Chapter 4 Mathematics As a Language

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 4 Mathematics As a Language Chapter 4 Mathematics as a Language Peculiarities of Mathematical Language in the Texts of Pure Mathematics What is mathematics? Is mathematics, represented in all its modern variety, a single science? The answer to this clear-cut question was at- tempted by the French mathematicians who sign their papers with the name Nicolas Bourbaki. In their article "Architecture of Mathematics" published in Russian as an appendix to The History of Mathematics' (Bourbaki, 1948), they stated that mathematics (and certainly it is only pure mathematics that is referred to) is a uniform science. Its uniformity is given by the system of its logical constructions. A chracteristic feature of mathematics is the explicit axiomatico-deductive method of construct- ing judgments. Any mathematical paper is first of all characterized by containing a long chain of logical conclusions. But the Bourbaki say that such chaining of syllogisms is no more than a transforming mechanism. It may be applied to any system of premises. It is just an outer sign of a system, its dressing; it does not yet display the essential system of logical constructions given by the postulates. The system of postulates in mathematics is not in the least a colorful mosaic of separate initial statements. The peculiarity of mathematics lies in the ability of the system of postulates to form special concepts, mathematical structures, rich with logical consequences which may be derived from them deductively. Mathematics is principally an axioma- ' This is one of the volumes of the unique tractatus TheElernenrs of Marhernorrcs, which wos ro give the reader the fullest impression of modern mathematics, organized from the standpoint of one of the largest modern schools. 115 116 In the Labyrinths of Language tized field of knowledge, and it is in this sense that mathematics is a unified science. Its uniformity is given by the peculiarity of its logical structure. This is the Bourbaki's central idea which mirrors their mathematical outlook. Below, I try to give an idea of mathematical language. This language is a certain system of rules of operations on signs. To introduce a calculus, we must construct an alphabet of the initial elements, signs, to give the initial words of the calculus and to construct the rules for making new words out of the initial words. They are built upon a set of elements, the physical nature of which remains unknown. In order to give the struc- ture, it is sufficient to define the relation between these elements in a cer- tain system of axioms. The system of judgments in mathematics is built without turning to vaguely implicit assumptions, common sense, or free associations. The task lies in verification of the fact that the results ob- tained really follow from the initial assumptions. It is the question itself about verification of the correctness of the initial axioms in a certain physical sense that is pointless. Mathematicians care only about the logical consistency of axioms; they must contain no inner contradictions. But, again, the system of axioms must be constructed in such a way that it will be rich in its logical consequences. The idea of a universal symbolism and logical calculation can be traced to Leibniz, though modern clear-cut definition of mathematics as strictly formalized calculus became possible only after the works by Frege, Russell, and Hilbert. In Kleene's work (1952) we find the following char- acteristic philosophical views of Hilbert. Those symbols, etc. are themselves the ultimate objects, and are not being used to refer to something other than themselves. The metamathematician looks at them not through or beyond them; thus they are objects without interpretation or meaning. (p. 64) Chess playing is often regarded as a model of mathematics (Weyl, 1927) or, if you like, as a parody of mathematics. Chess figures and the squares on the playboard are the signs of the system, and the rules of the game are the rules of inference; the initial position of the game is the system of axioms, and the subsequent positions are formulae deduced from the ax- ioms. The initial position and the rules of playing prove to be exceedingly rich: in skillful hands they create a variety of interesting games. While the aim of a chess game lies in check-mating the adversary, the aim of mathematical reasoning is the obtaining of certain theorems. In both cases it is important not only to achieve the goal, but also to do it beauti- fully and, of course, without contradictions: in mathematics some situa- tions will be regarded as contradictory in the same way as, for example, the existence of ten queens of the same color would contradict the chess calculus. The most fruitful feature of such a comparison is that in chess, Mathematics as a Language 117 as in mathematics, logical operations are performed without any inter- pretation in terms of the phenomena of the external world: for example, it is not at all important for us to know to what element of reality pawns correspond or whether the limitations imposed upon the rules for moving the bishop are rational. Still, it would not be correct to state that mathematics is a fully for- malized branch of knowledge. Hilbert failed in his attempt to build a strictly formalized system of reasoning out of the absolute consistency of arithmetic. There are also some difficulties in defining formally the no- tion of proof in mathematics in general. In the process of the develop- ment of mathematics, new, previously unknown techniques of reasoning have appeared. (In particular, from this follows the irrationality of state- ments that the proof of mathematical theorems may be fully handed over to computers.) In the above-mentioned book Kleene (1952) states