ESE Clinical Practice Guideline on Functioning and Nonfunctioning Pituitary Adenomas in Pregnancy

Total Page:16

File Type:pdf, Size:1020Kb

Load more

3 185 A Luger and others ESE CPG on pituitary adenomas 185:3 G1–G33 Clinical Practice in pregnancy Guideline ESE Clinical Practice Guideline on functioning and nonfunctioning pituitary adenomas in pregnancy A Luger1, L H A Broersen2, N R Biermasz3, B M K Biller4, M Buchfelder5, P Chanson 6, J O L Jorgensen 7, F Kelestimur8, S Llahana9, D Maiter10, G Mintziori11, F Petraglia12, R Verkauskiene13, S M Webb 14 and O M Dekkers 15,16,17 1Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria, 2Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands, 3Division of Endocrinology, Department of Medicine, Pituitary Center and Center for Endocrine Tumors, Leiden University Medical Center, Leiden, The Netherlands, 4Neuroendocrine & Pituitary Tumor Clinical Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA, 5Department of Neurosurgery, University Hospital Erlangen, Erlangen, Germany, 6Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d’Endocrinologie et des Maladies de la Reproduction et Centre de Réference des Maladies Rares de l’Hypophyse, Le Kremlin-Bicêtre, France, 7Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark, 8Department of Endocrinology, Yeditepe University, Istanbul, Turkey, 9School of Health Sciences, City, University of London, London, UK, 10Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium, 11Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki Medical School, Thessaloniki, Greece, 12Department of Obstetrics and Gynecology, University of Florence, Florence, Italy, 13Institute of Endocrinology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania, 14IIB-Sant Pau and Department of Endocrinology/Medicine, Hospital Sant Pau, Universitat Autónoma de Barcelona, and Centro de Correspondence Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER, Unit 747), ISCIII, Barcelona, Spain, 15Department should be addressed of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands, 16Department of Clinical to A Luger Endocrinology, Leiden University Medical Center, Leiden, The Netherlands, and 17Department of Clinical Email Epidemiology, Aarhus University, Aarhus, Denmark anton.luger@meduniwien. ac.at Abstract European Journal of Endocrinology Pregnancies are rare in women with pituitary adenomas, which may relate to hormone excess from secretory subtypes such as prolactinomas or corticotroph adenomas. Decreased fertility may also result from pituitary hormone deficiencies due to compression of the gland by large tumours and/or surgical or radiation treatment of the lesion. Counselling premenopausal women with pituitary adenomas about their chance of conceiving spontaneously or with assisted reproductive technology, and the optimal pre-conception treatment, should start at the time of initial diagnosis. The normal physiological changes during pregnancy need to be considered when interpreting endocrine tests in women with pituitary adenomas. Dose adjustments in hormone substitution therapies may be needed across the trimesters. When medical therapy is used for pituitary hormone excess, consideration should be given to the known efficacy and safety data specific to pregnant women for each therapeutic option. In healthy women, pituitary gland size increases during pregnancy. Since some pituitary adenomas also enlarge during pregnancy, there is a risk of visual impairment, especially in women with macroadenomas or tumours near the optic chiasm. Pituitary apoplexy represents a rare acute complication of adenomas requiring surveillance, with surgical intervention needed in some cases. This guideline describes the choice and timing of diagnostic tests and treatments from the pre-conception stage until after delivery, taking into account adenoma size, location and endocrine activity. In most cases, pregnant women with pituitary adenomas should be managed by a multidisciplinary team in a centre specialised in the treatment of such tumours. European Journal of Endocrinology (2021) 185, G1–G33 https://eje.bioscientifica.com © 2021 European Society of Endocrinology Published by Bioscientifica Ltd. https://doi.org/10.1530/EJE-21-0462 Printed in Great Britain Downloaded from Bioscientifica.com at 09/28/2021 03:15:02AM via free access -21-0462 Clinical Practice Guideline A Luger and others ESE CPG on pituitary adenomas 185:3 G2 in pregnancy 1. Overview of recommendations if medical tumour treatment is unfeasible or ineffective (⊕⊕◯◯). General recommendations: Pre-conception stage R.2.7. If surgery is indicated, we suggest to perform R.1.1. We recommend