Winding Corrected Five-Branes in Double Field Theory

Total Page:16

File Type:pdf, Size:1020Kb

Winding Corrected Five-Branes in Double Field Theory Worldvolume Theory of Winding Corrected Five-branes in Double Field Theory Kenta Shiozawa (Kitasato University, Japan) 17 Dec. 2019 Miami2019 conference @ Fort Lauderdale JHEP07(2018)001, JHEP12(2018)095 (joint work with Tetsuji Kimura and Shin Sasaki) and work in progress (with Shin Sasaki) Menu 1 Introduction 2 Double Field Theory 3 DFT solutions 4 Instanton corrections to spacetime geometry 5 Worldvolume theory in DFT 6 Summary 2 / 40 Menu 1 Introduction 2 Double Field Theory 3 DFT solutions 4 Instanton corrections to spacetime geometry 5 Worldvolume theory in DFT 6 Summary 3 / 40 Spacetime Geometry We are interested in Spacetime Geometry considering string effects What is the difference between Einstein and string theories? Einstein gravity (Supergravity) probed by point particles described by a Riemannian manifold String Theory probed by strings described by new stringy geometry What are the characteristic quantities in stringy geometry? 4 / 40 T-duality Strings on compact spaces S1 can have momentum along compact directions ! KK mode n can wind compact directions (unlike point particles) ! winding mode w String theory is invariant under exchange of KK-mode n and winding mode w ( ) ( ) ( ) ( )2 2 2 n R n w E = + w T : $ 0 R α0 R α =R This invariance is known as T-duality. 5 / 40 T-duality orbit Background geometries are mapped into each other under T-duality. e.g. Dp-brane $ D(p − 1)-brane F1-string $ pp-wave In particular, solitonic five-brane: NS5-brane ! Taub-NUT space (KK5-brane) 6 / 40 A Puzzle for 5-branes Analysis by [Gregory-Harvey-Moore '97] Smeared NS5 on S1 ! Taub-NUT space n w tower of KK-modes tower of winding modes Smeared NS5 geometry receives KK-mode corrections There is a tower of winding modes by Taub-NUT side ! Does the Taub-NUT geometry receive string winding corrections? | yes. 7 / 40 Dual coordinate dependence Smeared NS5 becomes NS5-brane geometry by KK-mode corrections [Tong '02] NS5-brane geometry: gµν = gµν (x; y) y: Fourier dual of KK momentum Taub-NUT space is modified by string winding corrections [Harvey-Jensen '05] Modified Taub-NUT space: gµν = gµν (x; y~) y~: Fourier dual of winding momentum | has winding coordinate dependence The corrections break isometries of the geometries ! this means \Non-isometric T-duality" [Dabholkar-Hull '05] NS5-brane ! Modified Taub-NUT 8 / 40 2 Exotic 52-brane c Branes can be labelled as bn-branes c bn b: spatial dimensions of worldvolume c: number of isometry directions ∼ −n n: mass of brane (tension: Tbrane gs ) 0 1 e.g. NS5-brane = 52, KK5-brane (Taub-NUT) = 52, ... 9 / 40 2 Exotic 52-brane T-duality relation of background geometries extends as follows ! ! 2 NS5 Taub-NUT 52 [de Boer-Shigemori '10, '13] 2 52-brane geometry is modified by winding corrections [Kimura-Sasaki '13] 2 Modified 52 geometry: gµν = gµν (x; y~1) y~1: Fourier dual of winding momentum | has winding coordinate dependence \Non-isometric T-duality" relation also extends as ! ! 