Differential and Complex Geometry: Origins, Abstractions and Embeddings Differential and Complex Geometry: Origins, Abstractions and Embeddings Raymond O

Total Page:16

File Type:pdf, Size:1020Kb

Differential and Complex Geometry: Origins, Abstractions and Embeddings Differential and Complex Geometry: Origins, Abstractions and Embeddings Raymond O Raymond O. Wells, Jr. Differential and Complex Geometry: Origins, Abstractions and Embeddings Differential and Complex Geometry: Origins, Abstractions and Embeddings Raymond O. Wells, Jr. Differential and Complex Geometry: Origins, Abstractions and Embeddings 123 Raymond O. Wells, Jr. University of Colorado Boulder Boulder, CO USA and Jacobs University Bremen Bremen Germany ISBN 978-3-319-58183-5 ISBN 978-3-319-58184-2 (eBook) DOI 10.1007/978-3-319-58184-2 Library of Congress Control Number: 2017943176 Mathematics Subject Classification (2010): 01-02, 30-02, 32-02, 14-02, 51-02, 53-02, 55-02 © Springer International Publishing AG 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Cover illustration reproduced from ‘Vorlesungen über Nicht-Euklidische Geometrie’ by Felix Klein (Volume 26 of the series Die Grundlehren der Mathematischen Wissenschaften), 1967, p. 300. With permission of Springer Nature. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland To my friend, Howard Resnikoff Preface About ten years ago, I had the idea of writing up a survey of the major embedding theorems of the twentieth century. This book represents the culmination of this idea, and I’m quite happy to be able to finally publish it after all this time. The embedding theorems represent important ideas in the modern fields of differential topology, differential geometry, complex manifold theory, and the general theory of functions of several complex variables, as well as the overall concept of manifolds in general. I thought it would be useful to review the origins of these various concepts as a way of hoping to give a deeper understanding of the theorems themselves. Consequently, I spent a fair amount of time these past years looking at a number of contributions by mathematicians during the seventeenth through the nineteenth centuries, where almost all of these concepts first appeared and then developed. In my book, I have tried to give the reader some sense of the language and under- standing of these earlier mathematicians as they gave voice to the many issues at hand. For instance, the developments of projective geometry and intrinsic differ- ential geometry both evolved at the same time in the first half of the nineteenth century, but in reading the literature of the time, it seems as if they were hardly aware of each other. Only in the last half of the nineteenth century did these seemingly disparate sets of ideas come to be part of a mathematical whole. I would not have been able to peruse these papers and books from these earlier times had it not been for the Internet and the fact that the great libraries of the world put time and effort into digitizing their collections. I am very thankful that these ideas can be so readily shared today. I have had the support of three academic institutions over the past decades, where it has been my privilege to hold various academic appointments, and I want to thank them all for their continued support over the years: Rice University in Houston; Jacobs University in Bremen, Germany; and the University of Colorado in Boulder, Colorado, where I now live. Springer is the publisher of two of my earlier books, and I am very happy that they are bringing this new work of mine to the public. I want to thank, in particular, Rémi Lodh, who encouraged me and helped bring this book to fruition. vii viii Preface The comments of his reviewers were very helpful to me. Anne-Kathrin Birchley-Brun, also in the London Springer office, has been very helpful in the process of managing the digital files and ushering them into the production process. I want to thank Ina Mette, formerly of Springer and now an editor for the American Mathematical Society, for her encouragement for this project over many years now. I have dedicated this book to my very close friend, Howard Resnikoff. He has been an inspiration for me for over fifty years, and we have shared many things together. His reading of various drafts of this book and his encouraging words have been very important to me. Finally, I want to thank my wife, Rena, for her continuous support in so many ways. In particular, she read a final draft and her comments and editorial pen were so very useful, as always. Boulder, CO, USA Raymond O. Wells, Jr. March 2017 Contents Introduction................................................. xiii Part I Geometry in the Age of Enlightenment 1 Algebraic Geometry ...................................... 5 1.1 Introduction ........................................ 5 1.2 Descartes and Fermat ................................. 7 1.3 Newton and Euler.................................... 11 2 Differential Geometry ..................................... 17 2.1 Introduction ........................................ 17 2.2 Huygens and Newton ................................. 18 2.3 Curves in Space: Courbes à double courbure............... 