Zz Branes from a Worldsheet Perspective∗

Total Page:16

File Type:pdf, Size:1020Kb

Zz Branes from a Worldsheet Perspective∗ Vol. 38 (2007) ACTA PHYSICA POLONICA B No 13 ZZ BRANES FROM A WORLDSHEET PERSPECTIVE ∗ Jan Ambjørn a,b, Jens Anders Gesser a aThe Niels Bohr Institute, Copenhagen University Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark bInstitute for Theoretical Physics, Utrecht University Leuvenlaan 4, NL-3584 CE Utrecht, The Netherlands (Received September 20, 2007) We show how non-compact space-time (ZZ branes) emerges as a limit of compact space-time (FZZT branes) for specific ratios between the square of the boundary cosmological constant and the bulk cosmological constant in the (2, 2m 1) minimal model coupled to two-dimensional Euclidean quantum gravity.− Furthermore, we show that the principal (r, s) ZZ brane can be viewed as the basic (1,1) ZZ boundary state tensored with a (r, s) Cardy boundary state for a general (p, q) minimal model coupled to two- dimensional quantum gravity. In this sense there exists only one ZZ bound- ary state, the basic (1,1) boundary state. PACS numbers: 11.25.Pm, 11.25.Hf, 04.60.Nc, 04.60.–m 1. Introduction Two-dimensional Euclidean quantum gravity serves as a good laboratory for the study of potential theories of quantum gravity in higher dimensions. Although it contains no dynamical gravitons and does not face the problem of being non-renormalizable, it can address many of the other conceptional questions which confronts a quantum field theory of gravity. How does one define the concept of distance in a theory where one is instructed to integrate over all geometries, how does one define the concept of correlation functions when one couples matter to gravity and the resulting theory is supposed to be diffeomorphism invariant? These are just two of many questions which can be addressed successfully and which are as difficult to answer in two dimensions as in higher dimensions. In addition two-dimensional quantum ∗ Presented at the Conference on Random Matrix Theory, “From Fundamental Physics to Applications”, Kraków, Poland, May 2–6, 2007. (3993) 3994 J. Ambjørn, J.A. Gesser gravity coupled to a minimal conformal field theory is nothing but a so-called non-critical string theory and serves as a good laboratory for the study of non-perturbative effects in string theory. The quantization of 2d gravity was first carried out for compact two- dimensional geometries using matrix models, combinatorial methods and methods from conformal field theory. Later on Zamolodchikov, Zamolod- chikov and Fateev and also Teschner (FZZT) used Liouville quantum field theory to quantize the disk geometry [2], thereby reproducing results already obtained from matrix models. Then the Zamolodchikovs (ZZ) turned their attention to a previously unadressed question crucial to quantum gravity, namely how to quantize non-compact 2d Euclidean geometries [1]. They asked if the quantization of the disk geometry could be generalized to the Lobachevskiy plane, also known as Euclidean AdS2 or the pseudosphere. The pseudosphere is a non-compact space with no genuine boundary. How- ever, one has to impose suitable boundary conditions at infinity in order to obtain a conformal field theory. The crucial difference compared to the quantization of the compact disk is that one can invoke the assumption of factorization when discussing the correlator of two operators. One assumes that (x) (y) (x) (y) (1) hO1 O2 i → hO1 ihO2 i when the geodesic distance on the pseudosphere between x and y goes to infinity. This additional requirement results in a number of self-consistent boundary conditions at infinity compatible with the conformal invariance of quantum Liouville theory. It is the purpose of this article to address the question of quantizing non-compact 2D Euclidean geometries using a different approach than the Zamolodchikovs. However, our results will relate to the random geometries obtained by the Zamolodchikovs. In modern string terminology boundary conditions are almost synony- mous to “branes” and in this spirit the conventional partition function for the disk and the partition function for the pseudosphere were reinterpre- tated in non-critical string theory as FZZT and ZZ branes, respectively. In this context it was first noticed that there is an intriguing relationship be- tween the FZZT and the ZZ branes [3–6], as well as between the analytical continuation of the disk amplitude to the complex plane and the space of conformal invariant boundary conditions one can impose. It is the objective of this article to analyze these relations from a world- sheet