2 NS5-brane Modified Taub-NUT Modified 52-brane 10 / 40 Winding corrections to geometries Winding corrected geometries Modified Taub-NUT space 2 Modified 52-brane geometry are NOT solutions to type II supergravity ! what kind of solutions are they? | solutions to double field theory 11 / 40 Menu 1 Introduction 2 Double Field Theory 3 DFT solutions 4 Instanton corrections to spacetime geometry 5 Worldvolume theory in DFT 6 Summary 12 / 40 Double Field Theory (DFT) A manifestly T-duality invariant formulation of supergravity theory [Hull-Zwiebach '09] Double Field Theory DFT is a gravity theory defined on the doubled space M2D = M D × M~ D 2D M µ M is parametrized by the generalized coordinates X = (~xµ; x ) momentum p T-dual−−−−! winding momentum w Fourier conj l Fourier conj. Fourier conj l Fourier conj. ordinary coord. x winding coord. x~ M D M~ D Dynamical fields in DFT: \generalized metric" HMN (X) and \DFT dilaton" d(X) HMN is parametrized by metric g (on M D) and NSNS B-field B : ( µν ) µν − ρσ ρν HMN gµν Bµρg Bσν Bµρg = µρ µν −g Bρν g p d is rescaled the dilaton ϕ: e−2d = −ge−2ϕ 14 / 40 DFT action DFT action: represented by Einstein-Hilbert form [Hohm-Hull-Zwiebach '10] Z 2D −2d SDFT = d X e R(H; d) T-duality is a manifest symmetry of the theory DFT never requires isometries ! inherits \Non-isometric T-duality" [Dabholkar-Hull '05] The equation of motion obtained from SDFT is the generalized Einstein eq. 1 R − H R = 0 MN 2 MN DFT is formulated in the same form as Einstein gravity theory, except that the space is doubled to respect T-duality. 15 / 40 Strong Constraint DFT has extra degrees of freedom since the base space is doubled. It is necessary to reduce. The constraint that makes DFT be a physical theory is called the strong constraint MN η @M ∗ @N ∗ = 0 The strong constraint originally came from the level matching condition of closed strings By choosing one of the solution to the strong constraint @M = (0;@µ), DFT reduces to the NSNS sector of type II supergravity Z [ ] ~ p 1 S −−−!@=0 S = dDx −ge−2ϕ R + 4(@ϕ)2 − H2 DFT sugra 12 DFT ⊃ Supergravity 16 / 40 Menu 1 Introduction 2 Double Field Theory 3 DFT solutions 4 Instanton corrections to spacetime geometry 5 Worldvolume theory in DFT 6 Summary 17 / 40 Classical solutions of DFT These known supergravity solutions are classical solutions of DFT: [Berkeley-Berman-Rudolph '14] [Berman-Rudolph '15] [Bakhmatov-Kleinschmidt-Musaev '16] [and more ...] NS5-brane Taub-NUT space F-string pp-wave 2 52-brane and so on 18 / 40 Non-supergravity DFT solution We are interested in the non-supergravity solutions peculiar to DFT DFT inherits \Non-isometric T-duality" T-duality transformation without isometries is possible We find new solutions in DFT Modified Taub-NUT space 2 Modified 52-brane Locally non-geometric R-brane and so on 19 / 40 New solutions Modified Taub-NUT space 2 m n −1 9 i 2 i j ds = ηmndx dx + H (dy + bi9dy ) + Hδijdy dy ; i j B = bij dy ^ dy ; 2ϕ d e = const:; 3@[abbc] = "abcd@ H (i; j = 6; 7; 8; a; b; c; d = 