Expanding Consciousness 2019.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Expanding Consciousness 2019.Pdf Expanding Consciousness Bees and other insects show signs of possessing complex self-awareness, but if the scope of consciousness is widened, where will it end? Lars Chittka and Catherine Wilson onsciousness is a state of close to the notion of philosophical ous evening, and in the hours before awareness that allows us to zombies—hypothetical robots that be- sunrise, they communicated locations close our eyes and picture have overtly like normal humans, but visited on the former morning. our childhood home, or to are entirely based on preprogrammed These bees retrieved their spatial Cperform the sort of planning, predic- behavior routines and reflexes, with- memories entirely out of context, at a tion and risk assessment required to out any self-awareness. time at which there was no possibil- gauge whether it’s safe to jump over But there are now many indications ity of foraging and no need for com- a stream of a given width. It allows us that insects exhibit consciousness-like munication. The function is unclear— to solve problems by thinking, rather phenomena. Some lines of evidence are they may have spontaneously thought than simply by trial and error. from experiments that have lain bur- about these spatial locations during For centuries, scholars such as René ied in the literature for decades, even the night, or perhaps this communica- Descartes (1596–1650) have argued centuries, without anyone recognizing tion functioned as a strategy for spatial that consciousness is a uniquely hu- their significance for consciousness. memory consolidation. Later studies man attribute, perhaps facilitated by Honeybees, for example, have have shown that a bee’s memories of language, that allows us to communi- a symbolic language by which they the previous day become strengthened cate about our memories and feelings, communicate about the precise coordi- when they are exposed to elements of and to coordinate plans for the future. nates of floral food sources or potential these memories while they are deeply In this view, nonhuman animals were nest sites (see “Group Decision Making asleep. Perhaps bees dream about the regarded as merely cleverly-designed In Honey Bee Swarms,” May–June 2006). experiences of the previous day? automatons with a toolkit of pre- In this dance language, a scout bee re- The key implication in Lindauer’s programmed behaviors, each triggered turning from a flower patch performs discovery is that bees are capable of by certain environmental stimuli. a repetitive sequence of movements offline thinking about spatial locations Social insects such as bees and ants in the dark hive on the vertical comb. (and the ways in which the locations seemed to epitomize this viewpoint. These movements are keenly attended are linked to time), in the complete Scientists knew that a large behavioral by other bees. The successful forager absence of any external trigger—a repertoire is required to construct their moves forward in a straight line for conclusion which does not align with elaborate homes, defend them against a few centimeters, then a half circle the assumption that bees are zombies. intruders, provision their young with to the left back to her starting point. Bees, then, appear to have at least some adequate nutrition—but it seemed She performs another straight run, and of the principal hallmarks of conscious- plausible that these animals were then circles to the right. The duration ness: representations of time and space. nonetheless “reflex machines” without of the straight run tells other bees the internal representation of the world or distance to the food source (roughly The Evolution of Consciousness an ability to foresee even the immedi- one second of walking distance in the Based on such evidence, many biolo- ate future. In this view, insects were dance corresponds to a one-kilometer gists and philosophers now suspect flight to the target). The direction of that consciousness-like phenomena Lars Chittka is professor of sensory and behavioral this run relative to gravity encodes the might be evolutionarily ancient, per- ecology at Queen Mary University of London and direction relative to the Sun—for ex- haps dating back to the Cambrian Pe- the author of the forthcoming book The Mind of ample, if the run in the hive is straight riod (approximately 500 million years the Bee (2020). Catherine Wilson was most re- up, this tells other bees to fly in the ago). This line of inquiry might seem cently Anniversary Professor of Philosophy at the direction of the Sun. like a slippery slope. Where should we University of York and is now Visiting Presiden- Karl von Frisch made this discovery draw the line? Do plants have some tial Professor at the City University of New York in 1945, for which he was later award- form of awareness? Or, as panpsychists Graduate Center. Her recent book The Pleasure ed the Nobel Prize in Physiology or would argue, do electrons, rocks, com- Principle (2019) discusses, among other topics, Medicine. A decade later, one of his the evolution of the mind. Chittka and Wilson met puters, or the universe have anything when they were both fellows of the Berlin Institute students, Martin Lindauer, peered into of the sort? If so, we are at risk of ex- of Advanced Study, and their discussions laid the a beehive and discovered that some panding the definition of conscious- foundations for the thoughts presented here. This bees continued these discussions into ness to include ever more living and article is an adaptation of an essay previously pub- the night. Before midnight, they “talk- nonliving beings until the term be- lished in Aeon, aeon.co. Email: TK ed about” locations visited the previ- comes meaningless. 