Multifunctional Magnetic Iron Oxide Nanoparticles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Review of Green Methods of Iron Nanoparticles Synthesis and Applications
BioNanoScience https://doi.org/10.1007/s12668-018-0516-5 Review of Green Methods of Iron Nanoparticles Synthesis and Applications Heba Mohamed Fahmy1 & Fatma Mahmoud Mohamed1 & Mariam Hisham Marzouq1 & Amira Bahaa El-Din Mustafa1 & Asmaa M. Alsoudi1 & Omnia Ashoor Ali1 & Maha A. Mohamed1 & Faten Ahmed Mahmoud1 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Green chemistry becomes an eye-catching topic of interest in the past few years because it is a comfortable, secure, inexpensive, and eco-friendly way of synthesis. Iron oxide nanoparticles with different morphologies and sizes have been extensively studied due to their broad applications. Iron nanoparticles (Fe NPs) have drawn interest in site remediation and also in the treatment of organic or inorganic pollutants of water. The present review shows different synthesis methods of zero-valent and iron oxide nanoparticles from different plant extracts including tea extracts (Oolong tea, tea powder, tea waste,andtea polyphenols), from other plant extracts (Amaranthus dubius, Murraya koenigii, Eucalyptus, Syzygium aromaticum, curcuma, Ocimum sanctum, Emblica officinalis, Tridax procumbens, Dodonaea viscosa, Spinacia oleracea, Lawsonia inermis (henna), Gardenia jasminoides, Punica granatum, and Colocasia esculenta), from bio-microorganisms (Acinetobacter spp. bacterium, Aspergillus oryzae, Sargassum muticum), and from magnetite sand. The different potential applications of iron nanoparticles in remediation, in dye removal, and as an antibacterial agent point -
Labeling Mesenchymal Cells with DMSA-Coated Gold
Silva et al. J Nanobiotechnol (2016) 14:59 DOI 10.1186/s12951-016-0213-x Journal of Nanobiotechnology RESEARCH Open Access Labeling mesenchymal cells with DMSA‑coated gold and iron oxide nanoparticles: assessment of biocompatibility and potential applications Luisa H. A. Silva1, Jaqueline R. da Silva1, Guilherme A. Ferreira2, Renata C. Silva3, Emilia C. D. Lima2, Ricardo B. Azevedo1 and Daniela M. Oliveira1* Abstract Background: Nanoparticles’ unique features have been highly explored in cellular therapies. However, nanoparti- cles can be cytotoxic. The cytotoxicity can be overcome by coating the nanoparticles with an appropriated surface modification. Nanoparticle coating influences biocompatibility between nanoparticles and cells and may affect some cell properties. Here, we evaluated the biocompatibility of gold and maghemite nanoparticles functionalized with 2,3-dimercaptosuccinic acid (DMSA), Au-DMSA and γ-Fe2O3-DMSA respectively, with human mesenchymal stem cells. Also, we tested these nanoparticles as tracers for mesenchymal stem cells in vivo tracking by computed tomography and as agents for mesenchymal stem cells magnetic targeting. Results: Significant cell death was not observed in MTT, Trypan Blue and light microscopy analyses. However, ultra- structural alterations as swollen and degenerated mitochondria, high amounts of myelin figures and structures similar to apoptotic bodies were detected in some mesenchymal stem cells. Au-DMSA and γ-Fe2O3-DMSA labeling did not affect mesenchymal stem cells adipogenesis and osteogenesis differentiation, proliferation rates or lymphocyte suppression capability. The uptake measurements indicated that both inorganic nanoparticles were well uptaken by mesenchymal stem cells. However, Au-DMSA could not be detected in microtomograph after being incorporated by mesenchymal stem cells. -
MEMS Technology for Physiologically Integrated Devices
A BioMEMS Review: MEMS Technology for Physiologically Integrated Devices AMY C. RICHARDS GRAYSON, REBECCA S. SHAWGO, AUDREY M. JOHNSON, NOLAN T. FLYNN, YAWEN LI, MICHAEL J. CIMA, AND ROBERT LANGER Invited Paper MEMS devices are manufactured using similar microfabrica- I. INTRODUCTION tion techniques as those used to create integrated circuits. They often, however, have moving components that allow physical Microelectromechanical systems (MEMS) devices are or analytical functions to be performed by the device. Although manufactured using similar microfabrication techniques as MEMS can be aseptically fabricated and hermetically sealed, those used to create integrated circuits. They