6; 7; 8; 9; m; n = 0;:::; 5) Harmonic function of this solution: 2 3 ( ) X i Q 4 y~9 i n 5 H(y ; y~9) = c + 1 + exp in − jy j jyij ~ ~ n=06 R9 R9 | has winding coordinate dependence ! this exhibits exponential behavior 20 / 40 New solutions 2 Modified 52-brane [Kimura-Sasaki-K.S. '18] 2 m n α β ds = ηmn dx dx + Hδαβ dy dy H [ ] + (dy9 + b dyα)2 + (dy8 + b dyα)2 ; H2 + b2 α9 α8 89 h i α ^ β − b89 8 α ^ 9 β B = bαβ dy dy 2 2 (dy + bα8dy ) (dy + bβ9dy ) ; H + b89 2ϕ H e = 2 2 ; (α; β = 6; 7) H + b89 Harmonic function of this solution: Q µ H ' log ~ ~ jyαj 2πR8R9 2 3 s( ) ( ) ( ) Q X m 2 n 2 y~ y~ + exp 4−jyαj + + i m 8 + n 9 5 2πR~ R~ R~ R~ R~ R~ 8 9 n;m=(06 ;0) 8 9 8 9 | has winding coordinate dependence 21 / 40 New solutions Locally non-geometric R-brane [Kimura-Sasaki-K.S. '18] ds2 = η dxmdxn + H(dy6)2 mn " # ( )2 1 ^ + K−1 H2(dy + b dy6)2 + "^{|^kb (dy + b dy6) ; 2 k^ 6k^ 2 ^{|^ k^ 6k^ Hb^{|^ 6 ^ B = − (dy^{ + b6^{dy ) ^ dy|^; (^{; |;^ k = 7; 8; 9) K2 2ϕ −1 ≡ 2 2 2 2 e = HK2 ;K2 H(H + b89 + b79 + b78): Harmonic function of this solution: [ ( )] X 1 y~ y~ y~ H = const: − Cjy6j + C exp −jy6js + i l 7 + m 8 + n 9 s R~ R~ R~ l;m;n=(06 ;0;0) 7 8 9 s( ) ( ) ( ) Q l 2 m 2 n 2 C = ; s = + + 4πR~7R~8R~9 R~7 R~8 R~9 R-brane has No corresponding solution in supergravity R-brane is mysterious object 22 / 40 New solutions We obtain various five-brane solutions in DFT: [Kimura-Sasaki-K.S. '18] 1 2 3 4 52 52 52 52 52 1 2 2 3 3 4 4 codim 4 NS5 KK5 + w 52 + w 52 + w 52 + w 2 1 3 2 4 3 codim 3 sNS5 KK5 52 + w 52 + w 52 + w 2 3 1 4 2 codim 2 dsNS5 sKK5 52 52 + w 52 + w 2 3 4 codim 1 tsNS5 dsKK5 s52 52 52 2 3 4 codim 0 qsNS5 tsKK5 ds52 s52 52 black: the supergravity solutions blue: the previously known solutions red: newly obtained solutions by our calculation DFT solutions naturally have the winding coordinate dependence Winding coordinate dependence shows exponential behavior 23 / 40 The exponential behavior suggests: the winding corrections are interpreted as the instanton corrections to the spacetime − e Sinst. 24 / 40 Menu 1 Introduction 2 Double Field Theory 3 DFT solutions 4 Instanton corrections to spacetime geometry 5 Worldvolume theory in DFT 6 Summary 25 / 40 Winding dependence as worldsheet instanton effects We discuss an interpretation of the winding correction to geometries as the string worldsheet instanton effects. Worldsheet instanton is a map ' from worldsheet to 2-cycle in target space. [Wen-Witten '86] [figure from Witten] 26 / 40 Instantons in single-centered Taub-NUT Single-centered Taub-NUT space 2 2 2 −1 9 a 2 ds = dx012345 + Hdx678 + H (dx + Aadx ) ; 1 Q H = + ; r2 = (x6)2 + (x7)2 + (x8)2; (a = 6; 7; 8) g2 r Taub-NUT space is S1 fibration over R3 radius of S1 is given by H−1 at center r = 0, fibered S1 shrinks to zero asymptotic radius is H−1(1) = g2 cigar ∼ D2 n# ~v becomes an open cigar = disk D2 ~r ~ra ~ra + f(jzj)~v 27 / 40 Instantons in single-centered Taub-NUT 2 2 Worldsheet Σ = S as the set of disk DΣ and infinity: 2 [ f1 g Σ = DΣ Σ : In the Taub-NUT case, worldsheet instanton is a map from disk to cigar.