that women of reproductive age transsphenoidal surgery in the second trimester if the with a diagnosis of a pituitary adenoma be counselled clinical course allows this (⊕⊕◯◯). about their potential fertility and pregnancy outcomes R.2.8. We recommend not to perform radiotherapy as early as possible. during pregnancy. R.1.2. We recommend that women of reproductive age with a diagnosis of pituitary adenoma, functioning or General recommendations: Delivery nonfunctioning, who consider pregnancy, be managed by and breastfeeding an endocrinologist. R.1.3. We recommend that management of women of R.3.1. We suggest that pregnant women with pituitary reproductive age with a large pituitary adenoma (>1 cm), adenomas should receive standard obstetrical care but Cushing’s disease or acromegaly, who consider pregnancy, recommend close maternal and foetal surveillance. be discussed in a multidisciplinary team. R.3.2. In general, breastfeeding is feasible and not R.1.4. We recommend that in women with a diagnosis contraindicated. of pituitary adenoma and hypopituitarism, hormone replacement therapy should be initiated or optimised prior to becoming pregnant. Nonfunctioning adenomas (NFAs) R.4.1. In women with an NFA near the optic chiasm who are planning a pregnancy, surgery may be considered to General recommendations: Pregnancy reduce the risk of chiasmal compression and to enhance R.2.1. We recommend that pregnant women with a fertility. known pituitary adenoma, in particular those with a R.4.2. We suggest that for women with intrasellar large pituitary adenoma (>1 cm), Cushing’s disease or nonfunctioning microadenomas and an uneventful acromegaly, and those with pituitary deficiencies, should pregnancy, there is no need for routine endocrinological be followed by an endocrinologist and an advanced nurse follow-up during pregnancy. practitioner where relevant. The frequency depends on the R.4.3. We recommend that for macroadenomas and/or European Journal of Endocrinology underlying condition and individualised needs. extrasellar NFAs, neuro-ophthalmologic and, if indicated, R.2.2. We recommend that pregnant women with MRI examination should be performed only in case of diagnosed hypopituitarism should have regular clinical symptoms of tumour progression or pituitary apoplexy and hormonal follow-up by an endocrinologist and an during pregnancy. advanced nurse practitioner where relevant. R.4.4. We recommend that in case of a clinical need to R.2.3. We recommend that women and their partners reduce adenoma volume during pregnancy, surgery is the be provided with education for glucocorticoid stress dose preferred option (⊕◯◯◯). adjustment and measures on how to prevent or manage R.4.5. We recommend awaiting reassessment of pituitary adrenal crisis during pregnancy. imaging and function until after delivery and breastfeeding. R.2.4. We recommend performing an MRI without contrast in pregnancy in case of symptoms of tumour Prolactinomas progression or apoplexy. R.2.5. We recommend that neuro-ophthalmologic R.5.1. We recommend treating women with a examination in pregnancy be performed for adenomas prolactinoma, who are actively seeking pregnancy, impinging visual pathways or in case of suspected tumour with a dopamine agonist and strive for normalisation of progression or pituitary apoplexy. prolactin concentrations and restoration of regular R.2.6. We recommend considering surgery in pregnant ovulatory cycles (⊕⊕⊕◯). women with deterioration of vision, ophthalmoplegia R.5.2. We recommend medical treatment as first-choice or severe headache attributable to tumour enlargement therapy for women with a prolactinoma and actively https://eje.bioscientifica.com Downloaded from Bioscientifica.com at 09/28/2021 03:15:02AM via free access Clinical Practice Guideline A Luger and others ESE CPG on pituitary adenomas 185:3 G3 in pregnancy seeking pregnancy; transsphenoidal surgery can be treatment, somatostatin analogues or cabergoline can considered in individual cases (⊕⊕⊕◯). be used until confirmation of pregnancy if surgery is not R.5.3. We recommend cabergoline as medical treatment an option. Pegvisomant should be reserved for selected at the lowest possible effective dose until pregnancy is uncontrolled cases (⊕◯◯◯). confirmed ⊕( ⊕◯◯). R.6.5. We recommend to consider stopping drugs for R.5.4. We recommend stopping the dopamine agonist acromegaly once pregnancy is established (⊕◯◯◯). once pregnancy is established. However, dopamine R.6.6. We recommend not to measure GH and IGF-I agonists may be given for a longer gestational
Recommended publications
  • Hyperprolactinaemia: a Monster Between the Woman and Her Conception *Seriki A

