Higher Genus Correlators for Tensionless Ads3 Strings

Total Page:16

File Type:pdf, Size:1020Kb

Higher Genus Correlators for Tensionless Ads3 Strings Prepared for submission to JHEP Higher genus correlators for tensionless AdS3 strings Bob Knighton Institut f¨urTheoretische Physik, ETH Z¨urich Wolfgang-Pauli-Straße 27, 8093 Z¨urich,Switzerland E-mail: [email protected] Abstract: It was recently shown in [1] that tree-level correlation functions in tensionless 3 4 string theory on AdS3 × S × T match the expected form of correlation functions in the 4 symmetric orbifold CFT on T in the large N limit. This analysis utilized the free-field realization of the psu(1; 1j2)1 Wess-Zumino-Witten model, along with a surprising identity directly relating these correlation functions to a branched covering of the boundary of AdS3. In particular, this identity implied the unusual feature that the string theory correlators localize to points in the moduli space for which the worldsheet covers the boundary of AdS3 with specified branching near the insertion points. In this work we generalize this analysis past the tree-level approximation, demonstrating its validity to higher genus worldsheets, and in turn providing strong evidence for this incarnation of the AdS=CFT correspondence at all orders in perturbation theory. arXiv:2012.01445v3 [hep-th] 6 Jul 2021 Contents 1 Introduction2 2 The worldsheet theory3 2.1 The free field construction of sl(2; R)1 ⊕ ud(1)4 2.2 Highest-weight representations5 2.3 Spectral flow6 2.4 Vertex operators8 2.5 Picture changing and correlation functions9 3 The worldsheet as a covering space 11 3.1 Covering maps 11 3.2 The incidence relation 12 3.3 Localization 12 3.4 Non-renormalization 13 3.5 Proof of the incidence relation 14 3.6 Constraining the correlators 15 4 The covering map from local Ward identities 17 4.1 Constraints on the covering map 17 4.2 The local Ward identities 19 4.3 Delta function localization 21 5 Discussion 22 A Some Riemann surface theory 24 A.1 Meromorphic forms 25 A.2 Divisors 25 A.3 Existence of forms and Abel's theorem 27 A.4 Spinors and spin structures 29 A.5 Constructing functions and the prime form 29 B Localization of the W fields 31 C The g=2-form 32 { 1 { 1 Introduction Recently, progress has been made in providing a derivation of a special case of the AdS=CFT 3 4 correspondence [2] relating type IIB string theory on AdS3 × S × T with k = 1 units of N 4 pure NS-NS flux to the symmetric orbifold Sym (T ) in the large N limit. It has been shown that the full tree-level spectra of both theories match [3,4]. It was also known that the correlation functions of the symmetric orbifold theory obey nontrivial Ward identities for strings on AdS3 both at tree level [5] and at higher genus [6] in the RNS formalism. However, it was not shown that the symmetric orbifold correlators were the unique solutions to the Ward identities. Other recent approaches toward the realization of this duality have been explored in [7{9]. The central property that relates the correlation functions of tensionless string theory to those of the symmetric orbifold is that both are related to a certain meromorphic function Γ:Σ ! S2 which covers S2 by the worldsheet. From the perspective of the symmetric orbifold, Γ plays the role of a conformal transformation under which the pullback of the twisted fields inserted into correlators become single-valued [10{12], as shown in Figure 1. On the string theory side, this holomorphic function is interpreted as a map from the string worldsheet to the boundary of AdS3, for which the incoming and outgoing string states asymptotically wind wi times at the points xi on the boundary. The interpretation of this incarnation of the AdS3=CFT2 duality is, then, that the string worldsheet is exactly the covering space used in the calculation of symmetric orbifold correlation functions, as was originally proposed in [13]. As such, one would expect the worldsheet correlators to localize to those points in the moduli space for which the worldsheet is such a covering space. That such a solution was permitted by the worldsheet Ward identities in the RNS formalism was the primary result of [5,6]. In [1], another approach for constraining correlation functions for the tensionless (k = 1) string was employed, similar in spirit to that of [5,6]. This approach was based on the fact that, at k = 1, the hybrid formalism of Berkovits, Vafa and Witten [14] simplifies into (a quotient of) a free field theory on the worldsheet, consisting of four spin-1=2 Bosons and four spin-1=2 Fermions. The Ward identities, when expressed in these variables, turn out to be enough to essentially fix the form of the correlation functions of highest-weight states in the tensionless