this idea as follows: We can imagine an omniscient member-theorist. We should expect that his ability to see infinitely many facts at once would enable him to recognize as correct some principle of deduction which we could not discover ourselves. But any correct formal system . which he could reveal to us, telling us how it works, without telling us why, would still be incomplete . (p. 303) Sometimes it is said that all mathematical knowledge is implicit in those short statements which are traditionally called mathematical struc- tures and that the proof of theorems is no more than an explication of the content of the structures. This statement would be quite correct if the process of reasoning were strictly formalized. But unless it is so, the proof of theorems themselves already contains some essentially novel in- formation, which is not intrinsic to the structures they serve to elucidate. There is one more reason that we cannot speak of a full formalization of mathematics: the reason is that in mathematics, together with deduc- tive reasoning, plausible reasoning [in the sense of (Polya, 1954)l is also used; the conclusions built on analogy may serve as a good example. True, nobody can estimate the role they play in mathematical judgments. One final remark: mathematical papers still must use ordinary language as a kind of auxiliary means. Mathematical Theory of Language in the Concept of Context-Free Languages The American linguist Chomsky in the late 1950s tried to build a mathematical model of ordinary languages. Formal grammar of the con- text-free languages is built as a calculus for generating the variety of cor- 118 In the LabyrinthsofLanguage rect sentences of the natural language. As with any calculus, here we speak about the grammar, which must consist of some finite alphabet, that is, a variety of initial symbols, of some finite set of inference rules that generate chains, and of the initial chains, axioms. The chains generated by the inference rules are interpreted as sentences. The whole set of sentences is called language. Grammar, if it is properly formu- lated, must unambiguously define the whole set of correct sentences in language. Here, syntactic description is performed in terms of the so- called analysis of immediate constituents. Sentences are divided into fewer and fewer constituents down to the smallest ones (Chomsky, 1956). The theory of context-free languages, as becomes obvious from the statement of the problem itself, is to be built as a purely mathematical discipline. This theory and the theory of finite automata are closely and deeply interrelated. In this book I cannot dwell in detail on the theory of context-free languages; to do so, I would have to write this paragraph in a language different from that of the rest of the book. A short and very popular rendering of this theory can be found in books by Shreider (1971) and Ginsburg (1966). In one of the first papers dealing with the theory of context-free lan- guages, Chomsky tried to establish the justification of his approach. He posed the following questions: Is it possible to formulate simple gram- mars for all the languages that we are interested in? Do such grammars possess any explanatory power? Are there any interesting languages which lie outside this theory? Is not, for example, English such a language? Before long, it appeared that grammars of context-free languages pro- vided very convenient means for the study of programming languages for computers. It would be interesting to pose a broader question: to try to find out to what degree this theory becomes useful for the description and understanding of natural languages which, unlike programming lan- guages, are still non-Godelian systems-at least from our standpoint. This question can be answered in the affirmative if we introduce, after Chomsky (1956), a set of grammatical transformations which transfer sentences with one structure of immediate constituents into new sen- tences with another structure.
Recommended publications
  • Mathematics in Language
    cognitive semantics 6 (2020) 243-278 brill.com/cose Mathematics in Language Richard Hudson University College London, London, England [email protected] Abstract Elementary mathematics is deeply rooted in ordinary language, which in some respects anticipates and supports the learning of mathematics, but which in other re- spects hinders this learning. This paper explores a number of areas of arithmetic and other elementary areas of mathematics, considering for each area whether it helps or hinders the young learner: counting and larger numbers, sets and brackets, algebra and variables, zero and negation, approximation, scales and relationships, and probability. The conclusion is that ordinary language anticipates the mathematics of counting, arithmetic, algebra, variables and brackets, zero and probability; but that negation, approximation and probability are particularly problematic because mathematics de- mands a different way of thinking, and different mental capacity, compared with ordi- nary language. School teachers should be aware of the mathematics already built into language so as to build on it; and they should also be able to offer special help in the conflict zones. Keywords numbers – grammar – semantics – negation – probability 1 Introduction1 This paper is about the area of language that we might call ‘mathematical language’, and has a dual function, as a contribution to cognitive semantics and as an exercise in pedagogical linguistics. Unlike earlier discussions of 1 I should like to acknowledge detailed comments on an earlier version of this paper from Neil Sheldon, as well as those of an anonymous reviewer. © Richard Hudson, 2020 | doi:10.1163/23526416-bja10005 This is an open access article distributed under the terms of the CC BY 4.0Downloaded License.