often have biocompatibility of the component materials is a key issue for moving components that allow a physical or analytical MEMS used in vivo. Interest in MEMS for biological applications function to be performed by the device in addition to (BioMEMS) is growing rapidly, with opportunities in areas such as biosensors, pacemakers, immunoisolation capsules, and drug their electrical functions. Microfabrication of silicon-based delivery. The key to many of these applications lies in the lever- structures is usually achieved by repeating sequences of aging of features unique to MEMS (for example, analyte sensitivity, photolithography, etching, and deposition steps in order to electrical responsiveness, temporal control, and feature sizes produce the desired configuration of features, such as traces similar to cells and organelles) for maximum impact. In this paper, (thin metal wires), vias (interlayer connections), reservoirs, we focus on how the biological integration of MEMS and other valves, or membranes, in a layer-by-layer fashion. The implantable devices can be improved through the application of microfabrication technology and concepts. -
Thermal Fluctuations of Magnetic Nanoparticles: Fifty Years After Brown1)
THERMAL FLUCTUATIONS OF MAGNETIC NANOPARTICLES: FIFTY YEARS AFTER BROWN1) William T. Coffeya and Yuri P. Kalmykovb a Department of Electronic and Electrical Engineering, Trinity College, Dublin 2, Ireland b Laboratoire de Mathématiques et Physique (LAMPS), Université de Perpignan Via Domitia, 52, Avenue Paul Alduy, F-66860 Perpignan, France The reversal time (superparamagnetic relaxation time) of the magnetization of fine single domain ferromagnetic nanoparticles owing to thermal fluctuations plays a fundamental role in information storage, paleomagnetism, biotechnology, etc. Here a comprehensive tutorial-style review of the achievements of fifty years of development and generalizations of the seminal work of Brown [W.F. Brown, Jr., Phys. Rev., 130, 1677 (1963)] on thermal fluctuations of magnetic nanoparticles is presented. Analytical as well as numerical approaches to the estimation of the damping and temperature dependence of the reversal time based on Brown’s Fokker-Planck equation for the evolution of the magnetic moment orientations on the surface of the unit sphere are critically discussed while the most promising directions for future research are emphasized. I. INTRODUCTION A. THERMAL INSTABILITY OF MAGNETIZATION IN FINE PARTICLES B. KRAMERS ESCAPE RATE THEORY C. SUPERPARAMAGNETIC RELAXATION TIME: BROWN’S APPROACH II. BROWN’S CONTINUOUS DIFFUSION MODEL OF CLASSICAL SPINS A. BASIC EQUATIONS B. EVALUATION OF THE REVERSAL TIME OF THE MAGNETIZATION AND OTHER OBSERVABLES III. REVERSAL TIME IN SUPERPARAMAGNETS WITH AXIALLY-SYMMETRIC MAGNETOCRYSTALLINE ANISOTROPY A. FORMULATION OF THE PROBLEM B. ESTIMATION OF THE REVERSAL TIME VIA KRAMERS’ THEORY C. UNIAXIAL SUPERPARAMAGNET SUBJECTED TO A D.C. BIAS FIELD PARALLEL TO THE EASY AXIS IV. REVERSAL TIME OF THE MAGNETIZATION IN SUPERPARAMAGNETS WITH NONAXIALLY SYMMETRIC ANISOTROPY 1) Published in Applied Physics Reviews Section of the Journal of Applied Physics, 112, 121301 (2012). -
Dynamic Symmetry Loss of High-Frequency Hysteresis Loops in Single-Domain Particles with Uniaxial Anisotropy
Journal of Magnetism and Magnetic Materials 324 (2012) 466–470 Contents lists available at SciVerse ScienceDirect Journal of Magnetism and Magnetic Materials journal homepage: www.elsevier.com/locate/jmmm Dynamic symmetry loss of high-frequency hysteresis loops in single-domain particles with uniaxial anisotropy Gabriel T. Landi Instituto de Fı´sica da Universidade de Sao~ Paulo, 05314-970 Sao~ Paulo, Brazil article info abstract Article history: Understanding how magnetic materials respond to rapidly varying magnetic fields, as in dynamic Received 2 June 2011 hysteresis loops, constitutes a complex and physically interesting problem. But in order to accomplish a Available online 23 August 2011 thorough investigation, one must necessarily consider the effects of thermal fluctuations. Albeit being Keywords: present in all real systems, these are seldom included in numerical studies. The notable exceptions are Single-domain particles the Ising systems, which have been extensively studied in the past, but describe only one of the many Langevin