Multifunctional Magnetic Iron Oxide Nanoparticles

Total Page:16

File Type:pdf, Size:1020Kb

Multifunctional Magnetic Iron Oxide Nanoparticles Natarajan et al. BMC Mat (2019) 1:2 https://doi.org/10.1186/s42833-019-0002-6 BMC Materials REVIEW Open Access Multifunctional magnetic iron oxide nanoparticles: diverse synthetic approaches, surface modifcations, cytotoxicity towards biomedical and industrial applications Subramanian Natarajan1, Kannan Harini2, Gnana Prakash Gajula3, Bruno Sarmento4,5,6,7* , Maria Teresa Neves‑Petersen8 and Viruthachalam Thiagarajan1* Abstract Magnetic iron oxide nanoparticles (MIONPs) play a major role in the emerging felds of nanotechnology to facilitate rapid advancements in biomedical and industrial platforms. The superparamagnetic properties of MIONPs and their environment friendly synthetic methods with well‑defned particle size have become indispensable to obtain their full potential in a variety of applications ranging from cellular to diverse areas of biomedical science. Thus, the broad‑ ened scope and need for MIONPs in their demanding felds of applications required to be highlighted for a com‑ prehensive understanding of their state‑of‑the‑art. Many synthetic methods, however, do not entirely abolish their undesired cytotoxic efects caused by free radical production and high iron dosage. In addition, the agglomeration of MIONPs has also been a major problem. To alleviate these issues, suitable surface modifcation strategies adaptive to MIONPs has been suggested not only for the efective cytotoxicity control but also to minimize their agglomeration. The surface modifcation using inorganic and organic polymeric materials would represent an efcient strategy to utilize the diagnostic and therapeutic potentials of MIONPs in various human diseases including cancer. This review article elaborates the structural and magnetic properties of MIONPs, specifcally magnetite, maghemite and hematite, followed by the important synthetic methods that can be exploited for biomedical approaches. The in vivo cytotoxic efects and the possible surface modifcations employed to eliminate the cytotoxicity thereby enhancing the nano‑ particle efcacy are also critically discussed. The roles and applications of surface modifed MIONPs in medical and industrial platforms have been described for the benefts of global well‑being. Keywords: Magnetic iron oxide nanoparticles (MIONPs), Synthetic methods, Cytotoxicity, Surface modifcation, Applications Introduction and distinct electrical, optical, magnetic and chemical Te specifc diverse applications of nanoparticles arise properties as against their bulk materials [1]. Nanoma- from the physical characteristics of the nanomaterials terials are categorized as ‘closely packed materials’ and they are comprised of. Nanomaterials often reveal novel ‘nanodispersions’ which include ‘‘nanostructured’’ mate- rials, i.e., an isotropic material with a macroscopic com- position consisting of compact nanometre-sized units *Correspondence: [email protected]; [email protected]; such as the fundamental replicating structural and func- [email protected] 1 Photonics and Biophotonics Lab, School of Chemistry, Bharathidasan tional elements [2]. Nanoparticles are pertained to make University, Tiruchirappalli 620 024, India revolutionary technological changes in escalating the 4 INEB‑Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo standards and quality of human health with transforma- Allen 208, 4200‑135 Porto, Portugal Full list of author information is available at the end of the article tive and innovative diagnostic, therapeutic and even © The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Natarajan et al. BMC Mat (2019) 1:2 Page 2 of 22 theranostic tools (that combine the diagnostic and thera- MIONPs can be directed in the presence of an external peutic approaches in a single agent) [3]. magnetic feld gradient, since it obeys Coulomb’s law Magnetic nanoparticles (MNPs) can be exploited for for magnetism. To highlight the industrial demands of desired applications under the manipulation of an exter- MIONPs, one needs to understand the exposure of dyes nal magnetic feld. It can be synthesized with a cost efec- and heavy metals in