    Hyperprolactinaemia: a Monster Between the Woman and Her Conception *Seriki A

    Archives of Reproductive Medicine and Sexual Health ISSN: 2639-1791 Volume 1, Issue 2, 2018, PP: 61-67 Hyperprolactinaemia: A Monster Between the Woman and Her Conception *Seriki A. Samuel1, Odetola O. Anthony2 1Department of Human Physiology, College of Medicine, Bingham University, Karu, Nigeria. 2Department of Human Physiology, College Medical Sciences, NnamdiAzikwe University, Awka, Nigeria. [email protected] *Corresponding Author: Seriki A. Samuel, Department of Human Physiology, College of Medicine, Bingham University, Karu, Nigeria. Abstract Hyperprolactinaemia is the presence of abnormally high levels of prolactin in the blood. Normal levels are less than 5000 ml U/L [20ng/mL or µg/L] for women, and less than 450 ml U/L for men.Prolactin is a peptide hormone produced by the adenohypophysis (also called anterior pituitary) that is primarily associated with milk production and plays a vital role in breast development during pregnancy. Hyperprolactinaemia may cause galactorrhea (production and sp; ontaneous ejection of breast milk without pregnancy or childbirth). It also alters/disrupts the normal menstrual cycle in women. In other women, menstruation may cease completely, resulting in infertility. In the man, it could causeerectile dysfunction.The present study is to review the pathophysiology of the abnormality in the woman, and how it relates to the functioning of the hypothalamo- hypophyseal-gonadal system. The article also looks at the effect of hyperprolactinaemia on the fertility of the woman, and attempts to proffer non-surgical remedy to the condition. Keywords: Galactorrhea, adenohypophysis,hypoestrogenism,prolactinoma, amenorrhoea, macroprolactin, microprolactin Introduction It is synthesized by the anterior pituitary lactotrophs and regulated by the hypothalamic–pituitary axis Hyperprolactinaemia, which is a high level of through the release of dopamine, which acts as a prolactin in the blood can be a part of normal prolactin inhibitory factor[2].
  • Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1

    Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1

    US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG .
  • Stereotactic Radiosurgery for Pituitary Tumors

    Stereotactic Radiosurgery for Pituitary Tumors

    Neurosurg Focus 14 (5):Article 10, 2003, Click here to return to Table of Contents Stereotactic radiosurgery for pituitary tumors THOMAS C. WITT, M.D. Department of Neurosurgery, Indiana University Medical Center, Indianapolis, Indiana Pituitary adenomas frequently pose challenging clinical problems. Stereotactic radiosurgery (SRS) is one treatment option in selected patients. The purpose of this report is to identify the advantages and disadvantages of radiosurgery in cases of pituitary tumors to assess better its role in relation to other treatment. Methods for optimizing outcome are described. The author reviews several recent series to determine rates of growth control, endocrine response, and com- plications. In general, growth control is excellent, complications are very low, and reduction of excessive hormone secretion is fair. Depending on the clinical situation, SRS may be the treatment of choice in selected patients. KEY WORDS • stereotactic radiosurgery • pituitary tumor • acromegaly • prolactinoma • adrenocorticotropic hormone Although pituitary adenomas are histologically benign, structures must not occur. The purpose of this report is to the unrelated neurological and physiological conse- analyze the current status of SRS for pituitary tumors and quences can be devastating. Compression of the optic ap- to examine its utility compared with other treatment mo- paratus (nerves, chiasm, tracts) may lead to blindness or dalities. loss of peripheral vision. Interference with the function of nerves traversing the cavernous sinus
  • Guidance on the Treatment of Antipsychotic Induced Hyperprolactinaemia in Adults