27 2.4 Curvature of a Surface: Euler in 1767 .................... 27 Part II Differential and Projective Geometry in the Nineteenth Century 3 Projective Geometry ...................................... 33 3.1 Monge and Descriptive Geometry ....................... 34 3.2 Poncelet’s “Propriétés Projectives” ....................... 36 3.3 Analytic Projective Geometry ........................... 45 4 Gauss and Intrinsic Differential Geometry .................... 49 4.1 Gaussian Curvature................................... 49 4.2 Gauss’s Theorema Egregrium........................... 54 5 Riemann’s Higher-Dimensional Geometry..................... 59 5.1 The Legacy of Riemann ............................... 59 5.2 Higher-Dimensional Manifolds and a Quadratic Line Element ....................................... 62 5.3 Geodesic Normal Coordinates and a Definition of Curvature ........................................ 65 ix x Contents Part III Origins of Complex Geometry 6 The Complex Plane ....................................... 75 6.1 Introduction ........................................ 75 6.2 Caspar Wessel’s Cartography ........................... 76 6.3 Argand and Gauss ................................... 79 7 Elliptic and Abelian Integrals............................... 83 7.1 Introduction ........................................ 83 7.2 Euler’s Addition Theorem ............................. 85 7.3 Abel’s Addition Theorem .............................. 89 8 Elliptic Functions......................................... 97 8.1 Introduction ........................................ 97 8.2 Abel’s Recherches sur les fonctions elliptiques.............. 99 8.3 Jacobi’s Fundamenta Nova............................. 108 8.4 Jacobi’s Theta Functions............................... 109 9 Complex Analysis ........................................ 113 9.1 Introduction ........................................ 113 9.2 Cauchy in 1814 ..................................... 113 9.3 Cauchy’s 1825 Mémoire............................... 118 9.4 Riemann’s Dissertation from 1851 ....................... 120 9.5 The Lectures of Weierstrass ............................ 128 9.6 The Mittag-Leffler Theorem ............................ 133 10 Riemann Surfaces ........................................ 137 10.1 Riemann’s Multilayered Surfaces ........................ 137 10.2 The Analysis Situs of Riemann ......................... 139 10.3 Abelian Integrals and Abelian Functions .................. 142 10.4 The Riemann–Roch Theorem ........................... 153 11 Complex Geometry at the End of the Nineteenth Century........ 159 11.1 Klein and Lie ....................................... 159 11.2 The Uniformization Theorem for Riemann Surfaces.......... 160 11.3 Point Set and Algebraic Topology ....................... 162 11.4 Weyl’s Book, Die Idee der Riemannschen Fläche, in 1913 .... 162 Part IV Twentieth-Century Embedding Theorems 12 Differentiable Manifolds ................................... 175 12.1 Introduction ........................................ 175 12.2 The Local Immersion Approximation ..................... 179 12.3 Whitney’s Embedding Theorem ......................... 181 12.4 Concluding Remarks.................................. 184 Contents xi 13 Riemannian Manifolds .................................... 187 13.1 Introduction .......................................
Recommended publications
  • Chapter 13 the Geometry of Circles
    Chapter 13 TheR. Connelly geometry of circles Math 452, Spring 2002 Math 4520, Fall 2017 CLASSICAL GEOMETRIES So far we have been studying lines and conics in the Euclidean plane. What about circles, 14. The geometry of circles one of the basic objects of study in Euclidean geometry? One approach is to use the complex numbersSo far .we Recall have thatbeen the studying projectivities lines and of conics the projective in the Euclidean plane overplane., whichWhat weabout call 2, circles, Cone of the basic objects of study in Euclidean geometry? One approachC is to use CP are given by 3 by 3 matrices, and these projectivities restricted to a complex projective the complex numbers 1C. Recall that the projectivities of the projective plane over C, line,v.rhich which we wecall call Cp2, a CPare, given are the by Moebius3 by 3 matrices, functions, and whichthese projectivities themselves correspondrestricted to to a 2-by-2 matrices.complex Theprojective Moebius line, functions which we preservecall a Cpl the, are cross the Moebius ratio. This functions, is where which circles themselves come in. correspond to a 2 by 2 matrix. The Moebius functions preserve the cross ratio. This is 13.1where circles The come cross in. ratio for the complex field We14.1 look The for anothercross ratio geometric for the interpretation complex field of the cross ratio for the complex field, or better 1 yet forWeCP look= Cfor[f1g another. Recall geometric the polarinterpretation decomposition of the cross of a complexratio for numberthe complexz = refield,iθ, where r =orjz betterj is the yet magnitude for Cpl = ofCz U, and{ 00 } .Recallθ is the the angle polar that decomposition the line through of a complex 0 and znumbermakes with thez real -rei9, axis.