drinking water that causes undesir- tive and wide spread material like iron as in the case of able toxicity to living beings. In recent years, a great deal magnetic iron oxide nanoparticles (MIONPs) which is of interest has been developed in using MIONPs for the least toxic and biodegradable [4–10]. Nanomaterials con- efective removal of dyes and heavy metals during waste- taining iron are derived from iron nanoalloys, zero valent water treatment [19]. iron and oxides like ferrites, etc. Iron naturally exists in the environment as Fe(II) and Fe(III) oxides. Iron oxides General structural properties of iron oxides refer to oxides, hydroxides and oxy-hydroxides contains Tere are eight diferent iron oxides that are well known 2− − both Fe(II)/Fe(III) cations and O /OH anions. Sixteen in nature [20], among them magnetite (Fe 3O4), magh- pure phases of iron oxides are known till date. Tese emite (γ-Fe2O3) and hematite (α-Fe2O3) shows the unique includes Fe(OH)2, Fe(OH)3, Fe3O4, Fe5HO8.4H2O, FeO, magnetic properties and they have diferent polymorphic four polymorphs of Fe 2O3 and fve of FeOOH [11, 12]. forms and undergo temperature induced phase transi- Characteristics of these oxide compounds are inclusive tion. Magnetite and maghemite are ideal materials for of divalent and trivalent states of the iron, relatively low industrial and biomedical applications. Both have reus- solubility and their brilliant colours. Among the iron able advantage over other iron oxides due to their unique oxides, Fe3O4 and γ-Fe2O3 have received wide attention magnetic, catalytic and biochemical properties. Te and acceptance due to their tunable size-dependent mag- physical properties of Fe3O4, γ-Fe2O3 and α-Fe2O3 are netic properties [13, 14]. presented in Table 1 [20–22]. During the last decade, researchers have focused their priority towards developing efcient methods for the Magnetite synthesis of MIONPs to address their growing demands Fe3O4 is derived from various sources such as black iron with desired physical and chemical properties. Tis oxide, magnetic iron ore, loadstone, ferrous ferrite and clearly refects the increasing need for various synthetic Hercules stone. Fe3O4 has face centered cubic spinel approaches to obtain well-crystallized and well-defned structure with both divalent and trivalent iron in it. All of MIONPs [15, 16]. After synthesis, MIONPs need appro- the Fe2+ ions reside in half of the octahedral sites whereas priate surface modifcations to make them more com- the Fe3+ ions are divided evenly across the remaining patible for their respective applications with suitable available octahedral and the tetrahedral sites [20, 21]. It molecular conjugation and functionalization methods reveals strong magnetism when compared to other tran- [17]. Terefore, surface modifcation becomes a critical sition metal oxides. Te saturation magnetization value post-synthetic step for preparing compatible and stable for bulk material is 92 emu/g. It ofers a high surface area MIONPs. A schematic representation that summarizes for adsorption and immobilization of molecules or drugs the development of MIONPs is presented in Fig. 1. for our interest. It can be controlled and easily separated At present, MIONPs are widely used in biomedical by a magnetic feld and further applicable for subsequent applications such as magnetic bio-separation and detec- reuse. tion of biological entities (for example cells, proteins, nucleic acids, enzymes, bacteria, virus, etc.). Further Maghemite MIONPs are implicated in clinical diagnosis like mag- γ-Fe2O3 is present in soils as a weathering product of netic resonance imaging and therapy such as targeted Fe3O4. γ-Fe2O3 has a cubic spinel crystal structure with drug delivery, magnetic fuid hyperthermia, and biologi- each unit contains 32 O2− and 21½ Fe3+ ions with 2½ cal labels for anticancer therapy, catalysis, wastewater vacancies. Oxygen anions lead to a cubic close-packed treatment and oil recovery. Te main reasons for the spe- arrangement whereas ferric ions are spread over tetra- cifc choice of these nanoparticles in such applications are hedral and octahedral sites [21, 23]. Since, the atomic due to the controllable size ranging from few nanometers radii of Fe3+ ion is smaller than the Fe2+ ion, the unit cell to tens of nanometers thereby providing the dimensions parameter of γ-Fe2O3 is smaller than Fe 3O4. It also shows that are either comparable or closer to those of a protein strong magnetism with the saturation magnetization (5–50 nm), a virus (20–450 nm), or even a gene (10– value of 78 emu/g for the bulk material. 