    Guidance on the Treatment of Antipsychotic Induced Hyperprolactinaemia in Adults

    Guidance on the Treatment of Antipsychotic Induced Hyperprolactinaemia in Adults Version 1 GUIDELINE NO RATIFYING COMMITTEE DRUGS AND THERAPEUTICS GROUP DATE RATIFIED April 2014 DATE AVAILABLE ON INTRANET NEXT REVIEW DATE April 2016 POLICY AUTHORS Nana Tomova, Clinical Pharmacist Dr Richard Whale, Consultant Psychiatrist In association with: Dr Gordon Caldwell, Consultant Physician, WSHT . If you require this document in an alternative format, ie easy read, large text, audio, Braille or a community language, please contact the Pharmacy Team on 01243 623349 (Text Relay calls welcome). Contents Section Title Page Number 1. Introduction 2 2. Causes of Hyperprolactinaemia 2 3. Antipsychotics Associated with 3 Hyperprolactinaemia 4. Effects of Hyperprolactinaemia 4 5. Long-term Complications of Hyperprolactinaemia 4 5.1 Sexual Development in Adolescents 4 5.2 Osteoporosis 4 5.3 Breast Cancer 5 6. Monitoring & Baseline Prolactin Levels 5 7. Management of Hyperprolactinaemia 6 8. Pharmacological Treatment of 7 Hyperprolactinaemia 8.1 Aripiprazole 7 8.2 Dopamine Agonists 8 8.3 Oestrogen and Testosterone 9 8.4 Herbal Remedies 9 9. References 10 1 1.0 Introduction Prolactin is a hormone which is secreted from the lactotroph cells in the anterior pituitary gland under the influence of dopamine, which exerts an inhibitory effect on prolactin secretion1. A reduction in dopaminergic input to the lactotroph cells results in a rapid increase in prolactin secretion. Such a reduction in dopamine can occur through the administration of antipsychotics which act on dopamine receptors (specifically D2) in the tuberoinfundibular pathway of the brain2. The administration of antipsychotic medication is responsible for the high prevalence of hyperprolactinaemia in people with severe mental illness1.
  • POISONS LIST APPENDIX Amoebicides: Carbarsone

    POISONS LIST APPENDIX Amoebicides: Carbarsone

    POISONS LIST APPENDIX Amoebicides: Carbarsone Clioquinol and other halogenated hydroxyquinoline compounds Dehydroemetine; its salts Diloxanide; its compounds Dimetridazole Emetine Ipronidazole Metronidazole Pentamidine; its salts Ronidazole Anaesthetics: Alphadolone acetate Alphaxolone Desflurane Disoprofol Enflurane Ethyl ether Etomidate; its salts Halothane Isoflurane Ketamine; its salts Local anaesthetics, the following: their salts; their homologues and analogues; their molecular compounds Amino-alcohols esterified with benzoic acid, phenylacetic acid, phenylpropionic acid, cinnamic acid or the derivatives of these acids; their salts Benzocaine Bupivacaine Butyl aminobenzoate Cinchocaine Diperodon Etidocaine Levobupivacaine Lignocaine Mepivacaine Orthocaine Oxethazaine Phenacaine Phenodianisyl Prilocaine Ropivacaine Phencyclidine; its salts Propanidid Sevoflurane Tiletamine; its salts Tribromoethanol Analeptics and Central Stimulants: Amiphenazole; its salts Amphetamine (DD) Bemegride Cathine Cathinone (DD) Dimethoxybromoamphetamine (DOB) (DD) 2, 5-Dimethoxyamphetamine (DMA) (DD) 2, 5-Dimethoxy-4-ethylamphetamine (DOET) (DD) Ethamivan N-Ethylamphetamine; its salts N-Ethyl MDA (DD) N-Hydroxy MDA (DD) Etryptamine (DD) Fencamfamine Fenetylline Lefetamine or SPA or (-)-1-dimethylamino-1, 2-diphenylethane Leptazol Lobelia, alkaloids of Meclofenoxate; its salts Methamphetamine (DD) Methcathinone (DD) 5-Methoxy-3, 4-methylenedioxyamphetamine (MMDA) (DD) Methylenedioxyamphetamine (MDA) (DD) 3, 4-Methylenedioxymetamphetamine (MDMA) (DD) Methylphenidate;
  • Summary of Product Characteristics