    [Show full text]
  • The Utility of Mathematics
    THE UTILITY OF MATHEMATICS It is not without great surprise that we read of the efforts of modern "educators" to expunge the study of mathematics from the scholastic curriculum. It is logical, and consistent with an already incomplete, un­ satisfactory program, for the State to exclude religious instruc­ tion from the free public schools. The proscription of the study of the German language in the schools is consonant with the existing antipathy for all things German. But who has weighed mathematics in the balance of honest investigation and found it wanting? Two American soldiers training for the great conflict "over there" visited a book shop. One purchased a German grammar. His companion severely reprimanded him for his apparent weak­ ness, and eloquently proclaimed the uselessness of studying Ger­ man. "Well," said the first soldier, "you will be in an awful fix when you reach Berlin." Without a working knowledge of the German language the victorious Allies will, indeed, be at a great disadvantage when the present drive shall have led them into Germany on the road to Berlin. But what a rocky road to Ber­ lin! The vandalism of the retreating Hun is obstructing that road by the wanton destruction of cities, towns and villages, with their churches, bridges and every other architectural triumph of constructive engineering. The damage must be repaired when the war is· over. It will require the careful work of skilled engineers. Was there ever an engineer who attained success without the aid of mathemat­ ics? The war has wrought havoc and destruction wherever the tents of battle have been pitched.
    [Show full text]
  • The Language of Mathematics: Towards an Equitable Mathematics Pedagogy
    The Language of Mathematics: Towards an Equitable Mathematics Pedagogy Nathaniel Rounds, PhD; Katie Horneland, PhD; Nari Carter, PhD “Education, then, beyond all other devices of human origin, is the great equalizer of the conditions of men, the balance wheel of the social machinery.” (Horace Mann, 1848) 2 ©2020 Imagine Learning, Inc. Introduction From the earliest days of public education in the United States, educators have believed in education’s power as an equalizing force, an institution that would ensure equity of opportunity for the diverse population of students in American schools. Yet, for as long as we have been inspired by Mann’s vision, our history of segregation and exclusion reminds us that we have fallen short in practice. In 2019, 41% of 4th graders and 34% of 8th graders demonstrated proficiency in mathematics on the National Assessment of Educational Progress (NAEP). Yet only 20% of Black 4th graders and 28% of Hispanic 4th graders were proficient in mathematics, compared with only 14% of Black 8th grades and 20% of Hispanic 8th graders. Given these persistent inequities, how can education become “the great equalizer” that Mann envisioned? What, in short, is an equitable mathematics pedagogy? The Language of Mathematics: Towards an Equitable Mathematics Pedagogy 1 Mathematical Competencies To help think through this question, we will examine the language of mathematics and the role of language in math classrooms. This role, of course, has changed over time. Ravitch gives us this picture of math instruction in the 1890s: Some teachers used music to teach the alphabet and the multiplication tables..., with students marching up and down the isles of the classroom singing… “Five times five is twenty-five and five times six is thirty…” (Ravitch, 2001) Such strategies for the rote learning of facts and algorithms once seemed like all we needed to do to teach mathematics.
    [Show full text]
  • The Story of 0 RICK BLAKE, CHARLES VERHILLE
    The Story of 0 RICK BLAKE, CHARLES VERHILLE Eighth But with zero there is always an This paper is about the language of zero The initial two Grader exception it seems like sections deal with both the spoken and written symbols Why is that? used to convey the concepts of zero Yet these alone leave much of the story untold. Because it is not really a number, it The sections on computational algorithms and the is just nothing. exceptional behaviour of zero illustrate much language of Fourth Anything divided by zero is zero and about zero Grader The final section of the story reveals that much of the How do you know that? language of zero has a considerable historical evolution; Well, one reason is because I learned it" the language about zero is a reflection of man's historical difficulty with this concept How did you learn it? Did a friend tell you? The linguistics of zero No, I was taught at school by a Cordelia: N a thing my Lord teacher Lear: Nothing! Do you remember what they said? Cordelia: Nothing Lear: Nothing will come of They said anything divided by zero is nothing; speak again zero Do you believe that? Yes Kent: This is nothing, fool Why? Fool: Can you make no use of Because I believe what the school says. nothing, uncle? [Reys & Grouws, 1975, p 602] Lear: Why, no, boy; nothing can be made out of nothing University Zero is a digit (0) which has face Student value but no place or total value Ideas that we communicate linguistically are identified by [Wheeler, Feghali, 1983, p 151] audible sounds Skemp refers to these as "speaking sym­ bols " 'These symbols, although necessary inventions for If 0 "means the total absence of communication, are distinct from the ideas they represent quantity," we cannot expect it to Skemp refers to these symbols or labels as the surface obey all the ordinary laws.