100 nm long and 2 nm wide). So that it could efciently get into the close vicinity of a biological entity as well as the therapeutic target of interest [18]. In addition to that, Natarajan et al. BMC Mat (2019) 1:2 Page 3 of 22 Fig. 1 A schematic representation of the development of MIONPs Hematite Magnetic
Recommended publications
  • Review of Green Methods of Iron Nanoparticles Synthesis and Applications
    BioNanoScience https://doi.org/10.1007/s12668-018-0516-5 Review of Green Methods of Iron Nanoparticles Synthesis and Applications Heba Mohamed Fahmy1 & Fatma Mahmoud Mohamed1 & Mariam Hisham Marzouq1 & Amira Bahaa El-Din Mustafa1 & Asmaa M. Alsoudi1 & Omnia Ashoor Ali1 & Maha A. Mohamed1 & Faten Ahmed Mahmoud1 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Green chemistry becomes an eye-catching topic of interest in the past few years because it is a comfortable, secure, inexpensive, and eco-friendly way of synthesis. Iron oxide nanoparticles with different morphologies and sizes have been extensively studied due to their broad applications. Iron nanoparticles (Fe NPs) have drawn interest in site remediation and also in the treatment of organic or inorganic pollutants of water. The present review shows different synthesis methods of zero-valent and iron oxide nanoparticles from different plant extracts including tea extracts (Oolong tea, tea powder, tea waste,andtea polyphenols), from other plant extracts (Amaranthus dubius, Murraya koenigii, Eucalyptus, Syzygium aromaticum, curcuma, Ocimum sanctum, Emblica officinalis, Tridax procumbens, Dodonaea viscosa, Spinacia oleracea, Lawsonia inermis (henna), Gardenia jasminoides, Punica granatum, and Colocasia esculenta), from bio-microorganisms (Acinetobacter spp. bacterium, Aspergillus oryzae, Sargassum muticum), and from magnetite sand. The different potential applications of iron nanoparticles in remediation, in dye removal, and as an antibacterial agent point
    [Show full text]
  • Labeling Mesenchymal Cells with DMSA-Coated Gold
    Silva et al. J Nanobiotechnol (2016) 14:59 DOI 10.1186/s12951-016-0213-x Journal of Nanobiotechnology RESEARCH Open Access Labeling mesenchymal cells with DMSA‑coated gold and iron oxide nanoparticles: assessment of biocompatibility and potential applications Luisa H. A. Silva1, Jaqueline R. da Silva1, Guilherme A. Ferreira2, Renata C. Silva3, Emilia C. D. Lima2, Ricardo B. Azevedo1 and Daniela M. Oliveira1* Abstract Background: Nanoparticles’ unique features have been highly explored in cellular therapies. However, nanoparti- cles can be cytotoxic. The cytotoxicity can be overcome by coating the nanoparticles with an appropriated surface modification. Nanoparticle coating influences biocompatibility between nanoparticles and cells and may affect some cell properties. Here, we evaluated the biocompatibility of gold and maghemite nanoparticles functionalized with 2,3-dimercaptosuccinic acid (DMSA), Au-DMSA and γ-Fe2O3-DMSA respectively, with human mesenchymal stem cells. Also, we tested these nanoparticles as tracers for mesenchymal stem cells in vivo tracking by computed tomography and as agents for mesenchymal stem cells magnetic targeting. Results: Significant cell death was not observed in MTT, Trypan Blue and light microscopy analyses. However, ultra- structural alterations as swollen and degenerated mitochondria, high amounts of myelin figures and structures similar to apoptotic bodies were detected in some mesenchymal stem cells. Au-DMSA and γ-Fe2O3-DMSA labeling did not affect mesenchymal stem cells adipogenesis and osteogenesis differentiation, proliferation rates or lymphocyte suppression capability. The uptake measurements indicated that both inorganic nanoparticles were well uptaken by mesenchymal stem cells. However, Au-DMSA could not be detected in microtomograph after being incorporated by mesenchymal stem cells.