perspective. ZZ Branes from a Worldsheet Perspective 3995 2. From compact to non-compact geometry The disk and cylinder amplitudes for generic values of the coupling con- stants in minimal string theory were first calculated using matrix model techniques. In order to compare with continuum calculations performed in the context of Liouville theory, it is necessary to work in the so-called con- formal background [7]. In the following we will, for simplicity, concentrate on the disk and the cylinder amplitudes in the (2, 2m 1) minimal conformal field theories coupled to 2d quantum gravity. In the− conformal background the disk amplitude is given by: w (x) = ( 1)mPˆ (x, √µ) x + √µ = ( 1)m (√µ)(2m−1)/2 P (t)√t + 1 , µ − m − m q (2) where t = x/√µ and where [4, 7] 2 2−2m Pm(t) (t + 1) = 2 (T2m−1(t) + 1) . (3) Tp(t) being the first kind of Chebyshev polynomial of degree p. In Eq. (2) x denotes the boundary cosmological coupling constant and µ the bulk cosmo- logical coupling constant, the theory viewed as 2d quantum gravity coupled to the (2, 2m 1) minimal CFT. The zeros of the polynomial Pm(t) are all located on the− real axis between 1 and 1 and more explicitly we can write: − m−1 P (t) = (t t ) , m − n nY=1 2nπ t = cos , 1 n m 1 . (4) n − 2m 1 ≤ ≤ − − The zeros of Pm(t) can be associated with the m 1 principal ZZ branes in the notation of [4]. In order to understand this, i.e.−in order to understand why the special values tn (and only these values) of the boundary cosmolog- ical constant are related to non-compact worldsheet geometries, it is useful to invoke the so-called loop–loop propagator Gµ(x,y; d) [12–16]. It describes the amplitude of an “exit” loop with boundary cosmological constant y to be separated a distance d from an “entrance” loop with boundary cosmological constant x (the entrance loop conventionally assumed to have one marked point). Gµ(x,y; d) satisfies the following equation: ∂ ∂ G (x,y; d)= w (x)G (x,y; d) , (5) ∂d µ −∂x µ µ 3996 J. Ambjørn, J.A. Gesser with the following solution: x ′ wµ(¯x(d)) 1 dx Gµ(x,y; d)= , d = ′ , (6) wµ(x) x¯(d)+ y Z wµ(x ) x¯(d) where x¯(d) is called the running boundary coupling constant. For the (2, 2m 1) minimal model coupled to 2d gravity (6) reads: − ¯ m−1 ¯ ′ 1 1 1+ t(d) n=1 (t(d) tn) Gµ(t,t ; d) − , (7) ∝ √µ t¯(d)+ t′ p √1+ t Qm−1 (t t ) n=1 − n Q where we use the notation of (2), i.e. t = x/√µ, t′ = y/√µ and t¯(d) = x¯(d)/√µ. For m = 2, i.e. pure gravity d measures the geodesic distance. For m > 2 this is not true. Rather, it is a distance measured in terms of matter excitations. This is explicit by construction in some models of quantum gravity with matter, for instance the Ising model and the c = 2 model formulated as an O( 2) model [18, 19]. However, we can still use−d as a measure of distance and− we will do so in the following. When d it follows from (6) that the running boundary coupling constant t¯(d) converges→∞ to one of the zeros of the polynomial Pm(t), i.e. 2kπ t¯(d) tk , tk = cos . (8) −−−→d→∞ − 2m 1 − The cylinder amplitude (7) vanishes for generic values of t′ in the limit d . However, as shown in [8] we have a unique situation when we choose ′ →∞ ′ t = tk since in this case the term 1/(t¯(d)+ t ) in (7) becomes singular for d − . After some algebra we obtain the following expression: →∞ m−1 ′ 1 1 n 2nπ Gµ(t,t = tk, d ) ( 1) sin − →∞ ∝ √µ √1+ t − 2m 1 Xn=1 − 1 1 . (9) × √1+ t + √1+ t − √1+ t √1+ t n − n ′ Notice, Gµ(t,t = tk, d ) is independent of which zero tk the running boundary coupling− constant→∞ approaches in the limit d , apart from an overall constant of proportionality. → ∞ Formula (9) describes an AdS-like non-compact space with cosmological constant µ and with one compact boundary with boundary cosmological constant x as explained in [8] in the case of pure gravity. In the last section we will comment on the fact that we have to set t′ = t in order to generate − k ZZ Branes from a Worldsheet Perspective 3997 an AdS-like non-compact space in the limit d and that tk serves as an attractive fixed point for the running boundary→∞ coupling constant. Now, we will explain how the cylinder amplitude (9) is related to the conventional FZZT–ZZ cylinder amplitude in the Liouville approach to quantum gravity. 3. The cylinder amplitudes Like the disk amplitude (2), the cylinder amplitude in the (2, 2m 1) minimal CFT coupled to 2d quantum gravity was first calculated using− the one-matrix model. Quite remarkable it was found to be universal, i.e. the same in all the (2, 2m 1) minimal models coupled to quantum gravity [7,17]: − 2 Zµ(t1,t2)= log √t1 +1+ √t2 + 1 √µ a , (10) − where a is a (lattice) cut-off.