    [Show full text]
  • The Academic Language of Mathematics
    M01_ECHE7585_CH01_pp001-014.qxd 4/30/13 5:00 PM Page 1 chapter 1 The Academic Language of Mathematics Nearly all states continue to struggle to meet the academic targets in math for English learners set by the No Child Left Behind Act. One contributing factor to the difficulty ELs experience is that mathematics is more than just numbers; math education involves terminology and its associated concepts, oral or written instructions on how to complete problems, and the basic language used in a teacher’s explanation of a process or concept. For example, students face multiple representations of the same concept or operation (e.g., 20/5 and 20÷5) as well as multiple terms for the same concept or operation 6920_ECH_CH01_pp001-014.qxd 8/27/09 12:59 PM Page 2 2 (e.g., 13 different terms are used to signify subtraction). Students must also learn similar terms with different meanings (e.g., percent vs. percentage) and they must comprehend mul- tiple ways of expressing terms orally (e.g., (2x ϩ y)/x2 can be “two x plus y over x squared” and “the sum of two x and y divided by the square of x”) (Hayden & Cuevas, 1990). So, language plays a large and important role in learning math. In this chapter, we will define academic language (also referred to as “academic Eng- lish”), discuss why academic language is challenging for ELs, and offer suggestions for how to effectively teach general academic language as well as the academic language specific to math. Finally, we also include specific academic word lists for the study of mathematics.
    [Show full text]
  • Mathematics, Language and Translation Sundar Sarukkai
    Document généré le 23 mai 2020 16:12 Meta Journal des traducteurs Mathematics, Language and Translation Sundar Sarukkai Volume 46, numéro 4, décembre 2001 Résumé de l'article La langue mathématique utilise la langue naturelle. Les symboles se URI : https://id.erudit.org/iderudit/004032ar rapportent eux aussi aux termes de la langue naturelle. Les textes DOI : https://doi.org/10.7202/004032ar mathématiques relèvent de combinaisons de symboles, de langue naturelle, de représentations graphiques, etc. Pour arriver à une lecture cohérente de ces Aller au sommaire du numéro textes, il faut passer par la traduction. Les mathématiques appliquées, comme la physique, passent continuellement d'une langue (et culture) à une autre, et par conséquent, elles sont mieux comprises quand elles relèvent du domaine Éditeur(s) de la traduction. Les Presses de l'Université de Montréal ISSN 0026-0452 (imprimé) 1492-1421 (numérique) Découvrir la revue Citer cet article Sarukkai, S. (2001). Mathematics, Language and Translation. Meta, 46 (4), 664–674. https://doi.org/10.7202/004032ar Tous droits réservés © Les Presses de l'Université de Montréal, 2001 Ce document est protégé par la loi sur le droit d’auteur. L’utilisation des services d’Érudit (y compris la reproduction) est assujettie à sa politique d’utilisation que vous pouvez consulter en ligne. https://apropos.erudit.org/fr/usagers/politique-dutilisation/ Cet article est diffusé et préservé par Érudit. Érudit est un consortium interuniversitaire sans but lucratif composé de l’Université de Montréal, l’Université Laval et l’Université du Québec à Montréal. Il a pour mission la promotion et la valorisation de la recherche.