    [Show full text]
  • Bernhard Riemann 1826-1866
    Modern Birkh~user Classics Many of the original research and survey monographs in pure and applied mathematics published by Birkh~iuser in recent decades have been groundbreaking and have come to be regarded as foun- dational to the subject. Through the MBC Series, a select number of these modern classics, entirely uncorrected, are being re-released in paperback (and as eBooks) to ensure that these treasures remain ac- cessible to new generations of students, scholars, and researchers. BERNHARD RIEMANN (1826-1866) Bernhard R~emanno 1826 1866 Turning Points in the Conception of Mathematics Detlef Laugwitz Translated by Abe Shenitzer With the Editorial Assistance of the Author, Hardy Grant, and Sarah Shenitzer Reprint of the 1999 Edition Birkh~iuser Boston 9Basel 9Berlin Abe Shendtzer (translator) Detlef Laugwitz (Deceased) Department of Mathematics Department of Mathematics and Statistics Technische Hochschule York University Darmstadt D-64289 Toronto, Ontario M3J 1P3 Gernmany Canada Originally published as a monograph ISBN-13:978-0-8176-4776-6 e-ISBN-13:978-0-8176-4777-3 DOI: 10.1007/978-0-8176-4777-3 Library of Congress Control Number: 2007940671 Mathematics Subject Classification (2000): 01Axx, 00A30, 03A05, 51-03, 14C40 9 Birkh~iuser Boston All rights reserved. This work may not be translated or copied in whole or in part without the writ- ten permission of the publisher (Birkh~user Boston, c/o Springer Science+Business Media LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter de- veloped is forbidden.
    [Show full text]
  • ROBERT L. FOOTE CURRICULUM VITA March 2017 Address
    ROBERT L. FOOTE CURRICULUM VITA March 2017 Address/Telephone/E-Mail Department of Mathematics & Computer Science Wabash College Crawfordsville, Indiana 47933 (765) 361-6429 [email protected] Personal Date of Birth: December 2, 1953 Citizenship: USA Education Ph.D., Mathematics, University of Michigan, April 1983 Dissertation: Curvature Estimates for Monge-Amp`ere Foliations Thesis Advisor: Daniel M. Burns Jr. M.A., Mathematics, University of Michigan, April 1978 B.A., Mathematics, Kalamazoo College, June 1976 Magna cum Laude with Honors in Mathematics, Phi Beta Kappa, Heyl Science Scholarship Employment 1989–present, Wabash College Department Chair, 1997–2001, 2009–2012 Full Professor since 2004 Associate Professor, 1993–2004 Assistant Professor, 1991–1993 Byron K. Trippet Assistant Professor, 1989–1991 1983–1989, Texas Tech University, Assistant Professor (granted tenure) 1983, Kalamazoo College, Visiting Instructor 1976–1982, University of Michigan, Graduate Student Teaching Assistant 1976, 1977, The Upjohn Company, Mathematical Analyst Research Visits 2009, Korea Institute for Advanced Study (KIAS), Visiting Scholar Three weeks at the invitation of C. K. Han. 2009, Pennsylvania State Univ., Shapiro Visitor Four weeks at the invitation of Sergei Tabachnikov. 2008–2009, Univ. of Georgia, Visiting Scholar (sabbatical leave) 1996–1997, 2003–2004, Univ. of Illinois at Urbana Champaign, Visiting Scholar (sabbatical leave) 1991, Pohang Institute of Science and Technology, Pohang, Korea Three months at the invitation of C. K. Han. 1990, Texas Tech University Ten weeks at the invitation of Lance D. Drager. Current Fields of Interest Primary: Differential Geometry, Integral Geometry Professional Affiliations American Mathematical Society, Mathematical Association of America. Teaching Experience Graduate courses Differentiable manifolds, real analysis, complex analysis.