Recommended publications
  • The Semiclassical Limit of Liouville Conformal Field Theory Hubert Lacoin, Rémi Rhodes, Vincent Vargas
    The semiclassical limit of Liouville conformal field theory Hubert Lacoin, Rémi Rhodes, Vincent Vargas To cite this version: Hubert Lacoin, Rémi Rhodes, Vincent Vargas. The semiclassical limit of Liouville conformal field theory. 2019. hal-02114667 HAL Id: hal-02114667 https://hal.archives-ouvertes.fr/hal-02114667 Preprint submitted on 29 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The semiclassical limit of Liouville conformal field theory Hubert Lacoin ∗, R´emi Rhodes †, Vincent Vargas ‡ Monday 29th April, 2019 Abstract A rigorous probabilistic construction of Liouville conformal field theory (LCFT) on the Rie- mann sphere was recently given by David-Kupiainen and the last two authors. In this paper, we focus on the connection between LCFT and the classical Liouville field theory via the semiclas- sical approach. LCFT depends on a parameter γ (0, 2) and the limit γ 0 corresponds to the semiclassical limit of the theory. Within this asymptotic∈ and under a negative→ curvature condi- tion (on the limiting metric of the theory), we determine the limit of the correlation functions and of the associated Liouville field. We also establish a large deviation result for the Liouville field: as expected, the large deviation functional is the classical Liouville action.
    [Show full text]
  • Lectures on D-Branes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server CPHT/CL-615-0698 hep-th/9806199 Lectures on D-branes Constantin P. Bachas1 Centre de Physique Th´eorique, Ecole Polytechnique 91128 Palaiseau, FRANCE [email protected] ABSTRACT This is an introduction to the physics of D-branes. Topics cov- ered include Polchinski’s original calculation, a critical assessment of some duality checks, D-brane scattering, and effective worldvol- ume actions. Based on lectures given in 1997 at the Isaac Newton Institute, Cambridge, at the Trieste Spring School on String The- ory, and at the 31rst International Symposium Ahrenshoop in Buckow. June 1998 1Address after Sept. 1: Laboratoire de Physique Th´eorique, Ecole Normale Sup´erieure, 24 rue Lhomond, 75231 Paris, FRANCE, email : [email protected] Lectures on D-branes Constantin Bachas 1 Foreword Referring in his ‘Republic’ to stereography – the study of solid forms – Plato was saying : ... for even now, neglected and curtailed as it is, not only by the many but even by professed students, who can suggest no use for it, never- theless in the face of all these obstacles it makes progress on account of its elegance, and it would not be astonishing if it were unravelled. 2 Two and a half millenia later, much of this could have been said for string theory. The subject has progressed over the years by leaps and bounds, despite periods of neglect and (understandable) criticism for lack of direct experimental in- put. To be sure, the construction and key ingredients of the theory – gravity, gauge invariance, chirality – have a firm empirical basis, yet what has often catalyzed progress is the power and elegance of the underlying ideas, which look (at least a posteriori) inevitable.