dynamics mechanisms of magnetization reversal known to occur. In this paper we employ the Stochastic Landau– Magnetic hysteresis Lifshitz formalism to study high-frequency hysteresis loops of single-domain particles with uniaxial anisotropy at an arbitrary temperature. We show that in certain conditions the magnetic response may become predominantly out-of-phase and the loops may undergo a dynamic symmetry loss. This is found to be a direct consequence of the competing responses due to the thermal fluctuations and the gyroscopic motion of the magnetization. We have also found the magnetic behavior to be exceedingly sensitive to temperature variations, not only within the superparamagnetic–ferromagnetic transition range usually considered, but specially at even lower temperatures, where the bulk of interesting phenomena is seen to take place. -
Selecting the Optimal Inductor for Power Converter Applications
Selecting the Optimal Inductor for Power Converter Applications BACKGROUND SDR Series Power Inductors Today’s electronic devices have become increasingly power hungry and are operating at SMD Non-shielded higher switching frequencies, starving for speed and shrinking in size as never before. Inductors are a fundamental element in the voltage regulator topology, and virtually every circuit that regulates power in automobiles, industrial and consumer electronics, SRN Series Power Inductors and DC-DC converters requires an inductor. Conventional inductor technology has SMD Semi-shielded been falling behind in meeting the high performance demand of these advanced electronic devices. As a result, Bourns has developed several inductor models with rated DC current up to 60 A to meet the challenges of the market. SRP Series Power Inductors SMD High Current, Shielded Especially given the myriad of choices for inductors currently available, properly selecting an inductor for a power converter is not always a simple task for designers of next-generation applications. Beginning with the basic physics behind inductor SRR Series Power Inductors operations, a designer must determine the ideal inductor based on radiation, current SMD Shielded rating, core material, core loss, temperature, and saturation current. This white paper will outline these considerations and provide examples that illustrate the role SRU Series Power Inductors each of these factors plays in choosing the best inductor for a circuit. The paper also SMD Shielded will describe the options available for various applications with special emphasis on new cutting edge inductor product trends from Bourns that offer advantages in performance, size, and ease of design modification. -
Nanoparticle-Based Sustainable Agriculture and Food Science: Recent Advances and Future Outlook
REVIEW published: 04 December 2020 doi: 10.3389/fnano.2020.579954 Nanoparticle-Based Sustainable Agriculture and Food Science: Recent Advances and Future Outlook Deepti Mittal 1, Gurjeet Kaur 2, Parul Singh 3, Karmveer Yadav 1 and Syed Azmal Ali 3* 1 Laboratory of Environmental Nanotechnology, Division of Biochemistry, National Dairy Research Institute, Karnal, India, 2 Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia, 3 Cell Biology and Proteomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India In the current scenario, it is an urgent requirement to satisfy the nutritional demands of the rapidly growing global population. Using conventional farming, nearly one third of crops get damaged, mainly due to pest infestation, microbial attacks, natural disasters, poor soil quality, and lesser nutrient availability. More innovative technologies are immediately required to overcome these issues. In this regard, nanotechnology has contributed to the agrotechnological revolution that has imminent potential to reform Edited by: the resilient agricultural system while promising food security. Therefore, nanoparticles Mietek Jaroniec, are becoming a new-age material to transform modern agricultural practices. The Kent State University, United States variety of nanoparticle-based formulations, including nano-sized pesticides, herbicides, Reviewed by: fungicides, fertilizers, and sensors, have been widely investigated for plant health Vasileios Fotopoulos, Cyprus University of management and soil improvement. In-depth understanding of plant and nanomaterial Technology, Cyprus interactions opens new avenues toward improving crop practices through increased Anshu Rastogi, Poznan University of Life properties such as disease resistance, crop yield, and nutrient utilization. In this review, Sciences, Poland we highlight the critical points to address current nanotechnology-based agricultural *Correspondence: research that could benefit productivity and food security in future. -