    [Show full text]
  • MEMS Technology for Physiologically Integrated Devices
    A BioMEMS Review: MEMS Technology for Physiologically Integrated Devices AMY C. RICHARDS GRAYSON, REBECCA S. SHAWGO, AUDREY M. JOHNSON, NOLAN T. FLYNN, YAWEN LI, MICHAEL J. CIMA, AND ROBERT LANGER Invited Paper MEMS devices are manufactured using similar microfabrica- I. INTRODUCTION tion techniques as those used to create integrated circuits. They often, however, have moving components that allow physical Microelectromechanical systems (MEMS) devices are or analytical functions to be performed by the device. Although manufactured using similar microfabrication techniques as MEMS can be aseptically fabricated and hermetically sealed, those used to create integrated circuits. They often have biocompatibility of the component materials is a key issue for moving components that allow a physical or analytical MEMS used in vivo. Interest in MEMS for biological applications function to be performed by the device in addition to (BioMEMS) is growing rapidly, with opportunities in areas such as biosensors, pacemakers, immunoisolation capsules, and drug their electrical functions. Microfabrication of silicon-based delivery. The key to many of these applications lies in the lever- structures is usually achieved by repeating sequences of aging of features unique to MEMS (for example, analyte sensitivity, photolithography, etching, and deposition steps in order to electrical responsiveness, temporal control, and feature sizes produce the desired configuration of features, such as traces similar to cells and organelles) for maximum impact. In this paper, (thin metal wires), vias (interlayer connections), reservoirs, we focus on how the biological integration of MEMS and other valves, or membranes, in a layer-by-layer fashion. The implantable devices can be improved through the application of microfabrication technology and concepts.
    [Show full text]
  • Thermal Fluctuations of Magnetic Nanoparticles: Fifty Years After Brown1)
    THERMAL FLUCTUATIONS OF MAGNETIC NANOPARTICLES: FIFTY YEARS AFTER BROWN1) William T. Coffeya and Yuri P. Kalmykovb a Department of Electronic and Electrical Engineering, Trinity College, Dublin 2, Ireland b Laboratoire de Mathématiques et Physique (LAMPS), Université de Perpignan Via Domitia, 52, Avenue Paul Alduy, F-66860 Perpignan, France The reversal time (superparamagnetic relaxation time) of the magnetization of fine single domain ferromagnetic nanoparticles owing to thermal fluctuations plays a fundamental role in information storage, paleomagnetism, biotechnology, etc. Here a comprehensive tutorial-style review of the achievements of fifty years of development and generalizations of the seminal work of Brown [W.F. Brown, Jr., Phys. Rev., 130, 1677 (1963)] on thermal fluctuations of magnetic nanoparticles is presented. Analytical as well as numerical approaches to the estimation of the damping and temperature dependence of the reversal time based on Brown’s Fokker-Planck equation for the evolution of the magnetic moment orientations on the surface of the unit sphere are critically discussed while the most promising directions for future research are emphasized. I. INTRODUCTION A. THERMAL INSTABILITY OF MAGNETIZATION IN FINE PARTICLES B. KRAMERS ESCAPE RATE THEORY C. SUPERPARAMAGNETIC RELAXATION TIME: BROWN’S APPROACH II. BROWN’S CONTINUOUS DIFFUSION MODEL OF CLASSICAL SPINS A. BASIC EQUATIONS B. EVALUATION OF THE REVERSAL TIME OF THE MAGNETIZATION AND OTHER OBSERVABLES III. REVERSAL TIME IN SUPERPARAMAGNETS WITH AXIALLY-SYMMETRIC MAGNETOCRYSTALLINE ANISOTROPY A. FORMULATION OF THE PROBLEM B. ESTIMATION OF THE REVERSAL TIME VIA KRAMERS’ THEORY C. UNIAXIAL SUPERPARAMAGNET SUBJECTED TO A D.C. BIAS FIELD PARALLEL TO THE EASY AXIS IV. REVERSAL TIME OF THE MAGNETIZATION IN SUPERPARAMAGNETS WITH NONAXIALLY SYMMETRIC ANISOTROPY 1) Published in Applied Physics Reviews Section of the Journal of Applied Physics, 112, 121301 (2012).