364 American Scientist, Volume 107 Helga Heilmann The construction of honeycombs by Apis mellifera requires the coordinated and cooperative were the opposite of those it expected. activities of many dozens of individuals. Workers manufacture and manipulate wax into a Deprived of its ability to anticipate highly regular hexagonal pattern. In the process, they evaluate the space available and the cur- what it should see as a result of its own rent state of construction, and incorporate a diversity of communication signals from others. intentions, the fly behaved erratically. These rich instinctual repertoires had been thought to come at the expense of learning capac- Insects, with their heads in the normal ity; however, very few behavioral routines are fully hardwired, and even comb construction position, appear to have another of the skills have to be partially learned by honeybees. key ingredients of consciousness: the ability to predict what will happen in Solid proof of consciousness in any- actions, so that they can distinguish the future as a result of self-generated one except oneself is of course unat- sensory changes caused by their movements, which allows them to tainable. Everyone else may be a ma- movements from changes caused by move and act effectively. chine or a zombie. But then—say some external forces. Under normal condi- At its evolutionary roots, we believe philosophers—we may be brains in tions, animals expect the environment that consciousness is an adaptation vats, as in the movie The Matrix. to move in a predictable manner when that helped to solve the problem of One elementary phenomenon at the they turn their heads voluntarily. This how moving organisms can extract heart of biological consciousness is expectation allows them to anticipate meaningful information from their self-recognition: the ability to recognize what will happen next, as a result of sense organs. In an ever-changing and oneself as distinct from another entity, their own actions or intentions. only semi-predictable environment, as well as to plan, pay attention, recall Early versions of efference copies consciousness can solve this problem memories of specific events, and take were proposed in the 19th century, more efficiently than unconscious the perspective of another creature. If although the term was first coined mechanisms possibly could. As the the image on your retina suddenly tilts by the German biologists Erich von late zoologist Donald Griffin wrote in by 45 degrees, you know that this is Holst and Horst Mittelstaedt in their his book Animal Minds (1992), “Envi- fine if it’s the result of deliberately in- study of flies. In one of their experi- ronmental conditions vary so much clining your head—If not, you may be ments in 1950, they inverted the in- that for an animal’s brain to have pro- witnessing a major seismic event, and put to the fly’s brain from the left and grammed specifications for optimal you had better run. right eyes using a rather crude (and behavior in all situations would re- Animals are thought to tell the dif- cruel) technique: The thin neck of the quire an impossibly lengthy instruc- ference between these scenarios via fly was twisted by 180 degrees, and its tion book.” what’s known as an efference copy: an head then glued in place upside down. Bees provide further evidence that internal signal that communicates the The result was that, when the animal insects can cope with unusual chal- consequences of the animal’s own turned left or right, the sensory signals lenges that no instruction book will an- www.americanscientist.org 2019 November–December 365 zone and foreseen a suboptimal result before it occurred. On another occasion, Huber’s team created an environment where the bees had no choice but to build their hive on a glass surface. The research- ers observed that one of several combs broke off the ceiling of a hive during winter. Hive construction normally pauses during the winter months when the bees minimize their activity to ensure that their stores lasts until spring.
Recommended publications
  • Cognitive Ecology of Pollination: Animal Behavior and Floral Evolution Edited by Lars Chittka and James D
    Cambridge University Press 0521781957 - Cognitive Ecology of Pollination: Animal Behavior and Floral Evolution Edited by Lars Chittka and James D. Thomson Frontmatter More information Cognitive Ecology of Pollination Animal Behavior and Floral Evolution Important breakthroughs have recently been made in our understanding of the cognitive and sensory abilities of pollina- tors: how pollinators perceive, memorize, and react to floral signals and rewards; how they work flowers, move among inflorescences, and transport pollen. These new findings have obvious implications for the evolution of floral display and diversity, but most existing publications are scattered across a wide range of journals in very different research traditions. This book brings together for the first time outstanding scholars from many different fields of pollination biology, integrating the work of neuroethologists and evolutionary ecologists to present a multidisciplinary approach. Aimed at graduates and researchers of behavioral and pollination ecology, plant evolu- tionary biology, and neuroethology, it will also be a useful source of information for anyone interested in a modern view of cognitive and sensory ecology, pollination, and floral evolution. lars chittka is Associate Professor at the University of Würzburg, Germany. His research interests focus on the ecology and evolution of insect sensory and cognitive capacities. james d. thomson is Professor and Chair of the Department of Zoology at the University of Toronto, Canada, where he spe- cializes in linking pollinator foraging strategies with floral evo- lution. He is currently Editor of the Quarterly Review of Biology and President of the American Society of Naturalists. © Cambridge University Press www.cambridge.org Cambridge University Press 0521781957 - Cognitive Ecology of Pollination: Animal Behavior and Floral Evolution Edited by Lars Chittka and James D.
