Feeding Behaviour of Upogebia Pusilla and Callianassa Tyrrhena (Crustacea, Decapoda, Thalassinidea)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Abstracts of Technical Papers, Presented at the 104Th Annual Meeting, National Shellfisheries Association, Seattle, Ashingtw On, March 24–29, 2012
W&M ScholarWorks VIMS Articles 4-2012 Abstracts of Technical Papers, Presented at the 104th Annual Meeting, National Shellfisheries Association, Seattle, ashingtW on, March 24–29, 2012 National Shellfisheries Association Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation National Shellfisheries Association, Abstr" acts of Technical Papers, Presented at the 104th Annual Meeting, National Shellfisheries Association, Seattle, ashingtW on, March 24–29, 2012" (2012). VIMS Articles. 524. https://scholarworks.wm.edu/vimsarticles/524 This Article is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Journal of Shellfish Research, Vol. 31, No. 1, 231, 2012. ABSTRACTS OF TECHNICAL PAPERS Presented at the 104th Annual Meeting NATIONAL SHELLFISHERIES ASSOCIATION Seattle, Washington March 24–29, 2012 231 National Shellfisheries Association, Seattle, Washington Abstracts 104th Annual Meeting, March 24–29, 2012 233 CONTENTS Alisha Aagesen, Chris Langdon, Claudia Hase AN ANALYSIS OF TYPE IV PILI IN VIBRIO PARAHAEMOLYTICUS AND THEIR INVOLVEMENT IN PACIFICOYSTERCOLONIZATION........................................................... 257 Cathryn L. Abbott, Nicolas Corradi, Gary Meyer, Fabien Burki, Stewart C. Johnson, Patrick Keeling MULTIPLE GENE SEGMENTS ISOLATED BY NEXT-GENERATION SEQUENCING -
National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1. -
Download (8MB)
https://theses.gla.ac.uk/ Theses Digitisation: https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ This is a digitised version of the original print thesis. Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] ASPECTS OF THE BIOLOGY OF THE SQUAT LOBSTER, MUNIDA RUGOSA (FABRICIUS, 1775). Khadija Abdulla Yousuf Zainal, BSc. (Cairo). A thesis submitted for the degree of Doctor of Philosophy to the Faculty of Science at the University of Glasgow. August 1990 Department of Zoology, University of Glasgow, Glasgow, G12 8QQ. University Marine Biological Station, Millport, Isle of Cumbrae, Scotland KA28 OEG. ProQuest Number: 11007559 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 11007559 Published by ProQuest LLC(2018). -
From Ghost and Mud Shrimp
Zootaxa 4365 (3): 251–301 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4365.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:C5AC71E8-2F60-448E-B50D-22B61AC11E6A Parasites (Isopoda: Epicaridea and Nematoda) from ghost and mud shrimp (Decapoda: Axiidea and Gebiidea) with descriptions of a new genus and a new species of bopyrid isopod and clarification of Pseudione Kossmann, 1881 CHRISTOPHER B. BOYKO1,4, JASON D. WILLIAMS2 & JEFFREY D. SHIELDS3 1Division of Invertebrate Zoology, American Museum of Natural History, Central Park West @ 79th St., New York, New York 10024, U.S.A. E-mail: [email protected] 2Department of Biology, Hofstra University, Hempstead, New York 11549, U.S.A. E-mail: [email protected] 3Department of Aquatic Health Sciences, Virginia Institute of Marine Science, College of William & Mary, P.O. Box 1346, Gloucester Point, Virginia 23062, U.S.A. E-mail: [email protected] 4Corresponding author Table of contents Abstract . 252 Introduction . 252 Methods and materials . 253 Taxonomy . 253 Isopoda Latreille, 1817 . 253 Bopyroidea Rafinesque, 1815 . 253 Ionidae H. Milne Edwards, 1840. 253 Ione Latreille, 1818 . 253 Ione cornuta Bate, 1864 . 254 Ione thompsoni Richardson, 1904. 255 Ione thoracica (Montagu, 1808) . 256 Bopyridae Rafinesque, 1815 . 260 Pseudioninae Codreanu, 1967 . 260 Acrobelione Bourdon, 1981. 260 Acrobelione halimedae n. sp. 260 Key to females of species of Acrobelione Bourdon, 1981 . 262 Gyge Cornalia & Panceri, 1861. 262 Gyge branchialis Cornalia & Panceri, 1861 . 262 Gyge ovalis (Shiino, 1939) . 264 Ionella Bonnier, 1900 . -
Zootaxa: Systematics of the Genus Scleroplax Rathbun, 1893