Recommended publications
  • D-Instanton Perturbation Theory
    D-instanton Perturbation Theory Ashoke Sen Harish-Chandra Research Institute, Allahabad, India Sao Paolo, June 2020 1 Plan: 1. Overview of the problem and the solution 2. Review of basic aspects of world-sheet string theory and string field theory 3. Some explicit computations A.S., arXiv:1908.02782, 2002.04043, work in progress 2 The problem 3 String theory began with Veneziano amplitude – tree level scattering amplitude of four tachyons in open string theory World-sheet expression for the amplitude (in α0 = 1 unit) Z 1 dy y2p1:p2 (1 − y)2p2:p3 0 – diverges for 2p1:p2 ≤ −1 or 2p2:p3 ≤ −1. Our convention: a:b ≡ −a0b0 + ~a:~b Conventional viewpoint: Define the amplitude for 2p1:p2 > −1, 2p2:p3 > −1 and then analytically continue to the other kinematic regions. 4 However, analytic continuation does not always work It may not be possible to move away from the singularity by changing the external momenta Examples: Mass renormalization, Vacuum shift – discussed earlier In these lectures we shall discuss another situation where analytic continuation fails – D-instanton contribution to string amplitudes 5 D-instanton: A D-brane with Dirichlet boundary condition on all non-compact directions including (euclidean) time. D-instantons give non-perturbative contribution to string amplitudes that are important in many situations Example: KKLT moduli stabilization uses non-perturbative contribution from D-instanton (euclidean D3-brane) Systematic computation of string amplitudes in such backgrounds will require us to compute amplitudes in the presence of D-instantons Problem: Open strings living on the D-instanton do not carry any continuous momenta ) we cannot move away from the singularities by varying the external momenta 6 Some examples: Let X be the (euclidean) time direction Since the D-instanton is localized at some given euclidean time, it has a zero mode that translates it along time direction 4-point function of these zero modes: Z 1 A = dy y−2 + (y − 1)−2 + 1 0 Derivation of this expression will be discussed later.
    [Show full text]
  • Lectures on D-Branes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server CPHT/CL-615-0698 hep-th/9806199 Lectures on D-branes Constantin P. Bachas1 Centre de Physique Th´eorique, Ecole Polytechnique 91128 Palaiseau, FRANCE [email protected] ABSTRACT This is an introduction to the physics of D-branes. Topics cov- ered include Polchinski’s original calculation, a critical assessment of some duality checks, D-brane scattering, and effective worldvol- ume actions. Based on lectures given in 1997 at the Isaac Newton Institute, Cambridge, at the Trieste Spring School on String The- ory, and at the 31rst International Symposium Ahrenshoop in Buckow. June 1998 1Address after Sept. 1: Laboratoire de Physique Th´eorique, Ecole Normale Sup´erieure, 24 rue Lhomond, 75231 Paris, FRANCE, email : [email protected] Lectures on D-branes Constantin Bachas 1 Foreword Referring in his ‘Republic’ to stereography – the study of solid forms – Plato was saying : ... for even now, neglected and curtailed as it is, not only by the many but even by professed students, who can suggest no use for it, never- theless in the face of all these obstacles it makes progress on account of its elegance, and it would not be astonishing if it were unravelled. 2 Two and a half millenia later, much of this could have been said for string theory. The subject has progressed over the years by leaps and bounds, despite periods of neglect and (understandable) criticism for lack of direct experimental in- put. To be sure, the construction and key ingredients of the theory – gravity, gauge invariance, chirality – have a firm empirical basis, yet what has often catalyzed progress is the power and elegance of the underlying ideas, which look (at least a posteriori) inevitable.