string at tree level. The crux of this analysis was a striking formula, reminiscent of a twistorial identity, relating the worldsheet correlation functions to the covering map Γ : Σ ! S2. This identity directly realizes the localization of the worldsheet correlation functions, and allows the interpretation of the string worldsheet as the covering space in Figure1, at the level of string perturbation theory. The main advantage of the analysis of [1] was that this localizing solution was found to be the only one consistent with the Ward identities in the free field description. The goal of this paper is to extend the results of [1] to worldsheets of higher genus. On the string theory side, this corresponds to considering correlation functions at higher- order in perturbation theory. On the side of the dual CFT, this corresponds to considering correlation functions at higher order in the 1=N expansion. We find that an identity analogous to the main result of [1] is satisfied on higher genus worldsheets, and thus that { 2 { x1 z1 z2 z4 Γ x3 z3 x2 x4 Figure 1. A cartoon representation of a holomorphic covering map Γ : Σ ! S2 mapping the string theory worldsheet to the dual CFT sphere. Correlation functions in both tensionless string theory and the symmetric product CFT are determined by the data encoded in Γ. the conclusions of [1] holds at every order in perturbation theory. This represents highly 3 4 nontrivial evidence that tensionless string theory on AdS3 × S × T is exactly dual to the 4 symmetric product CFT on T . This paper is organized as follows. Section2 introduces the relevant details of the 3 4 free field construction of tensionless string theory on AdS3 × S × T . In particular, we formulate string theory on this spacetime in terms of free Bosons generating the algebra sl(2; R)1 ⊕ ud(1). We introduce the vertex operators corresponding to spectrally-flowed highest-weight states of this algebra, and define their correlation functions after taking into account picture-changing. In Section3, we prove an identity relating worldsheet correlation functions to the covering map used to construct correlation functions in the symmetric product CFT, which generalizes the identity found in [1] to higher genus worldsheets. This identity is essentially what allows us to show that the worldsheet correlation functions localize on the moduli space, and thus interpret the string worldsheet as the covering surface appearing in the construction of the symmetric orbifold correlation functions [10, 11]. In Section4, we show that the constraints on correlation functions arising from taking various OPE limits (reminiscent of Ward identities) are algebraically identical to the constraints used to construct covering a covering map Γ : Σ ! S2, thus providing a second method of directly relating the string correlation functions to the covering space. We then conclude the main text with a discussion in Section5. Additionally, we include a brief introduction to the relevant results from the theory of Riemann surfaces in AppendixA which are used heavily throughout the main text. 2 The worldsheet theory 3 4 In the RNS formulation of strings on AdS3 × S × T with k unites of pure NS-NS flux, one identifies the AdS3 factor with the N = 1 supersymmetric Wess-Zumino-Witten model on 3 the Lie group SL(2; R) at level k [15{17], while identifying the S factor as a similar WZW model on SU(2). Symbolically, the tensionless string can be formulated in terms of the worldsheet WZW model (1) (1) 4 sl(2; R)k ⊕ su(2)k ⊕ T : (2.1) { 3 { The so-called \tensionless string" is identified with the limit in which the level k is taken to be minimal, i.e. k = 1. However, the description of the worldsheet theory in the RNS formalism breaks down for the tensionless limit, due to the decomposition [18] (1) ∼ sl(2; R) = sl(2; R)k+2 ⊕ (3 free Fermions) k (2.2) (1) ∼ su(2)k = su(2)k−2 ⊕ (3 free Fermions) ; Thus, at k = 1, the su(2)k−2 factor is non-unitary. Thus, if one wants to study the worldsheet theory in the tensionless limit, one needs to look for an alternative formalism in which the worldsheet theory is well-defined. This is accomplished by the hybrid formalism 3 of Berkovits, Vafa and Witten [14], in which one replaces the factor AdS3 × S with its supergroup analogue psu(1; 1j2)k, which remains well-defined at level k = 1. As was noted in [4] and further explored in [1], the hybrid formalism in the tensionless limit has a particularly simple construction in terms of free fields living on the world- sheet. In particular, one constructs the u(1; 1j2)1 WZW model from four two pairs of free \symplectic" Bosons [19] and two pairs of free Fermions, and then quotients out two ud(1) subalgebras to recover the model on psu(1; 1j2)1.