    [Show full text]
  • Simply-Riemann-1588263529. Print
    Simply Riemann Simply Riemann JEREMY GRAY SIMPLY CHARLY NEW YORK Copyright © 2020 by Jeremy Gray Cover Illustration by José Ramos Cover Design by Scarlett Rugers All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. For permission requests, write to the publisher at the address below. [email protected] ISBN: 978-1-943657-21-6 Brought to you by http://simplycharly.com Contents Praise for Simply Riemann vii Other Great Lives x Series Editor's Foreword xi Preface xii Introduction 1 1. Riemann's life and times 7 2. Geometry 41 3. Complex functions 64 4. Primes and the zeta function 87 5. Minimal surfaces 97 6. Real functions 108 7. And another thing . 124 8. Riemann's Legacy 126 References 143 Suggested Reading 150 About the Author 152 A Word from the Publisher 153 Praise for Simply Riemann “Jeremy Gray is one of the world’s leading historians of mathematics, and an accomplished author of popular science. In Simply Riemann he combines both talents to give us clear and accessible insights into the astonishing discoveries of Bernhard Riemann—a brilliant but enigmatic mathematician who laid the foundations for several major areas of today’s mathematics, and for Albert Einstein’s General Theory of Relativity.Readable, organized—and simple. Highly recommended.” —Ian Stewart, Emeritus Professor of Mathematics at Warwick University and author of Significant Figures “Very few mathematicians have exercised an influence on the later development of their science comparable to Riemann’s whose work reshaped whole fields and created new ones.
    [Show full text]
  • Complex Analysis and Complex Geometry
    Complex Analysis and Complex Geometry Finnur Larusson,´ University of Adelaide Norman Levenberg, Indiana University Rasul Shafikov, University of Western Ontario Alexandre Sukhov, Universite´ des Sciences et Technologies de Lille May 1–6, 2016 1 Overview of the Field Complex analysis and complex geometry form synergy through the geometric ideas used in analysis and an- alytic tools employed in geometry, and therefore they should be viewed as two aspects of the same subject. The fundamental objects of the theory are complex manifolds and, more generally, complex spaces, holo- morphic functions on them, and holomorphic maps between them. Holomorphic functions can be defined in three equivalent ways as complex-differentiable functions, convergent power series, and as solutions of the homogeneous Cauchy-Riemann equation. The threefold nature of differentiability over the complex numbers gives complex analysis its distinctive character and is the ultimate reason why it is linked to so many areas of mathematics. Plurisubharmonic functions are not as well known to nonexperts as holomorphic functions. They were first explicitly defined in the 1940s, but they had already appeared in attempts to geometrically describe domains of holomorphy at the very beginning of several complex variables in the first decade of the 20th century. Since the 1960s, one of their most important roles has been as weights in a priori estimates for solving the Cauchy-Riemann equation. They are intimately related to the complex Monge-Ampere` equation, the second partial differential equation of complex analysis. There is also a potential-theoretic aspect to plurisubharmonic functions, which is the subject of pluripotential theory. In the early decades of the modern era of the subject, from the 1940s into the 1970s, the notion of a complex space took shape and the geometry of analytic varieties and holomorphic maps was developed.
    [Show full text]
  • Fundamental Theorems in Mathematics
    SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635].