    [Show full text]
  • Two-Dimensional Quantum Gravity Coupled to Non-Conformal Matter Corinne De Lacroix De Lavalette
    Two-dimensional quantum gravity coupled to non-conformal matter Corinne de Lacroix de Lavalette To cite this version: Corinne de Lacroix de Lavalette. Two-dimensional quantum gravity coupled to non-conformal matter. Quantum Physics [quant-ph]. Université Pierre et Marie Curie - Paris VI, 2017. English. NNT : 2017PA066288. tel-01706737 HAL Id: tel-01706737 https://tel.archives-ouvertes.fr/tel-01706737 Submitted on 12 Feb 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Thèse de doctorat réalisée au Laboratoire de physique théorique pour obtenir le grade de Docteur de l’Université Pierre et Marie Curie Spécialité : Physique École doctorale : « Physique en Île-de-France » présentée par Corinne de Lacroix soutenue le 28 septembre 2017 Titre : Gravité quantique à deux dimensions couplée à de la matière non-conforme Two-dimensional quantum gravity coupled to non-conformal matter devant le jury composé de Adel Bilal Directeur de thèse Benoit Douçot Examinateur Semyon Klevtsov Examinateur Antti Kupiainen Rapporteur Stam Nicolis Rapporteur Contents Abstract.......................................... iv 1 Introduction 1 1.1 Whyquantumgravity?.............................. 1 1.2 Two-dimensionalquantumgravity . ..... 2 1.3 Other research directions during this PhD . ........ 4 1.3.1 A fermionic matrix model for black holes .
    [Show full text]
  • 8. Compactification and T-Duality
    8. Compactification and T-Duality In this section, we will consider the simplest compactification of the bosonic string: a background spacetime of the form R1,24 S1 (8.1) ⇥ The circle is taken to have radius R, so that the coordinate on S1 has periodicity X25 X25 +2⇡R ⌘ We will initially be interested in the physics at length scales R where motion on the S1 can be ignored. Our goal is to understand what physics looks like to an observer living in the non-compact R1,24 Minkowski space. This general idea goes by the name of Kaluza-Klein compactification. We will view this compactification in two ways: firstly from the perspective of the spacetime low-energy e↵ective action and secondly from the perspective of the string worldsheet. 8.1 The View from Spacetime Let’s start with the low-energy e↵ective action. Looking at length scales R means that we will take all fields to be independent of X25: they are instead functions only on the non-compact R1,24. Consider the metric in Einstein frame. This decomposes into three di↵erent fields 1,24 on R :ametricG˜µ⌫,avectorAµ and a scalar σ which we package into the D =26 dimensional metric as 2 µ ⌫ 2σ 25 µ 2 ds = G˜µ⌫ dX dX + e dX + Aµ dX (8.2) Here all the indices run over the non-compact directions µ, ⌫ =0 ,...24 only. The vector field Aµ is an honest gauge field, with the gauge symmetry descend- ing from di↵eomorphisms in D =26dimensions.Toseethisrecallthatunderthe transformation δXµ = V µ(X), the metric transforms as δG = ⇤ + ⇤ µ⌫ rµ ⌫ r⌫ µ This means that di↵eomorphisms of the compact direction, δX25 =⇤(Xµ), turn into gauge transformations of Aµ, δAµ = @µ⇤ –197– We’d like to know how the fields Gµ⌫, Aµ and σ interact.