Recommended publications
  • Lectures on D-Branes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server CPHT/CL-615-0698 hep-th/9806199 Lectures on D-branes Constantin P. Bachas1 Centre de Physique Th´eorique, Ecole Polytechnique 91128 Palaiseau, FRANCE [email protected] ABSTRACT This is an introduction to the physics of D-branes. Topics cov- ered include Polchinski’s original calculation, a critical assessment of some duality checks, D-brane scattering, and effective worldvol- ume actions. Based on lectures given in 1997 at the Isaac Newton Institute, Cambridge, at the Trieste Spring School on String The- ory, and at the 31rst International Symposium Ahrenshoop in Buckow. June 1998 1Address after Sept. 1: Laboratoire de Physique Th´eorique, Ecole Normale Sup´erieure, 24 rue Lhomond, 75231 Paris, FRANCE, email : [email protected] Lectures on D-branes Constantin Bachas 1 Foreword Referring in his ‘Republic’ to stereography – the study of solid forms – Plato was saying : ... for even now, neglected and curtailed as it is, not only by the many but even by professed students, who can suggest no use for it, never- theless in the face of all these obstacles it makes progress on account of its elegance, and it would not be astonishing if it were unravelled. 2 Two and a half millenia later, much of this could have been said for string theory. The subject has progressed over the years by leaps and bounds, despite periods of neglect and (understandable) criticism for lack of direct experimental in- put. To be sure, the construction and key ingredients of the theory – gravity, gauge invariance, chirality – have a firm empirical basis, yet what has often catalyzed progress is the power and elegance of the underlying ideas, which look (at least a posteriori) inevitable.
    [Show full text]
  • 8. Compactification and T-Duality
    8. Compactification and T-Duality In this section, we will consider the simplest compactification of the bosonic string: a background spacetime of the form R1,24 S1 (8.1) ⇥ The circle is taken to have radius R, so that the coordinate on S1 has periodicity X25 X25 +2⇡R ⌘ We will initially be interested in the physics at length scales R where motion on the S1 can be ignored. Our goal is to understand what physics looks like to an observer living in the non-compact R1,24 Minkowski space. This general idea goes by the name of Kaluza-Klein compactification. We will view this compactification in two ways: firstly from the perspective of the spacetime low-energy e↵ective action and secondly from the perspective of the string worldsheet. 8.1 The View from Spacetime Let’s start with the low-energy e↵ective action. Looking at length scales R means that we will take all fields to be independent of X25: they are instead functions only on the non-compact R1,24. Consider the metric in Einstein frame. This decomposes into three di↵erent fields 1,24 on R :ametricG˜µ⌫,avectorAµ and a scalar σ which we package into the D =26 dimensional metric as 2 µ ⌫ 2σ 25 µ 2 ds = G˜µ⌫ dX dX + e dX + Aµ dX (8.2) Here all the indices run over the non-compact directions µ, ⌫ =0 ,...24 only. The vector field Aµ is an honest gauge field, with the gauge symmetry descend- ing from di↵eomorphisms in D =26dimensions.Toseethisrecallthatunderthe transformation δXµ = V µ(X), the metric transforms as δG = ⇤ + ⇤ µ⌫ rµ ⌫ r⌫ µ This means that di↵eomorphisms of the compact direction, δX25 =⇤(Xµ), turn into gauge transformations of Aµ, δAµ = @µ⇤ –197– We’d like to know how the fields Gµ⌫, Aµ and σ interact.