Characterization and Antibacterial Activity of Synthesized Silver And
dicine e & N om a n n a o t N e f c o h l n Journal of a o n l Yadav et al., J Nanomed Nanotechnol 2016, 7:3 o r g u y o J DOI: 10.4172/2157-7439.1000384 ISSN: 2157-7439 Nanomedicine & Nanotechnology Research Article Open Access Characterization and Antibacterial Activity of Synthesized Silver and Iron Nanoparticles using Aloe vera Yadav JP*, Kumar S, Budhwar L, Yadav A and Yadav M Department of Genetics, M. D. University, Rohtak-124001, Haryana, India Abstract The main aim of this study was to evaluate the comparative antibacterial potential of silver and Iron nanoparticles synthesized from aqueous plant extracts of Aloe vera. The synthesized nanoparticles were characterzed by UV-VIS spectroscopy, Fourier Transform Infra-Red spectroscopy and Transmission Electron Microscopy. The antibacterial activity of synthesized silver and iron nanoparticles was compared by agar well diffussion method and minimum inhibitory concentration was also calculated. The zone of inhibition varied in range of 9 to 18 mm for silver nanoparticales and 10 to17 mm for iron nanoparticles. The maximum zone of inhibition for silver nanoparticles was 18 mm against Proteus mirabilis. The maximum zone of inhibition for iron nanoparticles was 17 mm against Klebsiella pneumonia. MICs of silver nanoparticles were found to be in a range from 195 to 780 μg/ml and that of iron was 390 to 1560 μg/ml against tested microbes. The synthesized silver nanoparticles of aqueous Aloe vera extracts have shown good antibacterial efficacy as compared to iron nanoparticles and may prove to be better antibacterial agent against wide range of microbes. -
Synthesis and Environmental Chemistry of Silver and Iron Oxide Nanoparticles
SYNTHESIS AND ENVIRONMENTAL CHEMISTRY OF SILVER AND IRON OXIDE NANOPARTICLES By SUSAN ALISON CUMBERLAND A thesis submitted to The University of Birmingham For the degree of DOCTOR OF PHILOSOPHY School of Earth and Environmental Sciences College of Life and Environmental Sciences The University of Birmingham March 2010 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Engineered nanoparticles are defined as having a dimension that is between one and one hundred nanometres. With toxicology studies reporting various degrees of toxicity the need to investigate nanoparticle fate and behaviour is vital. Monodispersed engineered nanoparticles were synthesised in-house to produce suitable materials to examine such processes. Iron oxide nanoparticles (5 nm) and citrate coated silver nanoparticles (20 nm) were subjected to different conditions of pH, ionic strength and different types of commercially available natural organic matter. Changes in particle size and aggregation were examined using a multi-method approach. Results showed that the natural organic matter was able to adsorb onto nanoparticle surfaces and improve their stability when subjected to changes in pH and ionic strength, where they would normally aggregate. -
Biocompatibility of Polyimides: a Mini-Review
materials Review Biocompatibility of Polyimides: A Mini-Review Catalin P. Constantin 1 , Magdalena Aflori 1 , Radu F. Damian 2 and Radu D. Rusu 1,* 1 “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda 41A, Iasi-700487, Romania; [email protected] (C.P.C.); mafl[email protected] (M.A.) 2 SC Intelectro Iasi SRL, Str. Iancu Bacalu, nr.3, Iasi-700029, Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-232-217454 Received: 14 August 2019; Accepted: 25 September 2019; Published: 27 September 2019 Abstract: Polyimides (PIs) represent a benchmark for high-performance polymers on the basis of a remarkable collection of valuable traits and accessible production pathways and therefore have incited serious attention from the ever-demanding medical field. Their characteristics make them suitable for service in hostile environments and purification or sterilization by robust