    [Show full text]
  • New Worldsheet Formulae for Conformal Supergravity Amplitudes
    New Worldsheet Formulae for Conformal Supergravity Amplitudes Joseph A. Farrow and Arthur E. Lipstein Department of Mathematical Sciences Durham University, Durham, DH1 3LE, United Kingdom Abstract We use 4d ambitwistor string theory to derive new worldsheet formulae for tree- level conformal supergravity amplitudes supported on refined scattering equations. Unlike the worldsheet formulae for super-Yang-Mills or supergravity, the scattering equations for conformal supergravity are not in general refined by MHV degree. Nevertheless, we obtain a concise worldsheet formula for any number of scalars and gravitons which we lift to a manifestly supersymmetric formula using four types of vertex operators. The theory also contains states with non-plane wave boundary conditions and we show that the corresponding amplitudes can be obtained from plane-wave amplitudes by applying momentum derivatives. Such derivatives are subtle to define since the formulae are intrinsically four-dimensional and on-shell, so we develop a method for computing momentum derivatives of spinor variables. arXiv:1805.04504v3 [hep-th] 11 Jul 2018 1 Contents 1 Introduction 2 2 Review 4 3 Plane Wave Graviton Multiplet Scattering 6 3.1 Supersymmetric Formula . .8 4 Non-Plane Wave Graviton Multiplet Scattering 9 5 Conclusion 11 A BRST Quantization 13 B Derivation of Berkovits-Witten Formula 16 C Momentum Derivatives 17 D Non-plane Wave Examples 19 D.1 Non-plane Wave Scalar . 19 D.2 Non-plane Wave Graviton . 21 1 Introduction Starting with the discovery of the Parke-Taylor formula for tree-level gluon amplitudes [1], the study of scattering amplitudes has suggested intruiging new ways of formulating quantum field theory.
    [Show full text]
  • Chapter 9: the 'Emergence' of Spacetime in String Theory
    Chapter 9: The `emergence' of spacetime in string theory Nick Huggett and Christian W¨uthrich∗ May 21, 2020 Contents 1 Deriving general relativity 2 2 Whence spacetime? 9 3 Whence where? 12 3.1 The worldsheet interpretation . 13 3.2 T-duality and scattering . 14 3.3 Scattering and local topology . 18 4 Whence the metric? 20 4.1 `Background independence' . 21 4.2 Is there a Minkowski background? . 24 4.3 Why split the full metric? . 27 4.4 T-duality . 29 5 Quantum field theoretic considerations 29 5.1 The graviton concept . 30 5.2 Graviton coherent states . 32 5.3 GR from QFT . 34 ∗This is a chapter of the planned monograph Out of Nowhere: The Emergence of Spacetime in Quantum Theories of Gravity, co-authored by Nick Huggett and Christian W¨uthrich and under contract with Oxford University Press. More information at www.beyondspacetime.net. The primary author of this chapter is Nick Huggett ([email protected]). This work was sup- ported financially by the ACLS and the John Templeton Foundation (the views expressed are those of the authors not necessarily those of the sponsors). We want to thank Tushar Menon and James Read for exceptionally careful comments on a draft this chapter. We are also grateful to Niels Linnemann for some helpful feedback. 1 6 Conclusions 35 This chapter builds on the results of the previous two to investigate the extent to which spacetime might be said to `emerge' in perturbative string the- ory. Our starting point is the string theoretic derivation of general relativity explained in depth in the previous chapter, and reviewed in x1 below (so that the philosophical conclusions of this chapter can be understood by those who are less concerned with formal detail, and so skip the previous one).
    [Show full text]
  • Black Holes and the Multiverse
    Home Search Collections Journals About Contact us My IOPscience Black holes and the multiverse This content has been downloaded from IOPscience. Please scroll down to see the full text. JCAP02(2016)064 (http://iopscience.iop.org/1475-7516/2016/02/064) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 165.123.34.86 This content was downloaded on 01/03/2016 at 21:11 Please note that terms and conditions apply. ournal of Cosmology and Astroparticle Physics JAn IOP and SISSA journal Black holes and the multiverse Jaume Garriga,a;b Alexander Vilenkinb and Jun Zhangb JCAP02(2016)064 aDepartament de Fisica Fonamental i Institut de Ciencies del Cosmos, Universitat de Barcelona, Marti i Franques, 1, Barcelona, 08028 Spain bInstitute of Cosmology, Tufts University, 574 Boston Ave, Medford, MA, 02155 U.S.A. E-mail: [email protected], [email protected], [email protected] Received December 28, 2015 Accepted February 3, 2016 Published February 25, 2016 Abstract. Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole.