Zootaxa 1344: 33–41 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1344 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) Systematics of the genus Scleroplax Rathbun, 1893 (Crustacea: Brachyura: Pinnotheridae) ERNESTO CAMPOS Facultad de Ciencias, Universidad Autónoma de Baja California, Apartado Postal 2300, Ensenada, Baja California, 22800 México. E-mail: [email protected]; [email protected] Abstract The taxonomic status of the monotypic genus Scleroplax Rathbun, 1893, is evaluated and separated from other genera of the Pinnixa White, 1846, complex. Distinguishing characters of Scleroplax are a hard, subheptagonal and dorsally, highly convex carapace, and a third maxilliped with a propodus that extends to the end of the dactylus. The genera Scleroplax, Pinnixa, Austinixa Heard & Manning, 1997, Glassella Campos & Wicksten, 1997, Indopinnixa Manning & Morton, 1987, and Tetrias Rathbun, 1898, share a carapace than is wider than long and a distinct lateral exopod lobe on the third maxilliped, all of which may represent monophyletic characters. Updated information on the distribution and hosts of S. granulata Rathbun, 1893, indicate that the species now ranges from Vancouver Island, British Columbia, Canada to El Coyote estuary, Punta Abreojos, Baja California Sur, México. It inhabits burrows of the echiuroid Urechis caupo Fisher & MacGinitie, 1928, and the mud shrimps Neotrypaea californiensis (Dana, 1854), N. gigas (Dana, 1852) (new host record), Upogebia pugettensis (Dana, 1852), and occasionally U. macginiteorum Williams, 1986 (new host record). Key words: Crustacea, Brachyura, Pinnotheridae, Scleroplax, systematics, geographic distribution, new hosts Resumen El estatus taxonómico del género monotípico Scleroplax Rathbun, 1893, es evaluado y separado de otros géneros del complejo Pinnixa White, 1846. -
Upogebia Pugettensis Class: Malacostraca Order: Decapoda Section: Anomura, Paguroidea the Blue Mud Shrimp Family: Upogebiidae
Phylum: Arthropoda, Crustacea Upogebia pugettensis Class: Malacostraca Order: Decapoda Section: Anomura, Paguroidea The blue mud shrimp Family: Upogebiidae Taxonomy: Dana described Gebia (on either side of the mouth), two pairs of pugettensis in 1852 and this species was later maxillae and three pairs of maxillipeds. The redescribed as Upogebia pugettensis maxillae and maxillipeds attach posterior to (Stevens 1928; Williams 1986). the mouth and extend to cover the mandibles (Ruppert et al. 2004). Description Carapace: Bears two rows of 11–12 Size: The type specimen was 50.8 mm in teeth laterally (Fig. 1) in addition to a small length and the illustrated specimen (ovigerous distal spines (13 distal spines, 20 lateral teeth female from Coos Bay, Fig. 1) was 90 mm in on carapace shoulder, see Wicksten 2011). length. Individuals are often larger and reach Carapace with thalassinidean line extending sizes to 100 mm (range 75–112 mm) and from anterior to posterior margin (Wicksten northern specimens are larger than those in 2011). southern California (MacGinitie and Rostrum: Large, tridentate, obtuse, MacGinitie 1949; Wicksten 2011). rough and hairy (Schmitt 1921), the sides Color: Light blue green to deep olive brown bear 3–5 short conical teeth (Wicksten 2011). with brown fringes on pleopods and pleon. Rostral tip shorter than antennular peduncle. Individual color variable and may depend on Two short processes extending on either side feeding habits (see Fig. 321, Kozloff 1993; each with 0–2 dorsal teeth (Wicksten 2011). Wicksten 2011). Teeth: General Morphology: The body of decapod Pereopods: Two to five simple crustaceans can be divided into the walking legs. -
Two New Paleogene Species of Mud Shrimp (Crustacea, Decapoda, Upogebiidae) from Europe and North America
Bulletin of the Mizunami Fossil Museum, no. 33 (2006), p. 77–85, 2 pls., 1 fig. © 2006, Mizunami Fossil Museum Two new Paleogene species of mud shrimp (Crustacea, Decapoda, Upogebiidae) from Europe and North America Rene H. B. Fraaije1, Barry W. M. van Bakel1, John W. M. Jagt2, and Yvonne Coole3 1Oertijdmuseum De Groene Poort, Bosscheweg 80, NL-5283 WB Boxtel, the Netherlands <[email protected]> 2Natuurhistorisch Museum Maastricht, de Bosquetplein 6-7, NL-6211 KJ Maastricht, the Netherlands <[email protected]> 3St. Maartenslaan 88, NL-6039 BM Stramproy, the Netherlands Abstract Two new species of the mud shrimp genus Upogebia (Callianassoidea, Upogebiidae) are described; U. lambrechtsi sp. nov. from the lower Eocene (Ypresian) of Egem (northwest Belgium), and U. barti sp. nov. from the upper Oligocene (Chattian) of