methods, as requested by most biomedical applications. Even if PIs are generally regarded as “biocompatible”, proper analysis and understanding of their biocompatibility and safe use in biological systems deeply needed. This mini-review is designed to encompass some of the most robust available research on the biocompatibility of various commercial or noncommercial PIs and to comprehend their potential in the biomedical area. Therefore, it considers (i) the newest concepts in the field, (ii) the chemical, (iii) physical, or (iv) manufacturing elements of PIs that could affect the subsequent biocompatibility, and, last but not least, (v) in vitro and in vivo biocompatibility assessment and (vi) reachable clinical trials involving defined polyimide structures. The main conclusion is that various PIs have the capacity to accommodate in vivo conditions in which they are able to function for a long time and can be judiciously certified as biocompatible. -
Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging
University of Pennsylvania ScholarlyCommons Departmental Papers (BE) Department of Bioengineering 1-1-2006 Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging Daniel L. J Thorek University of Pennsylvania, [email protected] Antony K. Chen University of Pennsylvania, [email protected] Julie Czupryna University of Pennsylvania, [email protected] Andrew Tsourkas University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/be_papers Part of the Molecular, Cellular, and Tissue Engineering Commons Recommended Citation Thorek, D. L., Chen, A. K., Czupryna, J., & Tsourkas, A. (2006). Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging. Retrieved from https://repository.upenn.edu/be_papers/77 Postprint version. Published in Annals of Biomedical Engineering, Volume 34, Issue 1, January 2006, pages 23-38. Publisher URL: http://dx.doi.org/10.1007/s10439-005-9002-7 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/be_papers/77 For more information, please contact [email protected]. Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging Abstract The field of molecular imaging has ecentlyr seen rapid advances in the development of novel contrast agents and the implementation of insightful approaches to monitor biological processes non-invasively. In particular, superparamagnetic iron oxide nanoparticles (SPIO) have demonstrated their utility as an important tool for enhancing magnetic resonance contrast, allowing -
Biocompatibility of Plastics
SPECIAL EDITION RESINATE Your quarterly newsletter to keep you informed about trusted products, smart solutions, and valuable updates. BIOCOMPATIBILITY OF PLASTICS REVISED AND EDITED BY KEVIN J. BIGHAM, PhD. © 2010; © 2017 BIOCOMPATIBILITY OF PLASTICS 2 INTRODUCTION Plastics have many unique properties regarding their manufacturability and production potential. These properties are increasingly being utilized in the production of medical devices and medical packaging. The medical device industry is one of the fastest growing areas for plastics with growth rates exceeding gross domestic product growth for several years. This trend is predicted to continue into the future due to developments of increasingly innovative medical devices, improvements in plastics technology (both materials and processing), and an aging population. Despite this significant growth, one thing remains constant: The application of any material in a medical device must meet stringent safety requirements. BIOCOMPATIBILITY Biocompatibility is a general term used to describe the suitability of a material for exposure to the body or bodily fluids with an acceptable host response. Biocompatibility is dependent on the specific application and circumstance of the material in question: A material may be biocompatible in one particular usage but may not be in another. In general, a material may be considered biocompatible if it causes no harm to the host. This is distinct, however, from causing no side effects or other consequences. Frequently, material that is considered biocompatible once implanted in the body will result in varying degrees of inflammatory and immune responses. For a biocompatible material, these responses are not harmful and are part of body’s normal responses. Materials that are not biocompatible are those that do result in adverse (harmful) effects to the host.