    [Show full text]
  • T ¯ T Deformed CFT As a Non-Critical String Arxiv:1910.13578V1 [Hep-Th]
    Prepared for submission to JHEP T T¯ deformed CFT as a non-critical string Nele Callebaut,a;c;d Jorrit Kruthoffb and Herman Verlindea aJoseph Henry Laboratories, Princeton University, Princeton, NJ 08544, USA bStanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305, USA cDepartment of Physics and Astronomy, Ghent University, Krijgslaan 281-S9, 9000 Gent, Belgium dDepartment of Mathematics and Haifa Research Center for Theoretical Physics and Astrophysics, University of Haifa, Haifa 31905, Israel Abstract: We present a new exact treatment of T T¯ deformed 2D CFT in terms of the world- sheet theory of a non-critical string. The transverse dimensions of the non-critical string are represented by the undeformed CFT, while the two longitudinal light-cone directions are de- scribed by two scalar fields X+ and X− with free field OPE's but with a modified stress tensor, arranged so that the total central charge adds up to 26. The relation between our X± field vari- ables and 2D dilaton gravity is indicated. We compute the physical spectrum and the partition function and find a match with known results. We describe how to compute general correlation functions and present an integral expression for the three point function, which can be viewed as an exact formula for the OPE coefficients of the T T¯ deformed theory. We comment on the relationship with other proposed definitions of local operators. arXiv:1910.13578v1 [hep-th] 29 Oct 2019 Contents 1 Introduction2 2 A non-perturbative definition of T T¯ 3 2.1 T T¯ at c = 24 as a
    [Show full text]
  • Localized Kaluza-Klein 6-Brane
    Localized Kaluza-Klein 6-brane Tetsuji Kimura a∗, Shin Sasaki by and Kenta Shiozawa byy a Center for Physics and Mathematics, Institute for Liberal Arts and Sciences, Osaka Electro-Communication University 18-8 Hatsucho, Neyagawa, Osaka 572-8530, JAPAN ∗ t-kimura at osakac.ac.jp b Department of Physics, Kitasato University Kitasato 1-15-1, Minami-ku, Sagamihara 252-0373, JAPAN y shin-s at kitasato-u.ac.jp, yy k.shiozawa at sci.kitasato-u.ac.jp Abstract We study the membrane wrapping mode corrections to the Kaluza-Klein (KK) 6-brane in eleven dimensions. We examine the localized KK6-brane in the extended space in E7(7) exceptional field theory. In order to discuss the physical origin of the localization in the extended space, we consider a probe M2-brane in eleven dimensions. We show that a three- dimensional N = 4 gauge theory is naturally interpreted as a membrane generalization of the two-dimensional N = (4; 4) gauged linear sigma model for the fundamental string. We point out that the vector field in the N = 4 model is identified as a dual coordinate arXiv:2107.10534v1 [hep-th] 22 Jul 2021 of the KK6-brane geometry. We find that the BPS vortex in the gauge theory gives rise to the violation of the isometry along the dual direction. We then show that the vortex corrections are regarded as an instanton effect in M-theory induced by the probe M2-brane wrapping around the M-circle. 1 Introduction Dualities are key ingredients to understand the whole picture of string and M-theories.
    [Show full text]
  • Of Topological Strings
    Lecture @ 国家理論科学研究中心 15, October 2010 Introduction to Topological Strings on Local Geometry Masato Taki/ YITP, Kyoto University 瀧 雅人 / 京都大学 基礎物理学研究所 Topological Strings Today we will study topological string theory (on the so-called “local geometry”). It is a solvable toy model of string theory, and has many interesting mathematical feature. So, topological strings give a theoretical playground for string theorists. solvable model for string theory ∗ Moreover this theory is a toy model of varied applications. non-perturbative dynamics of gauge theories ∗ dualities relates many physical & mathematical theories ∗ Math Physics curve counting Calabi-Yau compactification knot theory Chern-Simons theory matrix model mirror symmetry topological strings . Seiberg-Witten-Nekrasov theory Dijkgraaf-Vafa theory twister string black holes Applications References ・Hori et al , “Mirror Symmetry” , Clay Mathematics Monographs ・ M. Marino, “Chern-Simons theory and topological strings”, hep-th/0406005 ・M. Marino, “Les Houches lectures on matrix models and topological strings”, hep-th/0410165 ・Vonk, “A mini-course on topological strings”, hep-th/0504147 Plan of the lecture Part 1 ・Worldsheet formulation of topological strings ・Conifold and geometric transition Part 2 ・Geometric engineering of gauge theories ・ Application to AGT relation 1. Worldsheet Formulation of Topological Strings - Why Topological String Theory Calabi-Yau compactification of superstring theory is an important topics in string theory. superstring theory (heterotic, 4 4 =1 , 2 gauge theory on Type II, ...) on M R R × N In general it is very hard to compute stringy corrections on such a curved background. The low-energy effective theory of the Calabi-Yau compactification of Type II A(B) superstring theory ?? Topological sting A(B)-model captures the holomorphic information of the low-energy theory exactly !! So, you will get exact result about stringy correction if you can compute topological string theory.