    [Show full text]
  • Dynamic Symmetry Loss of High-Frequency Hysteresis Loops in Single-Domain Particles with Uniaxial Anisotropy
    Journal of Magnetism and Magnetic Materials 324 (2012) 466–470 Contents lists available at SciVerse ScienceDirect Journal of Magnetism and Magnetic Materials journal homepage: www.elsevier.com/locate/jmmm Dynamic symmetry loss of high-frequency hysteresis loops in single-domain particles with uniaxial anisotropy Gabriel T. Landi Instituto de Fı´sica da Universidade de Sao~ Paulo, 05314-970 Sao~ Paulo, Brazil article info abstract Article history: Understanding how magnetic materials respond to rapidly varying magnetic fields, as in dynamic Received 2 June 2011 hysteresis loops, constitutes a complex and physically interesting problem. But in order to accomplish a Available online 23 August 2011 thorough investigation, one must necessarily consider the effects of thermal fluctuations. Albeit being Keywords: present in all real systems, these are seldom included in numerical studies. The notable exceptions are Single-domain particles the Ising systems, which have been extensively studied in the past, but describe only one of the many Langevin dynamics mechanisms of magnetization reversal known to occur. In this paper we employ the Stochastic Landau– Magnetic hysteresis Lifshitz formalism to study high-frequency hysteresis loops of single-domain particles with uniaxial anisotropy at an arbitrary temperature. We show that in certain conditions the magnetic response may become predominantly out-of-phase and the loops may undergo a dynamic symmetry loss. This is found to be a direct consequence of the competing responses due to the thermal fluctuations and the gyroscopic motion of the magnetization. We have also found the magnetic behavior to be exceedingly sensitive to temperature variations, not only within the superparamagnetic–ferromagnetic transition range usually considered, but specially at even lower temperatures, where the bulk of interesting phenomena is seen to take place.
    [Show full text]
  • Selecting the Optimal Inductor for Power Converter Applications
    Selecting the Optimal Inductor for Power Converter Applications BACKGROUND SDR Series Power Inductors Today’s electronic devices have become increasingly power hungry and are operating at SMD Non-shielded higher switching frequencies, starving for speed and shrinking in size as never before. Inductors are a fundamental element in the voltage regulator topology, and virtually every circuit that regulates power in automobiles, industrial and consumer electronics, SRN Series Power Inductors and DC-DC converters requires an inductor. Conventional inductor technology has SMD Semi-shielded been falling behind in meeting the high performance demand of these advanced electronic devices. As a result, Bourns has developed several inductor models with rated DC current up to 60 A to meet the challenges of the market. SRP Series Power Inductors SMD High Current, Shielded Especially given the myriad of choices for inductors currently available, properly selecting an inductor for a power converter is not always a simple task for designers of next-generation applications. Beginning with the basic physics behind inductor SRR Series Power Inductors operations, a designer must determine the ideal inductor based on radiation, current SMD Shielded rating, core material, core loss, temperature, and saturation current. This white paper will outline these considerations and provide examples that illustrate the role SRU Series Power Inductors each of these factors plays in choosing the best inductor for a circuit. The paper also SMD Shielded will describe the options available for various applications with special emphasis on new cutting edge inductor product trends from Bourns that offer advantages in performance, size, and ease of design modification.
    [Show full text]
  • Nanoparticle-Based Sustainable Agriculture and Food Science: Recent Advances and Future Outlook
    REVIEW published: 04 December 2020 doi: 10.3389/fnano.2020.579954 Nanoparticle-Based Sustainable Agriculture and Food Science: Recent Advances and Future Outlook Deepti Mittal 1, Gurjeet Kaur 2, Parul Singh 3, Karmveer Yadav 1 and Syed Azmal Ali 3* 1 Laboratory of Environmental Nanotechnology, Division of Biochemistry, National Dairy Research Institute, Karnal, India, 2 Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia, 3 Cell Biology and Proteomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India In the current scenario, it is an urgent requirement to satisfy the nutritional demands of the rapidly growing global population. Using conventional farming, nearly one third of crops get damaged, mainly due to pest infestation, microbial attacks, natural disasters, poor soil quality, and lesser nutrient availability. More innovative technologies are immediately required to overcome these issues. In this regard, nanotechnology has contributed to the agrotechnological revolution that has imminent potential to reform Edited by: the resilient agricultural system while promising food security. Therefore, nanoparticles Mietek Jaroniec, are becoming a new-age material to transform modern agricultural practices. The Kent State University, United States variety of nanoparticle-based formulations, including nano-sized pesticides, herbicides, Reviewed by: fungicides, fertilizers, and sensors, have been widely investigated for plant health Vasileios Fotopoulos, Cyprus University of management and soil improvement. In-depth understanding of plant and nanomaterial Technology, Cyprus interactions opens new avenues toward improving crop practices through increased Anshu Rastogi, Poznan University of Life properties such as disease resistance, crop yield, and nutrient utilization. In this review, Sciences, Poland we highlight the critical points to address current nanotechnology-based agricultural *Correspondence: research that could benefit productivity and food security in future.