    [Show full text]
  • The Language of Mathematics in Science
    The Language of A Guide for Mathematics in Teachers of Science 11–16 Science A note on navigating around within this PDF file Introduction: the language of mathematics in science Background About this publication Mathematics and science Thinking about purposes and using judgement Understanding the nature of data Assessment Process of development of this publication Further references on terminology and conventions Overview of chapters 1 Collecting data 1.1 Measuring and counting 1.2 Measurement, resolution and significant figures 1.3 Characteristics of different types of data 1.4 Naming different types of data 1.5 Where do data come from? 2 Doing calculations and representing values 2.1 Calculations and units THE LANGUAGE OF MATHEMATICS IN SCIENCE A Guide for Teachers of 11–16 Science The Association for Science Education (ASE) is the largest subject association in the UK. As the professional body for all those involved in The Association science education from pre-school to higher education, the ASE provides a national network supported by a dedicated staff team. Members include for Science Education teachers, technicians and advisers. The Association plays a significant role in promoting excellence in teaching and learning of science in schools and colleges. More information is available at www.ase.org.uk. The Nuffield Foundation is an endowed charitable trust that aims to improve social well-being in the widest sense. It funds research and innovation in education and social policy and also works to build capacity in education, science and social science research. The Nuffield Foundation has funded this project, but the views expressed are those of the authors and not necessarily those of the Foundation.
    [Show full text]
  • Learning the Language of Mathematics 45
    Learning the Language of Mathematics 45 Learning the Language of Mathematics Robert E. Jamison Clemson University Just as everybody must strive to learn language and writing before he can use them freely for expression of his thoughts, here too there is only one way to escape the weight of formulas. It is to acquire such power over the tool that, unhampered by formal technique, one can turn to the true problems. — Hermann Weyl [4] This paper is about the use of language as a tool for teaching mathematical concepts. In it, I want to show how making the syntactical and rhetorical structure of mathematical language clear and explicit to students can increase their understanding of fundamental mathematical concepts. I confess that my original motivation was partly self-defense: I wanted to reduce the number of vague, indefinite explanations on home- work and tests, thereby making them easier to grade. But I have since found that language can be a major pedagogical tool. Once students understand HOW things are said, they can better understand WHAT is being said, and only then do they have a chance to know WHY it is said. Regrettably, many people see mathematics only as a collection of arcane rules for manipulating bizarre symbols — something far removed from speech and writing. Probably this results from the fact that most elemen- tary mathematics courses — arithmetic in elementary school, algebra and trigonometry in high school, and calculus in college — are procedural courses focusing on techniques for working with numbers, symbols, and equations. Although this formal technique is important, formulae are not ends in themselves but derive their real importance only as vehicles for expression of deeper mathematical thoughts.
    [Show full text]
  • Supporting Clear and Concise Mathematics Language: Say This
    Running head: MATHEMATICS LANGUAGE 1 Supporting Clear and Concise Mathematics Language: Say This, Not That Elizabeth M. Hughes Duquesne University Sarah R. Powell and Elizabeth A. Stevens University of Texas at Austin Hughes, E. M., Powell, S. R., & Stevens, E. A. (2016). Supporting clear and concise mathematics language: Instead of that, say this. Teaching Exceptional Children, 49, 7–17. http://dx.doi.org/10.1177/0040059916654901 Author Note Elizabeth M. Hughes, Department of Counseling, Psychology, and Special Education, Duquesne University; Sarah R. Powell, Department of Special Education, University of Texas at Austin; Elizabeth A. Stevens, Department of Special Education, University of Texas at Austin. This research was supported in part by Grant R324A150078 from the Institute of Education Sciences in the U.S. Department of Education to the University of Texas at Austin. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Institute of Education Sciences or the U.S. Department of Education. Correspondence concerning this article should be addressed to Elizabeth M. Hughes, E- mail: [email protected] MATHEMATICS LANGUAGE 2 Supporting Clear and Concise Mathematics Language: Instead of That…Say This… Juan, a child with a mathematics disability, is learning about addition and subtraction of fractions. Juan’s special education teacher, Mrs. Miller, has tried to simplify language about fractions to make fractions easier for Juan. During instruction, she refers to the “top number” and “bottom number.” At the end of chapter test, Juan reads the problem: What’s the least common denominator of ½ and ⅖? Juan answers “1.” Upon returning his test, Mrs.