    [Show full text]
  • M Theory from World-Sheet Defects in Liouville String
    CERN-TH/97-119 CTP-TAMU-26/97 ACT-09/97 OUTP-97-28P hep-th/9706125 M Theory from World-Sheet Defects in Liouville String John Ellisa, N.E. Mavromatosb,, D.V. Nanopoulosc,d,e Abstract We have argued previously that black holes may be represented in a D-brane approach by monopole and vortex defects in a sine-Gordon field theory model of Liouville dynamics on the world sheet. Supersymmetrizing this sine-Gordon system, we find critical behaviour in 11 dimensions, due to defect condensation that is the world-sheet analogue of D-brane condensation around an extra space-time dimension in M theory. This supersymmet- ric description of Liouville dynamics has a natural embedding within a 12-dimensional framework suggestive of F theory. a Theory Division, CERN, CH-1211, Geneva, Switzerland, b University of Oxford, Dept. of Physics (Theoretical Physics), 1 Keble Road, Oxford OX1 3NP, United Kingdom, c Center for Theoretical Physics, Dept. of Physics, Texas A & M University, College Station, TX 77843-4242, USA, d Astroparticle Physics Group, Houston Advanced Research Center (HARC), The Mitchell Campus, Woodlands, TX 77381, USA. e Academy of Athens, Chair of Theoretical Physics, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679, Greece. P.P.A.R.C. Advanced Fellow. CERN-TH/97-119 CTP-TAMU-26/97 ACT-09/97 OUTP-97-28P June 1997 1 Introduction If one is to understand the relationships between the plethora of apparently consistent classical string vacua and understand non-perturbative effects in string theory, one needs an approach that goes beyond critical strings and conformal field theory.
    [Show full text]
  • Topological String Theory
    Topological String Theory Hirosi Ooguri (Caltech) Strings 2005, Toronto, Canada If String Theory is an answer, what is the question? What is String Theory? If Topological String Theory is an answer, what is the question? What is Topological String Theory? 1. Formal Theory Topological String Theory Witten; DVV 1990 (1) Start with a Calabi-Yau 3-fold. (2) Topologically twist the sigma-model. (3) Couple it to the topological gravity on This is an asymptotic expansion. Methods to compute F_g Holomorphic Anomaly Equation BCOV 1993 Topological Vertex Aganagic, Klemm, Marino, Vafa 2003 for noncompact toric CY3, Iqbal, Kashani-Poor, to all order in perturbation Dijkgraaf, ..... Quantum Foams Okounkov, Reshetikhin, Vafa 2003 Iqbal, Nekrasov, ... Maurik, Pandharipande, ... more recent mathematical developments ... Open String Field Theory A-model => Chern-Simons gauge theory Witten 1992 Computation of knot invariants Vafa, H.O. 1999; Gukov, A.Schwarz, Vafa 2005 B-model => Matrix Model Dijkgraav, Vafa 2002 Laboratory for Large N Dualities Gopakumar,Vafa 1998 For the B-model: Dijkgraav, Vafa 2002 The topological string large N duality is amenable to worldsheet derivation: Vafa, H.O. 2002 The large N duality is a statement that is perturbative in closed string. That is why the worldsheet derivation is possible. A similar derivation may be possible for the AdS/CFT correspondence. Topological String Partition Function = Wave Function Consider the topological B-model For a given background, we can define the B-model. is a holomorphic function of The holomorphic anomaly equations derived in BCOV; interpreted by Witten; refined by D-V-Vonk. Interptetation: (1) On each tangent space, there is a Hilbert space.
    [Show full text]