    [Show full text]
  • Characterization and Antibacterial Activity of Synthesized Silver And
    dicine e & N om a n n a o t N e f c o h l n Journal of a o n l Yadav et al., J Nanomed Nanotechnol 2016, 7:3 o r g u y o J DOI: 10.4172/2157-7439.1000384 ISSN: 2157-7439 Nanomedicine & Nanotechnology Research Article Open Access Characterization and Antibacterial Activity of Synthesized Silver and Iron Nanoparticles using Aloe vera Yadav JP*, Kumar S, Budhwar L, Yadav A and Yadav M Department of Genetics, M. D. University, Rohtak-124001, Haryana, India Abstract The main aim of this study was to evaluate the comparative antibacterial potential of silver and Iron nanoparticles synthesized from aqueous plant extracts of Aloe vera. The synthesized nanoparticles were characterzed by UV-VIS spectroscopy, Fourier Transform Infra-Red spectroscopy and Transmission Electron Microscopy. The antibacterial activity of synthesized silver and iron nanoparticles was compared by agar well diffussion method and minimum inhibitory concentration was also calculated. The zone of inhibition varied in range of 9 to 18 mm for silver nanoparticales and 10 to17 mm for iron nanoparticles. The maximum zone of inhibition for silver nanoparticles was 18 mm against Proteus mirabilis. The maximum zone of inhibition for iron nanoparticles was 17 mm against Klebsiella pneumonia. MICs of silver nanoparticles were found to be in a range from 195 to 780 μg/ml and that of iron was 390 to 1560 μg/ml against tested microbes. The synthesized silver nanoparticles of aqueous Aloe vera extracts have shown good antibacterial efficacy as compared to iron nanoparticles and may prove to be better antibacterial agent against wide range of microbes.
    [Show full text]
  • Synthesis and Environmental Chemistry of Silver and Iron Oxide Nanoparticles
    SYNTHESIS AND ENVIRONMENTAL CHEMISTRY OF SILVER AND IRON OXIDE NANOPARTICLES By SUSAN ALISON CUMBERLAND A thesis submitted to The University of Birmingham For the degree of DOCTOR OF PHILOSOPHY School of Earth and Environmental Sciences College of Life and Environmental Sciences The University of Birmingham March 2010 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Engineered nanoparticles are defined as having a dimension that is between one and one hundred nanometres. With toxicology studies reporting various degrees of toxicity the need to investigate nanoparticle fate and behaviour is vital. Monodispersed engineered nanoparticles were synthesised in-house to produce suitable materials to examine such processes. Iron oxide nanoparticles (5 nm) and citrate coated silver nanoparticles (20 nm) were subjected to different conditions of pH, ionic strength and different types of commercially available natural organic matter. Changes in particle size and aggregation were examined using a multi-method approach. Results showed that the natural organic matter was able to adsorb onto nanoparticle surfaces and improve their stability when subjected to changes in pH and ionic strength, where they would normally aggregate.