    Summary of Product Characteristics

    NL/H/0662/001/MR NL/H/0663/001/MR NL/H/0664/001/MR SUMMARY OF PRODUCT CHARACTERISTICS 1. NAME OF THE MEDICINAL PRODUCT Tiaprid XXX 100 mg, tablets 2. QUALITATIVE AND QUANTIATIVE COMPOSITION Each tablet contains 100 mg tiapride (as hydrochloride). For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Tablet White, round tablets with beveled edge and a cross on both sides. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications For the treatment of neuroleptic-induced tardive dyskinesia, mainly oro-bucco-lingual type. 4.2 Posology and method of administration Adults should take 100-200 mg tiapride three times daily, depending on the severity of the disease and the body weight of the individual . The proposed daily dose for the claimed indication is 300-600 mg tiapride. The effect of treatment may not be apparent until after a period of 4-6 weeks of treatment. Tiaprid XXX tablets should preferably be taken with a little liquid after meals. Tiapride is not intended for treatment in children. Dosage in renal impairment Creatinine clearance: 50-80 ml/min = 75 % of the 10-50 ml/min = 50 % normal less than 10 ml/min = 25 % daily dose 4.3 Contraindications – Hypersensitivity to the active substance or to any of the excipients listed in section 6.1. – Concomitant Prolactin-dependent tumours, e.g. pituitary gland prolactinoma and breast cancer. 1 NL/H/0662/001/MR NL/H/0663/001/MR NL/H/0664/001/MR – Phaeochromocytoma. – Association with levodopa or other dopaminergic medicines (see section 4.5). – Neuroleptic malignant syndrome (see section 4.8).
  • Pharmacotherapy for Stimulant Use Disorders: a Systematic Review

    Pharmacotherapy for Stimulant Use Disorders: a Systematic Review

    4 D epartment of Veterans Affairs Health Services Research & Development Service Evidence-based Synthesis Program Pharmacotherapy for Stimulant Use Disorders: A Systematic Review August 2018 Prepared for: Investigators: Department of Veterans Affairs Principal Investigator: Veterans Health Administration Brian Chan, MD, MPH Quality Enhancement Research Initiative Co-Investigators: Health Services Research & Development Service Karli Kondo, PhD, MA Washington, DC 20420 Chelsea Ayers, BA Prepared by: Michele Freeman, MPH Jessica Montgomery, MPH Evidence-based Synthesis Program (ESP) Robin Paynter, MLIS Portland VA Health Care System Devan Kansagara, MD, MCR Portland, OR Devan Kansagara, MD, MCR, Director 4 Pharmacotherapy for Stimulant Use Disorders Evidence-based Synthesis Program PREFACE The VA Evidence-based Synthesis Program (ESP) was established in 2007 to provide timely and accurate syntheses of targeted healthcare topics of particular importance to clinicians, managers, and policymakers as they work to improve the health and healthcare of Veterans. QUERI provides funding for 4 ESP Centers, and each Center has an active University affiliation. Center Directors are recognized leaders in the field of evidence synthesis with close ties to the AHRQ Evidence-based Practice Centers. The ESP is governed by a Steering Committee comprised of participants from VHA Policy, Program, and Operations Offices, VISN leadership, field-based investigators, and others as designated appropriate by QUERI/HSR&D. The ESP Centers generate evidence syntheses on important clinical practice topics. These reports help: · Develop clinical policies informed by evidence; · Implement effective services to improve patient outcomes and to support VA clinical practice guidelines and performance measures; and · Set the direction for future research to address gaps in clinical knowledge.
  • Pharmacological Aspects and Potential New Clinical Applications of Taurine and Bromocriptine

    Pharmacological Aspects and Potential New Clinical Applications of Taurine and Bromocriptine

    PHARMACOLOGICAL ASPECTS AND POTENTIAL NEW CLINICAL APPLICATIONS OF TAURINE AND BROMOCRIPTINE ABDULRAHIM ABU -JAYYAB Faculty of Medical and Health Sciences Emirates College of Technology Al- Bateen Campus, Abu Dhabi, U.A.E. E-mail: [email protected] Abstract - Our previous work has shown that high plasma taurine levels was found in hyperprolactinaemic patients; these levels returned to normal after bromocriptine (dopaminergic agonist, D2) treatment for three months. Furthermore we reported that bromocriptine decreased the myometrial PGI2 release in rats; whereas taurine increased the content of the myometrial PGI. It was suggested that the activity of Na (+)-K (+)-ATPase could modulate the production of PGs in several tissues. Bromocriptine is shown to stimulate Na + /K + -ATPase in the liver of rats, while taurine inhibits sperm plasma membrane Na + /K+-ATPase. It is therefore, thought of interest to investigate the effect of bromocriptine, taurine or their combination on the isolated rabbit jejunum and on the rat uterus in vitor and in vivo. Methods, the effect of bromocriptine on isolated tissues and after pretreatment of the tissue with sulpiride, haloperidol, cyproheptadine or taurine were studied in vitro. Rabbit jejunum and rat uterus (in estrus) were obtained and suspended at 37°C in oxygenated Tyrode's and DeJahlon's solutions respectively. Isotonic contractions were measured using Bioscience Isotonic Transducers In vivo treatment was also carried out to study the effects of bromocriptine mesylate 10mg/kg, taurine 200 mg/kg; or bromocriptine mesylate 10mg/kg + taurine 200 mg/kg, compared to a control group, in order to measure uterine Na+, K+-ATPase activity .
  • Centre for Reviews and Dissemination