    [Show full text]
  • The Legacy of Leonhard Euler: a Tricentennial Tribute (419 Pages)
    P698.TP.indd 1 9/8/09 5:23:37 PM This page intentionally left blank Lokenath Debnath The University of Texas-Pan American, USA Imperial College Press ICP P698.TP.indd 2 9/8/09 5:23:39 PM Published by Imperial College Press 57 Shelton Street Covent Garden London WC2H 9HE Distributed by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. THE LEGACY OF LEONHARD EULER A Tricentennial Tribute Copyright © 2010 by Imperial College Press All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN-13 978-1-84816-525-0 ISBN-10 1-84816-525-0 Printed in Singapore. LaiFun - The Legacy of Leonhard.pmd 1 9/4/2009, 3:04 PM September 4, 2009 14:33 World Scientific Book - 9in x 6in LegacyLeonhard Leonhard Euler (1707–1783) ii September 4, 2009 14:33 World Scientific Book - 9in x 6in LegacyLeonhard To my wife Sadhana, grandson Kirin,and granddaughter Princess Maya, with love and affection.
    [Show full text]
  • An Inquiry Into Alfred Clebsch's Geschlecht
    ”Are the genre and the Geschlecht one and the same number?” An inquiry into Alfred Clebsch’s Geschlecht François Lê To cite this version: François Lê. ”Are the genre and the Geschlecht one and the same number?” An inquiry into Alfred Clebsch’s Geschlecht. Historia Mathematica, Elsevier, 2020, 53, pp.71-107. hal-02454084v2 HAL Id: hal-02454084 https://hal.archives-ouvertes.fr/hal-02454084v2 Submitted on 19 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. “Are the genre and the Geschlecht one and the same number?” An inquiry into Alfred Clebsch’s Geschlecht François Lê∗ Postprint version, April 2020 Abstract This article is aimed at throwing new light on the history of the notion of genus, whose paternity is usually attributed to Bernhard Riemann while its original name Geschlecht is often credited to Alfred Clebsch. By comparing the approaches of the two mathematicians, we show that Clebsch’s act of naming was rooted in a projective geometric reinterpretation of Riemann’s research, and that his Geschlecht was actually a different notion than that of Riemann. We also prove that until the beginning of the 1880s, mathematicians clearly distinguished between the notions of Clebsch and Riemann, the former being mainly associated with algebraic curves, and the latter with surfaces and Riemann surfaces.
    [Show full text]
  • An Introduction to Complex Analysis and Geometry John P. D'angelo
    An Introduction to Complex Analysis and Geometry John P. D'Angelo Dept. of Mathematics, Univ. of Illinois, 1409 W. Green St., Urbana IL 61801 [email protected] 1 2 c 2009 by John P. D'Angelo Contents Chapter 1. From the real numbers to the complex numbers 11 1. Introduction 11 2. Number systems 11 3. Inequalities and ordered fields 16 4. The complex numbers 24 5. Alternative definitions of C 26 6. A glimpse at metric spaces 30 Chapter 2. Complex numbers 35 1. Complex conjugation 35 2. Existence of square roots 37 3. Limits 39 4. Convergent infinite series 41 5. Uniform convergence and consequences 44 6. The unit circle and trigonometry 50 7. The geometry of addition and multiplication 53 8. Logarithms 54 Chapter 3. Complex numbers and geometry 59 1. Lines, circles, and balls 59 2. Analytic geometry 62 3. Quadratic polynomials 63 4. Linear fractional transformations 69 5. The Riemann sphere 73 Chapter 4. Power series expansions 75 1. Geometric series 75 2. The radius of convergence 78 3. Generating functions 80 4. Fibonacci numbers 82 5. An application of power series 85 6. Rationality 87 Chapter 5. Complex differentiation 91 1. Definitions of complex analytic function 91 2. Complex differentiation 92 3. The Cauchy-Riemann equations 94 4. Orthogonal trajectories and harmonic functions 97 5. A glimpse at harmonic functions 98 6. What is a differential form? 103 3 4 CONTENTS Chapter 6. Complex integration 107 1. Complex-valued functions 107 2. Line integrals 109 3. Goursat's proof 116 4. The Cauchy integral formula 119 5.