    [Show full text]
  • New Worldsheet Formulae for Conformal Supergravity Amplitudes
    New Worldsheet Formulae for Conformal Supergravity Amplitudes Joseph A. Farrow and Arthur E. Lipstein Department of Mathematical Sciences Durham University, Durham, DH1 3LE, United Kingdom Abstract We use 4d ambitwistor string theory to derive new worldsheet formulae for tree- level conformal supergravity amplitudes supported on refined scattering equations. Unlike the worldsheet formulae for super-Yang-Mills or supergravity, the scattering equations for conformal supergravity are not in general refined by MHV degree. Nevertheless, we obtain a concise worldsheet formula for any number of scalars and gravitons which we lift to a manifestly supersymmetric formula using four types of vertex operators. The theory also contains states with non-plane wave boundary conditions and we show that the corresponding amplitudes can be obtained from plane-wave amplitudes by applying momentum derivatives. Such derivatives are subtle to define since the formulae are intrinsically four-dimensional and on-shell, so we develop a method for computing momentum derivatives of spinor variables. arXiv:1805.04504v3 [hep-th] 11 Jul 2018 1 Contents 1 Introduction 2 2 Review 4 3 Plane Wave Graviton Multiplet Scattering 6 3.1 Supersymmetric Formula . .8 4 Non-Plane Wave Graviton Multiplet Scattering 9 5 Conclusion 11 A BRST Quantization 13 B Derivation of Berkovits-Witten Formula 16 C Momentum Derivatives 17 D Non-plane Wave Examples 19 D.1 Non-plane Wave Scalar . 19 D.2 Non-plane Wave Graviton . 21 1 Introduction Starting with the discovery of the Parke-Taylor formula for tree-level gluon amplitudes [1], the study of scattering amplitudes has suggested intruiging new ways of formulating quantum field theory.
    [Show full text]
  • Chapter 9: the 'Emergence' of Spacetime in String Theory
    Chapter 9: The `emergence' of spacetime in string theory Nick Huggett and Christian W¨uthrich∗ May 21, 2020 Contents 1 Deriving general relativity 2 2 Whence spacetime? 9 3 Whence where? 12 3.1 The worldsheet interpretation . 13 3.2 T-duality and scattering . 14 3.3 Scattering and local topology . 18 4 Whence the metric? 20 4.1 `Background independence' . 21 4.2 Is there a Minkowski background? . 24 4.3 Why split the full metric? . 27 4.4 T-duality . 29 5 Quantum field theoretic considerations 29 5.1 The graviton concept . 30 5.2 Graviton coherent states . 32 5.3 GR from QFT . 34 ∗This is a chapter of the planned monograph Out of Nowhere: The Emergence of Spacetime in Quantum Theories of Gravity, co-authored by Nick Huggett and Christian W¨uthrich and under contract with Oxford University Press. More information at www.beyondspacetime.net. The primary author of this chapter is Nick Huggett ([email protected]). This work was sup- ported financially by the ACLS and the John Templeton Foundation (the views expressed are those of the authors not necessarily those of the sponsors). We want to thank Tushar Menon and James Read for exceptionally careful comments on a draft this chapter. We are also grateful to Niels Linnemann for some helpful feedback. 1 6 Conclusions 35 This chapter builds on the results of the previous two to investigate the extent to which spacetime might be said to `emerge' in perturbative string the- ory. Our starting point is the string theoretic derivation of general relativity explained in depth in the previous chapter, and reviewed in x1 below (so that the philosophical conclusions of this chapter can be understood by those who are less concerned with formal detail, and so skip the previous one).