    [Show full text]
  • Holography Principle and Topology Change in String Theory 1 Abstract
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server SNUTP 98-089 hep-th/9807241 Holography Principle and Topology Change in String Theory 1 Soo-Jong Rey Physics Department, Seoul National University, Seoul 151-742 KOREA abstract D-instantons of Type IIB string theory are Ramond-Ramond counterpart of Giddings-Strominger wormholes connecting two asymptotic regions of spacetime. Such wormholes, according to Coleman, might lead to spacetime topology change, third-quantized baby universes and prob- abilistic determination of fundamental coupling parameters. Utilizing correspondence between AdS5 × M5 Type IIB supergravity and d = 4 super Yang-Mills theory, we point out that topol- ogy change and sum over topologies not only take place in string theory but also are required for consistency with holography. Nevertheless, we argue that the effects of D-instanton wormholes remain completely deterministic, in sharp contrast to Coleman’s scenario. 1Work supported in part by KOSEF SRC-Program, Ministry of Education Grant BSRI 98-2418, SNU Re- search Fund and Korea Foundation for Advanced Studies Faculty Fellowship. One of the most vexing problems in quantum gravity has been the issue of spacetime topol- ogy change: whether topology of spacetime can fluctuate and, if so, spacetime of different topologies should be summed over. Any positive answer to this question would bear profound implications to the fundamental interactions of Nature. For example, in Coleman’s scenario [1] of baby universes [2], fluctuation of spacetime topology induce effective lon-local interactions and third quantization of the universe thereof 2. As a result, the cosmological constant is no longer a calculable, deterministic parameter but is turned into a quantity of probabilistic dis- tribution sharply peaked around zero.
    [Show full text]
  • 8. Compactification and T-Duality
    8. Compactification and T-Duality In this section, we will consider the simplest compactification of the bosonic string: a background spacetime of the form R1,24 S1 (8.1) ⇥ The circle is taken to have radius R, so that the coordinate on S1 has periodicity X25 X25 +2⇡R ⌘ We will initially be interested in the physics at length scales R where motion on the S1 can be ignored. Our goal is to understand what physics looks like to an observer living in the non-compact R1,24 Minkowski space. This general idea goes by the name of Kaluza-Klein compactification. We will view this compactification in two ways: firstly from the perspective of the spacetime low-energy e↵ective action and secondly from the perspective of the string worldsheet. 8.1 The View from Spacetime Let’s start with the low-energy e↵ective action. Looking at length scales R means that we will take all fields to be independent of X25: they are instead functions only on the non-compact R1,24. Consider the metric in Einstein frame. This decomposes into three di↵erent fields 1,24 on R :ametricG˜µ⌫,avectorAµ and a scalar σ which we package into the D =26 dimensional metric as 2 µ ⌫ 2σ 25 µ 2 ds = G˜µ⌫ dX dX + e dX + Aµ dX (8.2) Here all the indices run over the non-compact directions µ, ⌫ =0 ,...24 only. The vector field Aµ is an honest gauge field, with the gauge symmetry descend- ing from di↵eomorphisms in D =26dimensions.Toseethisrecallthatunderthe transformation δXµ = V µ(X), the metric transforms as δG = ⇤ + ⇤ µ⌫ rµ ⌫ r⌫ µ This means that di↵eomorphisms of the compact direction, δX25 =⇤(Xµ), turn into gauge transformations of Aµ, δAµ = @µ⇤ –197– We’d like to know how the fields Gµ⌫, Aµ and σ interact.
    [Show full text]
  • Gravity, Scale Invariance and the Hierarchy Problem
    Motivation Setup Warm-up: Dilaton+Gravity One example: Higgs+Gravity Further Examples: Higgs+Dilaton+Gravity Discussion and Outlook Backups Gravity, Scale Invariance and the Hierarchy Problem M. Shaposhnikov, A. Shkerin EPFL & INR RAS Based on arXiv:1803.08907, arXiv:1804.06376 QUARKS-2018 Valday, May 31, 2018 1 / 39 Motivation Setup Warm-up: Dilaton+Gravity One example: Higgs+Gravity Further Examples: Higgs+Dilaton+Gravity Discussion and Outlook Backups Overview 1 Motivation 2 Setup 3 Warm-up: Dilaton+Gravity 4 One example: Higgs+Gravity 5 Further Examples: Higgs+Dilaton+Gravity 6 Discussion and Outlook 2 / 39 Motivation Setup Warm-up: Dilaton+Gravity One example: Higgs+Gravity Further Examples: Higgs+Dilaton+Gravity Discussion and Outlook Backups Drowning by numbers The fact is that G 2 F ~ ∼ 1033, where G | Fermi constant, G | Newton constant 2 F N GN c Two aspects of the hierarchy problem (G. F. Giudice'08): \classical" \quantum": Let MX be some heavy mass scale. Then one expects 2 2 δmH;X ∼ MX : Even if one assumes that there are no heavy thresholds beyond the EW scale, then, naively, 2 2 δmH;grav: ∼ MP : 3 / 39 Motivation Setup Warm-up: Dilaton+Gravity One example: Higgs+Gravity Further Examples: Higgs+Dilaton+Gravity Discussion and Outlook Backups EFT approach and beyond A common approach to the hierarchy problem lies within the effective field theory framework: Low energy description of Nature, provided by the SM, can be affected by an unknown UV physics only though a finite set of parameters This \naturalness principle" is questioned now in light of the absence of signatures of new physics at the TeV scale.