    Centre for Reviews and Dissemination

    Recurrence of hyperprolactinemia after withdrawal of dopamine agonists: systematic review and meta-analysis Dekkers OM, Lagro J, Burman P, Jorgensen JO, Romijn JA, Pereira AM CRD summary This review concluded that hyperprolactinaemia will recur after dopamine agonist withdrawal in a considerable proportion of patients and that the probability of treatment success was highest when cabergoline was used for at least two years. The authors' conclusions should be treated with some caution given the high level of variation between studies and the lack of consideration of study quality. Authors' objectives To assess the effect of dopamine agonist withdrawal in patients with idiopathic hyperprolactinaemia (increased levels of prolactin hormone) and prolactinomas (pituitary gland tumours). Searching PubMed, EMBASE, Web of Science and the Cochrane Library were searched from 1970 to July 2008. Search terms were reported. Reference lists were also searched for additional studies. There were no language restrictions. Study selection Clinical trials and observational studies of dopamine agonist treatment for patients with persisting normoprolactinaemia after treatment withdrawal were eligible for inclusion. In eligible studies, treatment had to last at least three months, with a follow-up period for patients of at least six months. During treatment normoprolactinemia had to be achieved and the maximum allowable proportion of patients receiving pre-treatment with radiotherapy was 20%. Studies also had to report the proportion of pateints with persisting normoprolactinaemia as an outcome, as well as details age, sex, type of dopamine agonist, treatment duration and normal reference values of prolactin. The included studies assessed the following dopamine agonists: bromocriptine 3.58 to 20 mg/day; cabergoline 0.5 to 1.77mg/week; dihydroergocriptine 30mg/day; metergoline 12 to 24mg/day; and quinagolide 0.121 to 0.257mg/day.
  • ( 12 ) United States Patent

    ( 12 ) United States Patent

    US010292977B2 (12 ) United States Patent (10 ) Patent No. : US 10 , 292 , 977 B2 Azhir (45 ) Date of Patent: *May 21, 2019 ( 54 ) COMPOSITIONS AND METHODS FOR 7 ,718 ,677 B2 5 /2010 Quik et al . TREATMENT RELATED TO FALL AND 8 , 192 ,756 B2 6 / 2012 Berner et al. FALL FREQUENCY IN 2005 /0021092 A1 1 / 2005 Yun et al . 2006 / 0053046 A1 3 / 2006 Bonnstetter et al. NEURODEGENERATIVE DISEASES 2008 /0260825 A1 10 / 2008 Quik et al . 2011/ 0268809 AL 11/ 2011 Brinkley et al . (71 ) Applicant: Neurocea, LLC , Los Altos, CA (US ) 2013/ 0017259 A1* 1 / 2013 Azhir .. .. A61K 31 /465 424 /461 (72 ) Inventor : Arasteh Ari Azhir , Los Altos , CA (US ) 2016 /0220553 AL 8 /2016 Azhir ( 73 ) Assignee : NEUROCEA , LLC , Los Altos , CA 2016 /0235732 AL 8 /2016 Quik (US ) 2018 /0125837 AL 5 /2018 Azhir FOREIGN PATENT DOCUMENTS ( * ) Notice : Subject to any disclaimer, the term of this patent is extended or adjusted under 35 WO WO -9712605 A1 4 /1997 U . S . C . 154 ( b ) by 0 days . WO WO - 9855107 Al 12 / 1998 WO WO - 03039518 A15 / 2003 This patent is subject to a terminal dis WO WO -03061656 A1 7 / 2003 claimer . WO W O - 2009003147 Al 12 / 2008 (21 ) Appl. No. : 15 / 853 , 151 OTHER PUBLICATIONS ( 22 ) Filed : Dec . 22, 2017 Wikipedia page for Parkinsonian gait; retrieved Aug. 23, 2018 ( Year: 2018 ) . * (65 ) Prior Publication Data Abood , et al. Structure -activity studies of carbamate and other esters : agonists and antagonists to nicotine . Pharmacol Biochem US 2018 /0177775 A1 Jun . 28, 2018 Behav .
  • New Information of Dopaminergic Agents Based on Quantum Chemistry Calculations Guillermo Goode‑Romero1*, Ulrika Winnberg2, Laura Domínguez1, Ilich A