    [Show full text]
  • Introduction: the Language of Mathematics in Science
    Introduction: the language of mathematics in science The aim of this book is to enable teachers, publishers, awarding bodies and others to achieve a common understanding of important terms and techniques related to the use of mathematics in the science curriculum for pupils aged 11–16. Background This publication was produced as part of the ASE/Nuffield project The Language of Mathematics in Science in order to support teachers of 11–16 science in the use of mathematical ideas in the science curriculum. This is an area that has been a matter of interest and debate for many years. Some of the concerns have been about problems of consistency in terminology and approaches between the two subjects. The project built on the approach of a previous ASE/Nuffield publication,The Language of Measurement, and the aims are rather similar: to achieve greater clarity and agreement about the way the ideas and terminology are used in teaching and assessment. Two publications have been produced during the project. This publication, The Language of Mathematics in Science: A Guide for Teachers of 11–16 Science, provides an overview of relevant ideas in secondary school mathematics and where they are used in science. It aims to clarify terminology and to indicate where there may be problems in student understanding. The publication includes explanations of key ideas and terminology in mathematics, along with a glossary of terms. A second publication, The Language of Mathematics in Science: Teaching Approaches, uses teachers’ accounts to outline different ways that science and mathematics departments have worked together, and illustrates various teaching approaches with examples of how children respond to different learning activities.
    [Show full text]
  • Mathematical Language Skills of Mathematics Prospective Teachers
    Universal Journal of Educational Research 6(4): 661-671, 2018 http://www.hrpub.org DOI: 10.13189/ujer.2018.060410 Mathematical Language Skills of Mathematics Prospective Teachers Nejla Gürefe Department of Mathematics Education, Faculty of Education, Uşak University, Turkey Copyright©2018 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License Abstract Effective mathematics teaching can be fails to use accurate concepts and terms when teaching to actualized only with correct use of the mathematical students the content of a lesson, students may perceive it in content language which comprises mathematical rules, a different way or even attribute an incorrect meaning [6]. concepts, symbols and terms. In this research, it was aimed Hence the importance of students attributes the same to examine the mathematics prospective teachers’ content meaning to mathematical expressions explained by the language skills in some basic geometric concepts which are teacher. Misusing the language of the mathematical field ray, angle, polygon, Pythagorean Theorem, area formula of will entail a poor communication between the student and trapezoid and surface area formula of the cone. Participants the teacher, leading students, in the longer term, to of the present study were constituted of third grade students conceptual errors for not being able to properly structure in university. From results, it was determined that concepts in their minds. This is why math lessons require participants were not able to use the mathematical language that language is used in accordance with mathematical adequately and usually not able to explain the concepts knowledge.
    [Show full text]
  • Instructor's Manual
    Instructor's Manual for The Language of Mathematics Nineteenth Edition by Warren W. Esty Instructor's Manual for The Language of Mathematics by Warren W. Esty Warren W. Esty © 2012 Table of Contents Why Read This Manual? ........................................... 3 General Observations .............................................. 4 Section-by-Section Comments ....................................... 6 Chapter 1. Algebra is a Language 6 1.1. Reexamining Mathematics 6 1.2. Order Matters 7 1.3. Reading Mathematics 8 1.4. Algebra and Arithmetic 8 1.5. Reconsidering Numbers 9 Chapter 2. Sets, Functions, and Algebra 10 2.1. Sets 11 2.2. Functions 13 2.3. Solving Equations 14 2.4. Word Problems 16 Chapter 3. Logic for Mathematics 16 Good Examples of Logical Patterns 18 Appendix: Logical Terms Worth Omitting 21 3.1. Connectives 22 3.2. Logical Equivalences 23 3.3. Logical Equivalences with a Negation 24 3.4. Tautologies and Proofs 24 Chapter 4. Sentences, Variables, and Connectives 26 4.1. Sentences with One Variable 27 4.2. Generalizations and Variables 28 4.3. Existence Statements 29 4.4. Ways to State Generalizations 30 4.5. Reading Theorems and Definitions 30 4.6. Different Appearance–Same Meaning 32 Chapter 5. Proofs 33 5.0. Why Learn to do Proofs? 34 5.1. Proof 34 5.2. Proofs, Logic, and Absolute Values 34 5.3. Translation and Organization 35 5.4. The Theory of Proofs 35 5.5. Existence Statements and Existence Proofs 36 5.6. Proofs by Contradiction or Contrapositive 36 5.7. Mathematical Induction 37 Dealing with “Math Anxious” Students . 38 The Language of Mathematics as a Core Course.........................43 5 4 3 2 3 Why Read This Manual? This manual is intended to teach you, the instructor, some of what you would know about the course if you had already taught the course a couple of times.
    [Show full text]