Washington State (USA). Both new species here described have been collected from small, ball-shaped nodules; they are relatively well preserved and add important new data on the palaeobiogeographic distribution of fossil upogebiids. Key words: Crustacea, Decapoda, Upogebiidae, Eocene, Oligocene, Belgium, USA, new species Introduction Jurassic species of Upogebia have been recorded, in stratigraphic order: On modern tidal flats, burrowing upogebiid shrimps constitute the dominant decapod crustacean group. For instance, in the 1 – Upogebia rhacheochir Stenzel, 1945 (p. 432, text-fig. 12; pl. intertidal zone of the northern Adriatic (Mediterranean, southern 42); Britton Formation (Eagle Ford Group), northwest of Dallas Europe) up to 200 individuals per square metre have been recorded (Texas, USA). Stenzel (1945, p. 408) dated the Britton (Dworschak, 1987). Worldwide, several dozens of species of Formation as early Turonian, but a late Cenomanian age is Upogebia and related genera are known, and their number is still more likely (compare Jacobs et al., 2005). -
OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber ......................................................................... -
Biology of Mediterranean and Caribbean Thalassinidea (Decapoda)
Biology of Mediterranean and Caribbean Thalassinidea (Decapoda) Peter C. DWORSCHAK Dritte Zoologische Abteilung, Naturhistorisches Museum, Burgring 7, A 1014 Wien, Austria ([email protected]) Abstract Among burrowing organisms, the most complex and extensive burrow systems are found within the Thalassinidea. This group of decapods comprises some 520+ species in currently 11 families and 80+ genera. They live predominantly in very shallow waters, where they often occur in high densities and influence the whole sedimentology and geochemistry of the seabed. In this contribution I present results of studies on the biology of several Mediterranean (Upogebia pusilla, U. tipica, Pestarella tyrrhena, P. candida, Jaxea nocturna) and Caribbean (Axiopsis serratifrons, Neocallichirus grandimana, Glypturus acanthochirus, Corallianassa longiventris) species. Of special interest is the occurrence of debris-filled chambers in the burrows of two callianassid species, Pestarella tyrrhena and Corallianassa longiventris. The possible role of this introduced plant material for the nutrition of the shrimps is discussed. 1. Introduction The Thalassinidea are a group of mainly burrowing decapod shrimps. They have attracted increased attention in recent ecological studies on marine soft-bottom benthos, especially in terms of their influence on the whole sedimentology and geochemistry of the seabed (Ziebis et al., 1996a, b), their bioturbating activities (Rowden & Jones, 1993; Rowden et al., 1998a, b) and consequent effects on benthic community structure (Posey, 1986; Posey et al., 1991; Wynberg & Branch, 1994; Tamaki, 1994). They are of particular interest because they construct very complex and extensive burrow systems (Griffis & Suchanek, 1991; Nickell & Atkinson, 1995). This group of decapods comprises some 520+ species in currently 11 families and 80+ genera. -
(Petagna, 1792) (Thalassinidea, Upogebiidae) from Laboratory-Reared Material
Invertebrate Reproduction and Development, 43: 1 (2003) 83-90 Balaban, PhiladelphiaRehovot 0168-8170/03/$05.008 2003 Balaban Redescription of the larval stages of Upobebiapusilla (Petagna, 1792) (Thalassinidea, Upogebiidae) from laboratory-reared material ANTONMA DOS SANTOS'. and JOSE PAULA* 'Instituto de InvestigapTo das Pescas e do Mar (IPIUAR), Av. de Brasilia, s/n. 1449-006 Lisboa, Portugal Tel. +351 (21) 302-7194; Fax +351 (21) 302-5948; email: [email protected] 'IMR-Laboratdrio Maritimo da Guia, Faculdade de Cigncias, Universidade de Lisboa, fitrada do Guincho, 2750-642 Cascais, Portugal Received 21 November 2001; Accepted 9 December 2002 Summary The complete larval development of Upogebia pusilla (Petagna, 1792) was reared under laboratory conditions and the development comprised four zoeal stages and a megalop. The morphological features were described, illustrated and compared with other known larvae of Upogebia. Key words: Larval development, Upogebiapusilla, Upogebiidae, Decapoda, zoeal stages, megalopal stage. Introduction 1919 from plankton and reared material [four zoeal Upogebia pusilla (Petagna, 