    [Show full text]
  • New Worldsheet Formulae for Conformal Supergravity Amplitudes
    New Worldsheet Formulae for Conformal Supergravity Amplitudes Joseph A. Farrow and Arthur E. Lipstein Department of Mathematical Sciences Durham University, Durham, DH1 3LE, United Kingdom Abstract We use 4d ambitwistor string theory to derive new worldsheet formulae for tree- level conformal supergravity amplitudes supported on refined scattering equations. Unlike the worldsheet formulae for super-Yang-Mills or supergravity, the scattering equations for conformal supergravity are not in general refined by MHV degree. Nevertheless, we obtain a concise worldsheet formula for any number of scalars and gravitons which we lift to a manifestly supersymmetric formula using four types of vertex operators. The theory also contains states with non-plane wave boundary conditions and we show that the corresponding amplitudes can be obtained from plane-wave amplitudes by applying momentum derivatives. Such derivatives are subtle to define since the formulae are intrinsically four-dimensional and on-shell, so we develop a method for computing momentum derivatives of spinor variables. arXiv:1805.04504v3 [hep-th] 11 Jul 2018 1 Contents 1 Introduction 2 2 Review 4 3 Plane Wave Graviton Multiplet Scattering 6 3.1 Supersymmetric Formula . .8 4 Non-Plane Wave Graviton Multiplet Scattering 9 5 Conclusion 11 A BRST Quantization 13 B Derivation of Berkovits-Witten Formula 16 C Momentum Derivatives 17 D Non-plane Wave Examples 19 D.1 Non-plane Wave Scalar . 19 D.2 Non-plane Wave Graviton . 21 1 Introduction Starting with the discovery of the Parke-Taylor formula for tree-level gluon amplitudes [1], the study of scattering amplitudes has suggested intruiging new ways of formulating quantum field theory.
    [Show full text]
  • Chapter 9: the 'Emergence' of Spacetime in String Theory
    Chapter 9: The `emergence' of spacetime in string theory Nick Huggett and Christian W¨uthrich∗ May 21, 2020 Contents 1 Deriving general relativity 2 2 Whence spacetime? 9 3 Whence where? 12 3.1 The worldsheet interpretation . 13 3.2 T-duality and scattering . 14 3.3 Scattering and local topology . 18 4 Whence the metric? 20 4.1 `Background independence' . 21 4.2 Is there a Minkowski background? . 24 4.3 Why split the full metric? . 27 4.4 T-duality . 29 5 Quantum field theoretic considerations 29 5.1 The graviton concept . 30 5.2 Graviton coherent states . 32 5.3 GR from QFT . 34 ∗This is a chapter of the planned monograph Out of Nowhere: The Emergence of Spacetime in Quantum Theories of Gravity, co-authored by Nick Huggett and Christian W¨uthrich and under contract with Oxford University Press. More information at www.beyondspacetime.net. The primary author of this chapter is Nick Huggett ([email protected]). This work was sup- ported financially by the ACLS and the John Templeton Foundation (the views expressed are those of the authors not necessarily those of the sponsors). We want to thank Tushar Menon and James Read for exceptionally careful comments on a draft this chapter. We are also grateful to Niels Linnemann for some helpful feedback. 1 6 Conclusions 35 This chapter builds on the results of the previous two to investigate the extent to which spacetime might be said to `emerge' in perturbative string the- ory. Our starting point is the string theoretic derivation of general relativity explained in depth in the previous chapter, and reviewed in x1 below (so that the philosophical conclusions of this chapter can be understood by those who are less concerned with formal detail, and so skip the previous one).