    [Show full text]
  • Black Holes and the Multiverse
    Home Search Collections Journals About Contact us My IOPscience Black holes and the multiverse This content has been downloaded from IOPscience. Please scroll down to see the full text. JCAP02(2016)064 (http://iopscience.iop.org/1475-7516/2016/02/064) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 165.123.34.86 This content was downloaded on 01/03/2016 at 21:11 Please note that terms and conditions apply. ournal of Cosmology and Astroparticle Physics JAn IOP and SISSA journal Black holes and the multiverse Jaume Garriga,a;b Alexander Vilenkinb and Jun Zhangb JCAP02(2016)064 aDepartament de Fisica Fonamental i Institut de Ciencies del Cosmos, Universitat de Barcelona, Marti i Franques, 1, Barcelona, 08028 Spain bInstitute of Cosmology, Tufts University, 574 Boston Ave, Medford, MA, 02155 U.S.A. E-mail: [email protected], [email protected], [email protected] Received December 28, 2015 Accepted February 3, 2016 Published February 25, 2016 Abstract. Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole.
    [Show full text]
  • T ¯ T Deformed CFT As a Non-Critical String Arxiv:1910.13578V1 [Hep-Th]
    Prepared for submission to JHEP T T¯ deformed CFT as a non-critical string Nele Callebaut,a;c;d Jorrit Kruthoffb and Herman Verlindea aJoseph Henry Laboratories, Princeton University, Princeton, NJ 08544, USA bStanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305, USA cDepartment of Physics and Astronomy, Ghent University, Krijgslaan 281-S9, 9000 Gent, Belgium dDepartment of Mathematics and Haifa Research Center for Theoretical Physics and Astrophysics, University of Haifa, Haifa 31905, Israel Abstract: We present a new exact treatment of T T¯ deformed 2D CFT in terms of the world- sheet theory of a non-critical string. The transverse dimensions of the non-critical string are represented by the undeformed CFT, while the two longitudinal light-cone directions are de- scribed by two scalar fields X+ and X− with free field OPE's but with a modified stress tensor, arranged so that the total central charge adds up to 26. The relation between our X± field vari- ables and 2D dilaton gravity is indicated. We compute the physical spectrum and the partition function and find a match with known results. We describe how to compute general correlation functions and present an integral expression for the three point function, which can be viewed as an exact formula for the OPE coefficients of the T T¯ deformed theory. We comment on the relationship with other proposed definitions of local operators. arXiv:1910.13578v1 [hep-th] 29 Oct 2019 Contents 1 Introduction2 2 A non-perturbative definition of T T¯ 3 2.1 T T¯ at c = 24 as a
    [Show full text]
  • Localized Kaluza-Klein 6-Brane
    Localized Kaluza-Klein 6-brane Tetsuji Kimura a∗, Shin Sasaki by and Kenta Shiozawa byy a Center for Physics and Mathematics, Institute for Liberal Arts and Sciences, Osaka Electro-Communication University 18-8 Hatsucho, Neyagawa, Osaka 572-8530, JAPAN ∗ t-kimura at osakac.ac.jp b Department of Physics, Kitasato University Kitasato 1-15-1, Minami-ku, Sagamihara 252-0373, JAPAN y shin-s at kitasato-u.ac.jp, yy k.shiozawa at sci.kitasato-u.ac.jp Abstract We study the membrane wrapping mode corrections to the Kaluza-Klein (KK) 6-brane in eleven dimensions. We examine the localized KK6-brane in the extended space in E7(7) exceptional field theory. In order to discuss the physical origin of the localization in the extended space, we consider a probe M2-brane in eleven dimensions. We show that a three- dimensional N = 4 gauge theory is naturally interpreted as a membrane generalization of the two-dimensional N = (4; 4) gauged linear sigma model for the fundamental string. We point out that the vector field in the N = 4 model is identified as a dual coordinate arXiv:2107.10534v1 [hep-th] 22 Jul 2021 of the KK6-brane geometry. We find that the BPS vortex in the gauge theory gives rise to the violation of the isometry along the dual direction. We then show that the vortex corrections are regarded as an instanton effect in M-theory induced by the probe M2-brane wrapping around the M-circle. 1 Introduction Dualities are key ingredients to understand the whole picture of string and M-theories.