    [Show full text]
  • Biocompatibility of Polyimides: a Mini-Review
    materials Review Biocompatibility of Polyimides: A Mini-Review Catalin P. Constantin 1 , Magdalena Aflori 1 , Radu F. Damian 2 and Radu D. Rusu 1,* 1 “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda 41A, Iasi-700487, Romania; [email protected] (C.P.C.); mafl[email protected] (M.A.) 2 SC Intelectro Iasi SRL, Str. Iancu Bacalu, nr.3, Iasi-700029, Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-232-217454 Received: 14 August 2019; Accepted: 25 September 2019; Published: 27 September 2019 Abstract: Polyimides (PIs) represent a benchmark for high-performance polymers on the basis of a remarkable collection of valuable traits and accessible production pathways and therefore have incited serious attention from the ever-demanding medical field. Their characteristics make them suitable for service in hostile environments and purification or sterilization by robust methods, as requested by most biomedical applications. Even if PIs are generally regarded as “biocompatible”, proper analysis and understanding of their biocompatibility and safe use in biological systems deeply needed. This mini-review is designed to encompass some of the most robust available research on the biocompatibility of various commercial or noncommercial PIs and to comprehend their potential in the biomedical area. Therefore, it considers (i) the newest concepts in the field, (ii) the chemical, (iii) physical, or (iv) manufacturing elements of PIs that could affect the subsequent biocompatibility, and, last but not least, (v) in vitro and in vivo biocompatibility assessment and (vi) reachable clinical trials involving defined polyimide structures. The main conclusion is that various PIs have the capacity to accommodate in vivo conditions in which they are able to function for a long time and can be judiciously certified as biocompatible.
    [Show full text]
  • Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging
    University of Pennsylvania ScholarlyCommons Departmental Papers (BE) Department of Bioengineering 1-1-2006 Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging Daniel L. J Thorek University of Pennsylvania, [email protected] Antony K. Chen University of Pennsylvania, [email protected] Julie Czupryna University of Pennsylvania, [email protected] Andrew Tsourkas University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/be_papers Part of the Molecular, Cellular, and Tissue Engineering Commons Recommended Citation Thorek, D. L., Chen, A. K., Czupryna, J., & Tsourkas, A. (2006). Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging. Retrieved from https://repository.upenn.edu/be_papers/77 Postprint version. Published in Annals of Biomedical Engineering, Volume 34, Issue 1, January 2006, pages 23-38. Publisher URL: http://dx.doi.org/10.1007/s10439-005-9002-7 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/be_papers/77 For more information, please contact [email protected]. Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging Abstract The field of molecular imaging has ecentlyr seen rapid advances in the development of novel contrast agents and the implementation of insightful approaches to monitor biological processes non-invasively. In particular, superparamagnetic iron oxide nanoparticles (SPIO) have demonstrated their utility as an important tool for enhancing magnetic resonance contrast, allowing
    [Show full text]
  • Biocompatibility of Plastics
    SPECIAL EDITION RESINATE Your quarterly newsletter to keep you informed about trusted products, smart solutions, and valuable updates. BIOCOMPATIBILITY OF PLASTICS REVISED AND EDITED BY KEVIN J. BIGHAM, PhD. © 2010; © 2017 BIOCOMPATIBILITY OF PLASTICS 2 INTRODUCTION Plastics have many unique properties regarding their manufacturability and production potential. These properties are increasingly being utilized in the production of medical devices and medical packaging. The medical device industry is one of the fastest growing areas for plastics with growth rates exceeding gross domestic product growth for several years. This trend is predicted to continue into the future due to developments of increasingly innovative medical devices, improvements in plastics technology (both materials and processing), and an aging population. Despite this significant growth, one thing remains constant: The application of any material in a medical device must meet stringent safety requirements. BIOCOMPATIBILITY Biocompatibility is a general term used to describe the suitability of a material for exposure to the body or bodily fluids with an acceptable host response. Biocompatibility is dependent on the specific application and circumstance of the material in question: A material may be biocompatible in one particular usage but may not be in another. In general, a material may be considered biocompatible if it causes no harm to the host. This is distinct, however, from causing no side effects or other consequences. Frequently, material that is considered biocompatible once implanted in the body will result in varying degrees of inflammatory and immune responses. For a biocompatible material, these responses are not harmful and are part of body’s normal responses. Materials that are not biocompatible are those that do result in adverse (harmful) effects to the host.
    [Show full text]