    [Show full text]
  • Black Holes and the Multiverse
    Home Search Collections Journals About Contact us My IOPscience Black holes and the multiverse This content has been downloaded from IOPscience. Please scroll down to see the full text. JCAP02(2016)064 (http://iopscience.iop.org/1475-7516/2016/02/064) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 165.123.34.86 This content was downloaded on 01/03/2016 at 21:11 Please note that terms and conditions apply. ournal of Cosmology and Astroparticle Physics JAn IOP and SISSA journal Black holes and the multiverse Jaume Garriga,a;b Alexander Vilenkinb and Jun Zhangb JCAP02(2016)064 aDepartament de Fisica Fonamental i Institut de Ciencies del Cosmos, Universitat de Barcelona, Marti i Franques, 1, Barcelona, 08028 Spain bInstitute of Cosmology, Tufts University, 574 Boston Ave, Medford, MA, 02155 U.S.A. E-mail: [email protected], [email protected], [email protected] Received December 28, 2015 Accepted February 3, 2016 Published February 25, 2016 Abstract. Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole.
    [Show full text]
  • Supersymmetry and the Multi-Instanton Measure
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE hep-th/9708036provided by CERN Document Server Supersymmetry and the Multi-Instanton Measure Nicholas Dorey Physics Department, University of Wales Swansea Swansea SA2 8PP UK [email protected] Valentin V. Khoze Department of Physics, Centre for Particle Theory, University of Durham Durham DH1 3LE UK [email protected] and Michael P. Mattis Theoretical Division T-8, Los Alamos National Laboratory Los Alamos, NM 87545 USA [email protected] We propose explicit formulae for the integration measure on the moduli space of charge-n ADHM multi-instantons in N = 1 and N =2super- symmetric gauge theories. The form of this measure is fixed by its (su- per)symmetries as well as the physical requirement of clustering in the limit of large spacetime separation between instantons. We test our proposals against known expressions for n ≤ 2. Knowledge of the measure for all n al- lows us to revisit, and strengthen, earlier N = 2 results, chiefly: (1) For any number of flavors NF , we provide a closed formula for Fn, the n-instanton contribution to the Seiberg-Witten prepotential, as a finite-dimensional col- lective coordinate integral. This amounts to a solution, in quadratures, of the Seiberg-Witten models, without appeal to electric-magnetic duality. (2) In the conformal case NF =4,this means reducing to quadratures the previously unknown finite renormalization that relates the microscopic and effective coupling constants, τmicro and τeff. (3) Similar expressions are given for the 4-derivative/8-fermion term in the gradient expansion of N = 2 supersymmetric QCD.