    [Show full text]
  • Autumn 2017 Newsletter
    IUSSI North-west European section International Union for the Study of Social Insects Autumn Newsletter 2017 Officers President Prof. Paul Eggleton Department of Life Sciences Natural History Museum London, UK [email protected] Secretary Dr. Heikki Helanterä Centre of Excellence in Biological Interactions Department of Biosciences University of Helsinki Finland [email protected] Contact him about: Newsletter, meetings, general information Treasurer Dr. Elizabeth Duncan School of Biology Faculty of Biological Sciences University of Leeds UK [email protected] Contact her about: Membership, student grants Webmaster Dr. David Nash Centre for Social Evolution University of Copenhagen [email protected] http://www.zi.ku.dk/personal/drnash/ Contact him about: Website queries or suggestions Announcements Winter meeting (see also poster at the end of newsletter!) Registration is now open for the 2017 Winter meeting of the NW European section of the IUSSI! http://iussiyork17.weebly.com We look forward to welcoming you to beautiful York for this meeting which will be held at the University of York on the 18th and 19th of December. Plenary Speakers: We are very excited to announce that Professor Rebecca Kilner (University of Cambridge) and Professor Lars Chittka (Queen Mary University of London) are going to be our plenary speakers at this meeting. Scientific program and workshops: The program will also have contributed talks and there has been some interest in having some workshops associated with this meeting - if you are interested in running a workshop or have an idea for a workshop see the conference website for details. Deadline for Abstracts/Registration: The deadline for abstract submission is the 19th of November and the deadline for registration is the 1st of December.
    [Show full text]
  • The Behavioral Ecology of Variation in Social Insects
    Available online at www.sciencedirect.com ScienceDirect The behavioral ecology of variation in social insects 1,3 2 JM Jandt and DM Gordon Understanding the ecological relevance of variation within and mating frequency [5–10]), morphological traits related to between colonies has been an important and recurring theme social behavior and physiology [11 ,12,13,14 ,15,16, in social insect research. Recent research addresses the 17,18], and behavioral traits (i.e., regulation of activity, genomic and physiological factors and fitness effects cognitive abilities, or aggression and nestmate recognition associated with behavioral variation, within and among [19 ,20,21]). The development and maintenance of indi- colonies, in regulation of activity, cognitive abilities, and vidual and colony variation is influenced by resource aggression. Behavioral variation among colonies has availability, abiotic conditions along a geographic cline, consequences for survival and reproductive success that are social interactions within and between colonies, and the basis for evolutionary change. population-level genetic factors such as dependent lineages (reviewed in [22]). In most cases, we do not Addresses 1 know the source of variation among individuals or colo- Iowa State University, Department of Ecology, Evolution, and nies. Mutation, small differences in microclimate and Organismal Biology, 251 Bessey Hall, Ames, IA 50011, USA 2 Stanford University, Department of Biology, Gilbert Biological Sciences resource availability, the developmental noise that leads Building, rm 410, 371 Serra Mall, Stanford, CA 94305, USA organisms with the same genotypes to differ, all probably contribute to the variation that we observe. Corresponding author: Jandt, JM ([email protected]) 3 Present address: Otago University, Department of Zoology, 340 Great King Street, Dunedin 9016, New Zealand.