    [Show full text]
  • Daniel Huybrechts
    Universitext Daniel Huybrechts Complex Geometry An Introduction 4u Springer Daniel Huybrechts Universite Paris VII Denis Diderot Institut de Mathematiques 2, place Jussieu 75251 Paris Cedex 05 France e-mail: [email protected] Mathematics Subject Classification (2000): 14J32,14J60,14J81,32Q15,32Q20,32Q25 Cover figure is taken from page 120. Library of Congress Control Number: 2004108312 ISBN 3-540-21290-6 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springeronline.com © Springer-Verlag Berlin Heidelberg 2005 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: Erich Kirchner, Heidelberg Typesetting by the author using a Springer KTjiX macro package Production: LE-TgX Jelonek, Schmidt & Vockler GbR, Leipzig Printed on acid-free paper 46/3142YL -543210 Preface Complex geometry is a highly attractive branch of modern mathematics that has witnessed many years of active and successful research and that has re- cently obtained new impetus from physicists' interest in questions related to mirror symmetry.
    [Show full text]
  • Geometry in the Age of Enlightenment
    Geometry in the Age of Enlightenment Raymond O. Wells, Jr. ∗ July 2, 2015 Contents 1 Introduction 1 2 Algebraic Geometry 3 2.1 Algebraic Curves of Degree Two: Descartes and Fermat . 5 2.2 Algebraic Curves of Degree Three: Newton and Euler . 11 3 Differential Geometry 13 3.1 Curvature of curves in the plane . 17 3.2 Curvature of curves in space . 26 3.3 Curvature of a surface in space: Euler in 1767 . 28 4 Conclusion 30 1 Introduction The Age of Enlightenment is a term that refers to a time of dramatic changes in western society in the arts, in science, in political thinking, and, in particular, in philosophical discourse. It is generally recognized as being the period from the mid 17th century to the latter part of the 18th century. It was a successor to the renaissance and reformation periods and was followed by what is termed the romanticism of the 19th century. In his book A History of Western Philosophy [25] Bertrand Russell (1872{1970) gives a very lucid description of this time arXiv:1507.00060v1 [math.HO] 30 Jun 2015 period in intellectual history, especially in Book III, Chapter VI{Chapter XVII. He singles out Ren´eDescartes as being the founder of the era of new philosophy in 1637 and continues to describe other philosophers who also made significant contributions to mathematics as well, such as Newton and Leibniz. This time of intellectual fervor included literature (e.g. Voltaire), music and the world of visual arts as well. One of the most significant developments was perhaps in the political world: here the absolutism of the church and of the monarchies ∗Jacobs University Bremen; University of Colorado at Boulder; [email protected] 1 were questioned by the political philosophers of this era, ushering in the Glo- rious Revolution in England (1689), the American Revolution (1776), and the bloody French Revolution (1789).
    [Show full text]
  • A Selection of New Arrivals September 2017
    A selection of new arrivals September 2017 Rare and important books & manuscripts in science and medicine, by Christian Westergaard. Flæsketorvet 68 – 1711 København V – Denmark Cell: (+45)27628014 www.sophiararebooks.com AMPERE, Andre-Marie. Mémoire. INSCRIBED BY AMPÈRE TO FARADAY AMPÈRE, André-Marie. Mémoire sur l’action mutuelle d’un conducteur voltaïque et d’un aimant. Offprint from Nouveaux Mémoires de l’Académie royale des sciences et belles-lettres de Bruxelles, tome IV, 1827. Bound with 18 other pamphlets (listed below). [Colophon:] Brussels: Hayez, Imprimeur de l’Académie Royale, 1827. $38,000 4to (265 x 205 mm). Contemporary quarter-cloth and plain boards (very worn and broken, with most of the spine missing), entirely unrestored. Preserved in a custom cloth box. First edition of the very rare offprint, with the most desirable imaginable provenance: this copy is inscribed by Ampère to Michael Faraday. It thus links the two great founders of electromagnetism, following its discovery by Hans Christian Oersted (1777-1851) in April 1820. The discovery by Ampère (1775-1836), late in the same year, of the force acting between current-carrying conductors was followed a year later by Faraday’s (1791-1867) first great discovery, that of electromagnetic rotation, the first conversion of electrical into mechanical energy. This development was a challenge to Ampère’s mathematically formulated explanation of electromagnetism as a manifestation of currents of electrical fluids surrounding ‘electrodynamic’ molecules; indeed, Faraday directly criticised Ampère’s theory, preferring his own explanation in terms of ‘lines of force’ (which had to wait for James Clerk Maxwell (1831-79) for a precise mathematical formulation).
    [Show full text]