    [Show full text]
  • T ¯ T Deformed CFT As a Non-Critical String Arxiv:1910.13578V1 [Hep-Th]
    Prepared for submission to JHEP T T¯ deformed CFT as a non-critical string Nele Callebaut,a;c;d Jorrit Kruthoffb and Herman Verlindea aJoseph Henry Laboratories, Princeton University, Princeton, NJ 08544, USA bStanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305, USA cDepartment of Physics and Astronomy, Ghent University, Krijgslaan 281-S9, 9000 Gent, Belgium dDepartment of Mathematics and Haifa Research Center for Theoretical Physics and Astrophysics, University of Haifa, Haifa 31905, Israel Abstract: We present a new exact treatment of T T¯ deformed 2D CFT in terms of the world- sheet theory of a non-critical string. The transverse dimensions of the non-critical string are represented by the undeformed CFT, while the two longitudinal light-cone directions are de- scribed by two scalar fields X+ and X− with free field OPE's but with a modified stress tensor, arranged so that the total central charge adds up to 26. The relation between our X± field vari- ables and 2D dilaton gravity is indicated. We compute the physical spectrum and the partition function and find a match with known results. We describe how to compute general correlation functions and present an integral expression for the three point function, which can be viewed as an exact formula for the OPE coefficients of the T T¯ deformed theory. We comment on the relationship with other proposed definitions of local operators. arXiv:1910.13578v1 [hep-th] 29 Oct 2019 Contents 1 Introduction2 2 A non-perturbative definition of T T¯ 3 2.1 T T¯ at c = 24 as a
    [Show full text]
  • Instanton Operators in Five-Dimensional Gauge
    MTH-KCL/2014-20 QMUL-PH-14-25 Instanton Operators in Five-Dimensional Gauge Theories N. Lambert a,∗, C. Papageorgakis b,† and M. Schmidt-Sommerfeld c,d,‡ aDepartment of Mathematics King’s College London, WC2R 2LS, UK bCRST and School of Physics and Astronomy Queen Mary University of London, E1 4NS, UK cArnold-Sommerfeld-Center f¨ur Theoretische Physik, LMU M¨unchen Theresienstraße 37, 80333 M¨unchen, Germany dExcellence Cluster Universe, Technische Universit¨at M¨unchen Boltzmannstraße 2, 85748 Garching, Germany Abstract We discuss instanton operators in five-dimensional Yang-Mills gauge theo- ries. These are defined as disorder operators which create a non-vanishing arXiv:1412.2789v3 [hep-th] 4 Jun 2015 second Chern class on a four-sphere surrounding their insertion point. As such they may be thought of as higher-dimensional analogues of three- dimensional monopole (or ‘t Hooft) operators. We argue that they play an important role in the enhancement of the Lorentz symmetry for maximally supersymmetric Yang-Mills to SO(1, 5) at strong coupling. ∗E-mail address: [email protected] †E-mail address: [email protected] ‡E-mail address: [email protected] 1 Introduction One of the more dramatic results to come out of the study of strongly coupled string theory and M-theory was the realisation that there exist UV-complete quantum super- conformal field theories (SCFTs) in five and six dimensions [1–5]. These theories then provide UV completions to a variety of perturbatively non-renormalisable five-dimensional (5D) Yang-Mills theories. In this paper we will consider the notion of ‘instanton operators’ (or Yang operators) and explore their role in five-dimensional Yang-Mills.
    [Show full text]
  • Einstein and the Kaluza-Klein Particle
    ITFA-99-28 Einstein and the Kaluza-Klein particle Jeroen van Dongen1 Institute for Theoretical Physics, University of Amsterdam Valckeniersstraat 65 1018 XE Amsterdam and Joseph Henry Laboratories, Princeton University Princeton NJ 08544 Abstract In his search for a unified field theory that could undercut quantum mechanics, Einstein considered five dimensional classical Kaluza-Klein theory. He studied this theory most intensively during the years 1938-1943. One of his primary objectives was finding a non-singular particle solution. In the full theory this search got frustrated and in the x5-independent theory Einstein, together with Pauli, argued it would be impossible to find these structures. Keywords: Einstein; Unified Field Theory; Kaluza-Klein Theory; Quantization; Soli- tons 1 Introduction After having formulated general relativity Albert Einstein did not immediately focus on the unification of electromagnetism and gravity in a classical field theory - the issue that would characterize much of his later work. It was still an open question to him whether arXiv:gr-qc/0009087v1 26 Sep 2000 relativity and electrodynamics together would cast light on the problem of the structure of matter [18]. Rather, in a 1916 paper on gravitational waves he anticipated a different development: since the electron in its atomic orbit would radiate gravitationally, something that cannot “occur in reality”, he expected quantum theory would have to change not only the ”Maxwellian electrodynamics, but also the new theory of gravitation” [19]2. Einstein’s position, however, gradually changed. From about 1919 onwards, he took a strong interest in the unification programme3. In later years, after about 1926, he hoped that he would find a particular classical unified field theory that could undercut quantum theory.
    [Show full text]