    [Show full text]
  • Behavioural Ecology—Molecular and Neural Mechanisms Underpinning
    Available online at www.sciencedirect.com ScienceDirect Editorial overview: Behavioural ecology — molecular and neural mechanisms underpinning adaptive behaviour in insects Lars Chittka Current Opinion in Insect Science 2016, 15:vii–ix For a complete overview see the Issue Available online 10th May 2016 http://dx.doi.org/10.1016/j.cois.2016.05.002 2214-5745/ # 2016 Elsevier Inc. All rights reserved. Lars Chittka Around the turn of the century, there was a perception in some circles that Department of Psychology, School of behavioural ecology was dead [1]. However, the fashions in behavioural Biological and Chemical Sciences, Queen ecology that were then seen in decline were in fact dead before they were Mary University of London, Mile End Road, born (as indeed any science that thrives on fashion rather than discovery). London E1 4NS, UK e-mail: [email protected] Fields such as ‘fluctuating asymmetry’ and ‘UV vision’ have sunk into oblivion for all the right reasons: they harboured a good number of workers who would never let a rigorous experiment get in the way of a cute story. It is Sections Editors also good to see that most entomologists never fell for these fads — UV sensitivity, for example, had been discovered in the Hymenoptera a good century before it became a fashion in behavioural ecology [2], and by the Lars Chittka time it did, its systematic distribution and its behavioural and evolutionary significance had already been thoroughly explored in insects [3], without any hyperbole at any stage. One reason why insect scientists are so successful in the analysis of behavioural adaptation is that they never fully disentangled the analysis of mechanisms from ethology.
    [Show full text]
  • Cognitive Ecology of Pollination: Animal Behavior and Floral Evolution Edited by Lars Chittka and James D
    Cambridge University Press 0521018404 - Cognitive Ecology of Pollination: Animal Behavior and Floral Evolution Edited by Lars Chittka and James D. Thomson Frontmatter More information Cognitive Ecology of Pollination Animal Behavior and Floral Evolution Important breakthroughs have recently been made in our understanding of the cognitive and sensory abilities of pollina- tors: how pollinators perceive, memorize, and react to floral signals and rewards; how they work flowers, move among inflorescences, and transport pollen. These new findings have obvious implications for the evolution of floral display and diversity, but most existing publications are scattered across a wide range of journals in very different research traditions. This book brings together for the first time outstanding scholars from many different fields of pollination biology, integrating the work of neuroethologists and evolutionary ecologists to present a multidisciplinary approach. Aimed at graduates and researchers of behavioral and pollination ecology, plant evolu- tionary biology, and neuroethology, it will also be a useful source of information for anyone interested in a modern view of cognitive and sensory ecology, pollination, and floral evolution. lars chittka is Associate Professor at the University of Würzburg, Germany. His research interests focus on the ecology and evolution of insect sensory and cognitive capacities. james d. thomson is Professor and Chair of the Department of Zoology at the University of Toronto, Canada, where he spe- cializes in linking pollinator foraging strategies with floral evo- lution. He is currently Editor of the Quarterly Review of Biology and President of the American Society of Naturalists. © Cambridge University Press www.cambridge.org Cambridge University Press 0521018404 - Cognitive Ecology of Pollination: Animal Behavior and Floral Evolution Edited by Lars Chittka and James D.
    [Show full text]
  • The Role of Communication in the Foraging Process of Social Bees
    The role of communication in the foraging process of social bees University of Würzburg, Germany 1999-2002 Anna Dornhaus The role of communication in the foraging process of social bees Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Anna Dornhaus geboren in Köln Würzburg 2002 Eingereicht am: .............................................................................................. Mitglieder der Promotionskommission: Vorsitzender: .................................................................................................. Gutachter: ....................................................................................................... Gutachter: ....................................................................................................... Tag des Promotionskolloquiums:................................................................... Doktorurkunde ausgehändigt am:................................................................... Contents 0 SUMMARY 5 0.1 english 6 0.2 german 8 1 INTRODUCTION 10 2 PROJECTS 20 2.1 Why do honey bees dance? 21 2.2 Food alert in Bombus terrestris: mechanisms and evolutionary implications 35 2.3 Bumble bees alert with pheromone from tergite glands 53 2.4 How information on food source quality is transferred from foragers to nestmates 65 2.5 Nectar stores determine a bumble bee colony’s reaction to new food sources 73 2.6 Food alert in Bombus transversalis 82 2.7 Significance of honey bee recruitment
    [Show full text]
  • A Social Insect Perspective on the Evolution of Social Learning Mechanisms
    A social insect perspective on the evolution of social learning mechanisms Ellouise Leadbeatera,1 and Erika H. Dawsonb,2 aSchool of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, United Kingdom; and bLaboratoire Evolution, Génomes, Comportement et Ecologie, CNRS, 91198 Gif-sur-Yvette, France Edited by Kevin N. Laland, University of St. Andrews, St. Andrews, United Kingdom, and accepted by Editorial Board Member Andrew G. Clark May 29, 2017 (received for review January 14, 2017) The social world offers a wealth of opportunities to learn from the ability to learn socially is simply a useful byproduct of the fun- others, and across the animal kingdom individuals capitalize on damental ability to learn asocially that has remained untouched by those opportunities. Here, we explore the role of natural selection natural selection. There is clear empirical evidence that natural se- in shaping the processes that underlie social information use, using lection can fine-tune associative processes to particular tasks (34–36). a suite of experiments on social insects as case studies. We illustrate For certain social learning processes that typify human behavior, how an associative framework can encompass complex, context- such as imitation or learning through language or instruction, this specific social learning in the insect world and beyond, and based on mechanistic middle ground between adaptation- and preadaptation- the hypothesis that evolution acts to modify the associative process, based explanations for social learning is the subject of substantial suggest potential pathways by which social information use could empirical attention (37–40). However, this is not the case for those evolve to become more efficient and effective.