    [Show full text]
  • Of Topological Strings
    Lecture @ 国家理論科学研究中心 15, October 2010 Introduction to Topological Strings on Local Geometry Masato Taki/ YITP, Kyoto University 瀧 雅人 / 京都大学 基礎物理学研究所 Topological Strings Today we will study topological string theory (on the so-called “local geometry”). It is a solvable toy model of string theory, and has many interesting mathematical feature. So, topological strings give a theoretical playground for string theorists. solvable model for string theory ∗ Moreover this theory is a toy model of varied applications. non-perturbative dynamics of gauge theories ∗ dualities relates many physical & mathematical theories ∗ Math Physics curve counting Calabi-Yau compactification knot theory Chern-Simons theory matrix model mirror symmetry topological strings . Seiberg-Witten-Nekrasov theory Dijkgraaf-Vafa theory twister string black holes Applications References ・Hori et al , “Mirror Symmetry” , Clay Mathematics Monographs ・ M. Marino, “Chern-Simons theory and topological strings”, hep-th/0406005 ・M. Marino, “Les Houches lectures on matrix models and topological strings”, hep-th/0410165 ・Vonk, “A mini-course on topological strings”, hep-th/0504147 Plan of the lecture Part 1 ・Worldsheet formulation of topological strings ・Conifold and geometric transition Part 2 ・Geometric engineering of gauge theories ・ Application to AGT relation 1. Worldsheet Formulation of Topological Strings - Why Topological String Theory Calabi-Yau compactification of superstring theory is an important topics in string theory. superstring theory (heterotic, 4 4 =1 , 2 gauge theory on Type II, ...) on M R R × N In general it is very hard to compute stringy corrections on such a curved background. The low-energy effective theory of the Calabi-Yau compactification of Type II A(B) superstring theory ?? Topological sting A(B)-model captures the holomorphic information of the low-energy theory exactly !! So, you will get exact result about stringy correction if you can compute topological string theory.
    [Show full text]
  • Topological String Theory
    Topological String Theory Hirosi Ooguri (Caltech) Strings 2005, Toronto, Canada If String Theory is an answer, what is the question? What is String Theory? If Topological String Theory is an answer, what is the question? What is Topological String Theory? 1. Formal Theory Topological String Theory Witten; DVV 1990 (1) Start with a Calabi-Yau 3-fold. (2) Topologically twist the sigma-model. (3) Couple it to the topological gravity on This is an asymptotic expansion. Methods to compute F_g Holomorphic Anomaly Equation BCOV 1993 Topological Vertex Aganagic, Klemm, Marino, Vafa 2003 for noncompact toric CY3, Iqbal, Kashani-Poor, to all order in perturbation Dijkgraaf, ..... Quantum Foams Okounkov, Reshetikhin, Vafa 2003 Iqbal, Nekrasov, ... Maurik, Pandharipande, ... more recent mathematical developments ... Open String Field Theory A-model => Chern-Simons gauge theory Witten 1992 Computation of knot invariants Vafa, H.O. 1999; Gukov, A.Schwarz, Vafa 2005 B-model => Matrix Model Dijkgraav, Vafa 2002 Laboratory for Large N Dualities Gopakumar,Vafa 1998 For the B-model: Dijkgraav, Vafa 2002 The topological string large N duality is amenable to worldsheet derivation: Vafa, H.O. 2002 The large N duality is a statement that is perturbative in closed string. That is why the worldsheet derivation is possible. A similar derivation may be possible for the AdS/CFT correspondence. Topological String Partition Function = Wave Function Consider the topological B-model For a given background, we can define the B-model. is a holomorphic function of The holomorphic anomaly equations derived in BCOV; interpreted by Witten; refined by D-V-Vonk. Interptetation: (1) On each tangent space, there is a Hilbert space.