1792) is a common stages and post-larva]; U. pusilla (originally as U. species on estuaries in Portugal and occurs from the littoralis) by Dolgopolskaia, 1954 and 1969 [four zoeal English Channel to Mauritania and the Canary Islands, stages and post-larva] and U.deltaura and U. pusilla the Mediterranean, Black Sea and Suez Canal (as U. littoralis) by Heegaard, 1963 [first stage zoea]. (d'Udekem d'Acoz, 1999). Besides U.pusilla, the Although these studies gave some indication of general Upogebiidae family has five other species occurring in form, appendage morphology and chromatophore European waters: Gebiacantha talismani (Bouvier), patterns, the descriptions do not meet with modem day Upogebia deltaura (Leach), U. -
Title Distribution of Intertidal Upogebiid Shrimp
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Distribution of intertidal upogebiid shrimp (Crustacea : Title Decapoda : Thalassinidea) in Japan Author(s) ITANI, Gyo Contributions from the Biological Laboratory, Kyoto Citation University (2004), 29(4): 383-399 Issue Date 2004-07-21 URL http://hdl.handle.net/2433/156413 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Contr. biot. Lab. Kyoto Univ., Vol. 29, pp. 383-399. Issued 21 July 2004 Distribution of intertidal upogebiid shrimp (Crustacea: Decapoda: Thalassinidea) in Japan Gyo ITANI Division ofAquatic Biology and Ecology, Center for Marine Environmenta1 Studies, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577, Japan ([email protected]) ABSTRAor The distributions of six intertidal species of Upogebiidae were determined by collecting shrimp from 74 sites on tidal flats and boulder beaches in Japan, from northem Honshu (the main island of Japan) to the Ryukyu Archipelago (southwestern Japan). Upogebia major, U. issae17i, and Austinogebia narutensis were not found in the Ryukyu Archipelago, whereas U. carinicanda and U. pugnax were collected only from the Ryukyus or warmer regions exposed to the Kuroshio Current. Upogebia yokoyai was collected al] over Japan and was the most common species in this study. From the viewpoint of habitat, U. yokoyai and U. issaeffi vyere unique in that the former was distributed mainly on brackish tidal flats and the latter mainly on boulder beaches. The identity of the upogebiid shrimp in some reports was corrected. KEY WORDS Thalassinidea / Upogebiidae / Upogebia / Austinogebia /distribution / tidal flat Introduction Mud shrimp of the farpily Upogebiidae are common burrowers in shallow waters worldwide (Dworschak, 2000). -
No Evidence That the Introduced Parasite Orthione Griffenis Markham
Aquatic Invasions (2017) Volume 12, Issue 2: 213–224 DOI: https://doi.org/10.3391/ai.2017.12.2.09 Open Access © 2017 The Author(s). Journal compilation © 2017 REABIC Research Article No evidence that the introduced parasite Orthione griffenis Markham, 2004 causes sex change or differential mortality in the native mud shrimp, Upogebia pugettensis (Dana, 1852) Danielle Asson1,2,*, John W. Chapman3 and Brett R. Dumbauld3,4 1ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia 2Hatfield Marine Science Center, Oregon State University, Newport, OR 97365, USA 3Hatfield Marine Science Center, Oregon State University, Department of Fisheries and Wildlife, Newport, OR 97365, USA 4Agricultural Research Service, U.S. Dept. of Agriculture, Hatfield Marine Science Center, Newport, OR 97365, USA Author e-mails: [email protected] (DA), [email protected] (JWC), [email protected] (BRD) *Corresponding author Received: 22 November 2017 / Accepted: 17 March 2017 / Published online: 4 April 2017 Handling editor: John Mark Hanson Abstract Dramatic, rapid, population declines of the native North American burrowing shrimp Upogebia pugettensis (Dana, 1852) are associated with intense infestations by the introduced Asian bopyrid isopod parasite, Orthione griffenis Markham, 2004. However, expected host weight losses with increasing parasite weights do not occur, even among apparently castrated females. The prevailing assumption that energetic losses cause host castration have thus remained open to question, and the mechanism(s) resulting in castration and consequent population declines of U. pugettensis have remained unclear. Proposed alternative explanations for these declines, which have been based on a dramatically greater prevalence of O.