    [Show full text]
  • Bs Bs Bannerjournal of Zoology
    bs_bs_bannerJournal of Zoology Journal of Zoology. Print ISSN 0952-8369 REVIEW ARTICLE Mechanisms of social learning across species boundaries A. Avarguès-Weber, E. H. Dawson & L. Chittka Psychology Division, School of Biological and Chemical Sciences, Queen Mary University London, London, UK Keywords Abstract social learning; imitation; cognition; memory; conditioning. Social learning involves the acquisition of information from other individuals and is a behavioural strategy found in a wide range of taxa from insects to humans. Correspondence Traditionally, research in this field has concentrated on learning from members of Lars Chittka, Psychology Division, School of the same species; however, there is increasing evidence for social learning across Biological & Chemical Sciences, Queen species boundaries. Owing to the ecological overlap of many species, it makes Mary University of London, Mile End Road, sense that such heterospecific social learning is common, and in some cases, London E1 4NS, UK. information from another species may be more profitable than that provided by Email: [email protected] members of the same species. Here, we review the existing literature about learning from individuals of different species. We discuss the cognitive mechanisms under- Editor: Steven Le Comber lying this form of information gathering and highlight the importance of past experience and innate predispositions in the formation of interspecific learning Received 19 October 2012; revised 15 events. In many cases, seemingly complex forms of ‘copying’ from members of December 2012; accepted 18 December other species can be explained by relatively simple forms of conditioning. 2012 doi:10.1111/jzo.12015 I saw several humble-bees . visiting these flowers .
    [Show full text]
  • Honeybees (Apis Mellifera) Exhibit Flexible Visual Search Strategies for Vertical Targets Presented at Various Heights [Version 2; Peer Review: 3 Approved]
    F1000Research 2015, 3:174 Last updated: 23 AUG 2021 RESEARCH ARTICLE Honeybees (Apis mellifera) exhibit flexible visual search strategies for vertical targets presented at various heights [version 2; peer review: 3 approved] Linde Morawetz1,2, Lars Chittka3, Johannes Spaethe2 1Department of Integrative Zoology, University of Vienna, Vienna, 1090, Austria 2Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Würzburg, 97074, Germany 3Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK v2 First published: 28 Jul 2014, 3:174 Open Peer Review https://doi.org/10.12688/f1000research.4799.1 Latest published: 12 Feb 2015, 3:174 https://doi.org/10.12688/f1000research.4799.2 Reviewer Status Invited Reviewers Abstract When honeybees are presented with a colour discrimination task, they 1 2 3 tend to choose swiftly and accurately when objects are presented in the ventral part of their frontal visual field. In contrast, poor version 2 performance is observed when objects appear in the dorsal part. Here (revision) report report we investigate if this asymmetry is caused by fixed search patterns or 12 Feb 2015 if bees can increase their detection ability of objects in search scenarios when targets appear frequently or exclusively in the dorsal version 1 area of the visual field. 28 Jul 2014 report report report We trained individual honeybees to choose an orange rewarded target among blue distractors. Target and distractors were presented in the ventral visual field, the dorsal field or both. Bees presented with 1. Bruno van Swinderen, University of targets in the ventral visual field consistently had the highest search Queensland, Brisbane, QLD, Australia efficiency, with rapid decisions, high accuracy and direct flight paths.