    New Information of Dopaminergic Agents Based on Quantum Chemistry Calculations Guillermo Goode‑Romero1*, Ulrika Winnberg2, Laura Domínguez1, Ilich A

    www.nature.com/scientificreports OPEN New information of dopaminergic agents based on quantum chemistry calculations Guillermo Goode‑Romero1*, Ulrika Winnberg2, Laura Domínguez1, Ilich A. Ibarra3, Rubicelia Vargas4, Elisabeth Winnberg5 & Ana Martínez6* Dopamine is an important neurotransmitter that plays a key role in a wide range of both locomotive and cognitive functions in humans. Disturbances on the dopaminergic system cause, among others, psychosis, Parkinson’s disease and Huntington’s disease. Antipsychotics are drugs that interact primarily with the dopamine receptors and are thus important for the control of psychosis and related disorders. These drugs function as agonists or antagonists and are classifed as such in the literature. However, there is still much to learn about the underlying mechanism of action of these drugs. The goal of this investigation is to analyze the intrinsic chemical reactivity, more specifcally, the electron donor–acceptor capacity of 217 molecules used as dopaminergic substances, particularly focusing on drugs used to treat psychosis. We analyzed 86 molecules categorized as agonists and 131 molecules classifed as antagonists, applying Density Functional Theory calculations. Results show that most of the agonists are electron donors, as is dopamine, whereas most of the antagonists are electron acceptors. Therefore, a new characterization based on the electron transfer capacity is proposed in this study. This new classifcation can guide the clinical decision‑making process based on the physiopathological knowledge of the dopaminergic diseases. During the second half of the last century, a movement referred to as the third revolution in psychiatry emerged, directly related to the development of new antipsychotic drugs for the treatment of psychosis.
  • Benign Intracranial Hypertension Associated with the Withdrawal of a Non-Ergot Dopamine Agonist

    Benign Intracranial Hypertension Associated with the Withdrawal of a Non-Ergot Dopamine Agonist

    J7ournal ofNeurology, Neurosurgery, and Psychiatry 1994;57:371-372 371 SHORT REPORT J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.57.3.371 on 1 March 1994. Downloaded from Benign intracranial hypertension associated with the withdrawal of a non-ergot dopamine agonist S L Atkin, E A Masson, L D Blumhardt, M C White Abstract reduced from two to three each week to one The cases are reported of two patients each month while receiving CV 205 502, but who developed benign intracranial were more intense and of longer duration. hypertension after the withdrawal of the Headache frequency had increased on the novel non-ergot derived dopamine two occasions when she stopped treatment. agonist CV 205 502 (quinagolide). She was a non-smoker, receiving no other drugs, and rarely drank alcohol. General (J Neurol Neurosurg Psychiatry 1994;57:371-372) examination was normal apart from a body mass index of 27. Neurological examination showed bilateral papilloedema with no other Semisynthetic ergot-derived dopamine neurological signs. A CT scan with contrast agonists were introduced in 1971 for the enhancement was normal apart from an treatment of hyperprolactinaemia. Many empty sella and small ventricles consistent studies have documented the efficacy of these with benign intracranial hypertension. A lum- drugs in decreasing serum prolactin levels, bar puncture showed a pressure of 32 cm of reducing pituitary prolactinoma size and the CSF with normal glucose levels, white blood effects of pituitary compression, and in cell count, and total protein. She was treated restoring gonadal function. The side effects of with steroids and diuretics.