efforts of modern "educators" to expunge the study of mathematics from the scholastic curriculum. It is logical, and consistent with an already incomplete, un satisfactory program, for the State to exclude religious instruc tion from the free public schools. The proscription of the study of the German language in the schools is consonant with the existing antipathy for all things German. But who has weighed mathematics in the balance of honest investigation and found it wanting? Two American soldiers training for the great conflict "over there" visited a book shop. One purchased a German grammar. His companion severely reprimanded him for his apparent weak ness, and eloquently proclaimed the uselessness of studying Ger man. "Well," said the first soldier, "you will be in an awful fix when you reach Berlin." Without a working knowledge of the German language the victorious Allies will, indeed, be at a great disadvantage when the present drive shall have led them into Germany on the road to Berlin. But what a rocky road to Ber lin! The vandalism of the retreating Hun is obstructing that road by the wanton destruction of cities, towns and villages, with their churches, bridges and every other architectural triumph of constructive engineering. The damage must be repaired when the war is· over. It will require the careful work of skilled engineers. Was there ever an engineer who attained success without the aid of mathemat ics? The war has wrought havoc and destruction wherever the tents of battle have been pitched. -
Gephi-Poster-Sunbelt-July10.Pdf
The Open Graph Viz Platform Gephi is a new open-source network visualization platform. It aims to create a sustainable software and technical Download Gephi at ecosystem, driven by a large international open-source community, who shares common interests in networks and http://gephi.org complex systems. The rendering engine can handle networks larger than 100K elements and guarantees responsiveness. Designed to make data navigation and manipulation easy, it aims to fulll the complete chain from data importing to aesthetics renements and interaction. Particular focus is made on the software usability and interoperability with other tools. A lot of eorts are made to facilitate the community growth, by providing tutorials, plug-ins development documentation, support and student projects. Current developments include Dynamic Network Analysis (DNA) and Goals spigots (Emails, Twitter, Facebook …) import. Create the Photoshop of network visualization, by combining a rich set of Gephi aims at being built-in features and a sustainable, open to friendly user interface. many kind of users, and creating a large, Design a modular and international and extensible software diverse open-source architecture, facilitate plug-ins development, community reuse and mashup. Build a large, international Features Highlight and diverse open-source community. Community Join the network, participate designing the roadmap, get help to quickly code plug-ins or simply share your ideas. Select, move, paint, resize, connect, group Just with the mouse Export in SVG/PDF to include your infographics Metrics Architecture * Betweenness, Eigenvector, Closeness The modular architecture allows developers adding and extending features * Eccentricity with ease by developing plug-ins. Gephi can also be used as Java library in * Diameter, Average Shortest Path other applications and build for instance, a layout server. -
Plantuml Language Reference Guide (Version 1.2021.2)
Drawing UML with PlantUML PlantUML Language Reference Guide (Version 1.2021.2) PlantUML is a component that allows to quickly write : • Sequence diagram • Usecase diagram • Class diagram • Object diagram • Activity diagram • Component diagram • Deployment diagram • State diagram • Timing diagram The following non-UML diagrams are also supported: • JSON Data • YAML Data • Network diagram (nwdiag) • Wireframe graphical interface • Archimate diagram • Specification and Description Language (SDL) • Ditaa diagram • Gantt diagram • MindMap diagram • Work Breakdown Structure diagram • Mathematic with AsciiMath or JLaTeXMath notation • Entity Relationship diagram Diagrams are defined using a simple and intuitive language. 1 SEQUENCE DIAGRAM 1 Sequence Diagram 1.1 Basic examples The sequence -> is used to draw a message between two participants. Participants do not have to be explicitly declared. To have a dotted arrow, you use --> It is also possible to use <- and <--. That does not change the drawing, but may improve readability. Note that this is only true for sequence diagrams, rules are different for the other diagrams. @startuml Alice -> Bob: Authentication Request Bob --> Alice: Authentication Response Alice -> Bob: Another authentication Request Alice <-- Bob: Another authentication Response @enduml 1.2 Declaring participant If the keyword participant is used to declare a participant, more control on that participant is possible. The order of declaration will be the (default) order of display. Using these other keywords to declare participants -
Travels of Baron Munchausen
Songs for Scribus Travels of Baron Munchausen Songs for Scribus Travels of Baron Munchausen Travels of Baron Munchausen How should I disengage myself? I was not much pleased with my awkward situation – with a wolf face to face; our ogling was not of the most pleasant kind. If I withdrew my arm, then the animal would fly the more furiously upon me; that I saw in his flaming eyes. In short, I laid hold of his tail, turned him inside out like a glove, and flung him to the ground, where I left him. On January 3 2011, the first working day of the year, OSP gathered around Scribus. We wanted to explore framerendering, bootstrapping Scribus and to play around with the incredible adventures of Baron von Munchausen. The idea was to produce some kind of experimental result, a follow- up of to our earlier attempts to turn a frog into a prince. One day we asked Scribus team-members what their favourite Scribus feature was. After some hesitation they pointed us to the magical framerender. Framerenderer The Framerender is an image frame with a wrapper, a GUI, and a configuration scheme. External programs are invoked from inside of Scribus, and their output is placed into the frame! By default, the current Scribus is configured to host the following friends: LaTeX, Lilypond, gnuplot, dot/GraphViz and POV-Ray Today we are working with Lilypond. We are also creating cus- tom tools that generate PostScript/PDF via Imagemagick and other command line tools. Lilypond LilyPond is a music engraving program, devoted to producing the highest-quality sheet music possible. -
The Language of Mathematics: Towards an Equitable Mathematics Pedagogy
The Language of Mathematics: Towards an Equitable Mathematics Pedagogy Nathaniel Rounds, PhD; Katie Horneland, PhD; Nari Carter, PhD “Education, then, beyond all other devices of human origin, is the great equalizer of the conditions of men, the balance wheel of the social machinery.” (Horace Mann, 1848) 2 ©2020 Imagine Learning, Inc. Introduction From the earliest days of public education in the United States, educators have believed in education’s power as an equalizing force, an institution that would ensure equity of opportunity for the diverse population of students in American schools. Yet, for as long as we have been inspired by Mann’s vision, our history of segregation and exclusion reminds us that we have fallen short in practice. In 2019, 41% of 4th graders and 34% of 8th graders demonstrated proficiency in mathematics on the National Assessment of Educational Progress (NAEP). Yet only 20% of Black 4th graders and 28% of Hispanic 4th graders were proficient in mathematics, compared with only 14% of Black 8th grades and 20% of Hispanic 8th graders. Given these persistent inequities, how can education become “the great equalizer” that Mann envisioned? What, in short, is an equitable mathematics pedagogy? The Language of Mathematics: Towards an Equitable Mathematics Pedagogy 1 Mathematical Competencies To help think through this question, we will examine the language of mathematics and the role of language in math classrooms. This role, of course, has changed over time. Ravitch gives us this picture of math instruction in the 1890s: Some teachers used music to teach the alphabet and the multiplication tables..., with students marching up and down the isles of the classroom singing… “Five times five is twenty-five and five times six is thirty…” (Ravitch, 2001) Such strategies for the rote learning of facts and algorithms once seemed like all we needed to do to teach mathematics.