    [Show full text]
  • Visual Search and Decision Making in Bees: Time, Speed, and Accuracy
    International Journal of Comparative Psychology, 2006, 19 , 342-357. Copyright 2006 by the International Society for Comparative Psychology Visual Search and Decision Making in Bees: Time, Speed, and Accuracy Peter Skorupski University of London, United Kingdom Johannes Spaethe University of Vienna, Austria Lars Chittka University of London, United Kingdom An insect searching a meadow for flowers may detect several flowers from different species per sec- ond, so the task of choosing the right flowers rapidly is not trivial. Here we apply concepts from the field of visual search in human experimental psychology to the task a bee faces in searching a meadow for familiar flowers, and avoiding ‘‘distraction’’ by unknown or unrewarding flowers. Our approach highlights the importance of visual information processing for understanding the behavioral ecology of foraging. Intensity of illuminating light, target contrast with background (both chromatic and achromatic), and number of distractors are all shown to have a direct influence on decision times in behavioral choice experiments. To a considerable extent, the observed search behavior can be ex- plained by the temporal and spatial properties of neuronal circuits underlying visual object detection. Our results also emphasize the importance of the time dimension in decision making. During visual search in humans, improved accuracy in solving discrimination tasks comes at a cost in response time, but the vast majority of studies on decision making in animals have focused on choice accuracy, not speed. We show that in behavioral choice experiments in bees, there is a tight link between the two. We demonstrate both between-individual and within- individual speed-accuracy tradeoffs, whereby bees exhibit considerable behavioral flexibility in solving visual search tasks.
    [Show full text]
  • Recognition of Flowers by Pollinators Chittka and Raine 429
    Recognition of flowers by pollinators Lars Chittka and Nigel E Raine The flowers of angiosperm plants present us with a staggering particular classes of pollinators are specifically associated diversity of signal designs, but how did this diversity evolve? with particular floral traits, including floral color [5]. Answering this question requires us to understand how There has been empirical support for this hypothesis pollinators analyze these signals with their visual and olfactory in some cases, for example the association of red flowers sense organs, and how the sensory systems work together with with hummingbirds [6]; also many species of solitary bees post-receptor neural wiring to produce a coherent percept of appear to have particular affinities with certain plant the world around them. Recent research on the dynamics with species [5]. Here, we are concerned with generalist flower which bees store, manage and retrieve memories all have visitors, such as honeybees and bumblebees. These bees fundamental implications for how pollinators choose between have to choose adaptively between multiple plant species flowers, and in turn for floral evolution. New findings regarding all differing in color, pattern and scent; as they fly over a how attention, peak-shift phenomena, and speed–accuracy meadow, they might sequentially or simultaneously tradeoffs affect pollinator choice between flower species show encounter flowers from several different species each that analyzing the evolutionary ecology of signal–receiver second, and have to juggle multiple memories (from relationships can substantially benefit from knowledge about different sensory modalities), some from the immediately the neural mechanisms of visual and olfactory information preceding experience and some from the more distant processing.
    [Show full text]
  • PD Dr. Johannes Spaethe
    PD Dr. Johannes Spaethe Department of Behavioral Physiology and Sociobiology (Zoology II), Biocenter University of Würzburg Am Hubland 97074 Würzburg, Germany Phone: 0049 931 3183408 E-mail: [email protected] Career 2010-now Group Leader, Research Assistant, Zoology II, University of Würzburg 2012-2014 Visiting Professor of Arthropod Neuroethology (Vertretungsprofessur), Zoology II, University of Würzburg 2010 Habilitation for Zoology, University of Vienna, Austria 2004-2010 Research Assistant, Department of Evolutionary Biology, University of Vienna, Austria 2002-2004 Postdoctoral fellow at the Department of Ecology and Evolutionary Biology, University of California, Irvine, USA 2001-2002 Postdoctoral fellow of the Graduiertenkolleg "Arthropodenverhalten", Zoology II, University of Würzburg 2001 PhD Thesis at the University of Würzburg: “Sensory ecology of foraging in bumblebees” (Supervisor: Prof. Lars Chittka) 1996 Diploma Thesis at the University of Wuerzburg: “Behavioral experiments on the gravity sense of the honeybee, Apis mellifera” [in German] (Supervisor: Prof. Jürgen Tautz) 1991-1996 Studies in Biology at the University of Würzburg Research Colour Vision, Sensory Ecology, Flower-Pollinator Interaction, Division of Labour in Social Interests Insects, Learning and Memory, Eye Function and Evolution, Taste perception Administration 2011-now Safety adviser for the carriage of dangerous goods; Zoology II, University of and Würzburg Organisation 2005-2010 Safety representative of the molecular laboratory of the Dept.
    [Show full text]