    [Show full text]
  • Worldsheet Description of Exotic Five-Brane with Two Gauged Isometries
    RUP-13-13 Worldsheet Description of Exotic Five-brane with Two Gauged Isometries Tetsuji Kimura a and Shin Sasaki b a Department of Physics & Research Center for Mathematical Physics, Rikkyo University Tokyo 171-8501, JAPAN tetsuji at rikkyo.ac.jp b Department of Physics, Kitasato University Sagamihara 252-0373, JAPAN shin-s at kitasato-u.ac.jp Abstract 2 We study the string worldsheet description of the background geometry of the exotic 52- brane where two isometries are gauged. This is an extension of the gauged linear sigma model 2 (GLSM) for the exotic 52-brane with a single gauged isometry. The new GLSM with two gauged arXiv:1310.6163v3 [hep-th] 28 Mar 2014 isometries has only = (2, 2) supersymmetry rather than = (4, 4) supersymmetry of the N N original GLSM. This is caused by a conflict between two different SU(2)R associated with the two gauge symmetries. However, if we take a certain limit, we can find the genuine string sigma 2 model of the background geometry of the exotic 52-brane with = (4, 4) supersymmetry. We N also investigate the worldsheet instanton corrections to the background geometry of the exotic 2 52-brane. The worldsheet instanton corrections to the string sigma model can be traced in terms of the two gauge fields in the new GLSM. This new GLSM gives rise to a different feature of the quantum corrections from the one in the GLSM with the single gauged isometry. 1 Introduction What is the fundamental unit of matters and spacetime in Nature? We have not obtained the answer of this question yet, because the quantum theory of everything has not been found.
    [Show full text]
  • Lecture 1. Model Building in IIA: Intersecting Brane Worlds
    Compactification, Model Building, and Fluxes Angel M. Uranga IFT, Madrid, and CERN, Geneva Lecture 1. Model building in IIA: Intersecting brane worlds We review the construction of chiral four-dimensional compactifications of type IIA string theory with intersecting D6-branes. Such models lead to four-dimensional the- ories with non-abelian gauge interactions and charged chiral fermions. We discuss the application of these techniques to building of models with spectrum as close as possible to the Standard Model, and review their main phenomenological properties. 1Introduction String theory has the remarkable property that it provides a description of gauge and gravitational interactions in a unified framework consistently at the quantum level. It is this general feature (beyond other beautiful properties of particular string models) that makes this theory interesting as a possible candidate to unify our description of the different particles and interactions in Nature. Now if string theory is indeed realized in Nature, it should be able to lead not just to ‘gauge interactions’ in general, but rather to gauge sectors as rich and intricate as the gauge theory we know as the Standard Model of Particle Physics. In these lecture we describe compactifications of string theory where sets of D-branes lead to gauge sectors close to the Standard Model. We furthermore discuss the interplay of such D-brane systems with flux compactifications, recently introduced to address the issues of moduli stabilization and supersymmetry breaking. Before starting, it is important to emphasize that there are other constructions in string theory which are candidates to reproduce the physics of the Standard Model at low energies, which do not involve D-branes.
    [Show full text]
  • K-Theory and D-Branes
    K-Theory and D-Branes Mark Bugden February 26, 2013 Supervisor: Bryan Wang Mathematical Sciences Institute Australian National University String Theory is a branch of theoretical physics which attempts to describe elementary particles within atoms in terms of one-dimensional oscillating lines. Describing the dynamics of open strings requires specifying boundary conditions for the endpoints of the string. In string theory, there are two types of allowable boundary conditions for the endpoints: Neumann and Dirichlet boundary conditions. Dirichlet boundary conditions fix the endpoints of the string so that they are constrained to move on a specified object, which we call a D-Brane. If X is the spacetime manifold, then a sub-manifold Q is a D-Brane if, for a given string worldsheet Σ mapped to X, we have @Σ mapped to Q. A simple calculation shows that in the presence of Dirichlet boundary conditions (and hence D-Branes), the momentum of the string is not conserved. For a long time string theorists did not consider Dirichlet boundary conditions to be possible in the context of string theory for this reason. It turns out that it is possible for strings to be attached to D-Branes, and furthermore, string momentum is conserved − the momentum lost by the string is transferred to the D-Brane. This idea began the investigation into D-Branes as dynamical objects, and remains an area of active research today. D-Branes are classified by the (spatial) dimension of the D-Brane worldvolume. A Dp-Brane is a p-dimensional manifold, with a (p+1)-dimensional worldvolume.
    [Show full text]