An Introduction to Complex Analysis and Geometry John P. D'angelo
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 13 the Geometry of Circles
Chapter 13 TheR. Connelly geometry of circles Math 452, Spring 2002 Math 4520, Fall 2017 CLASSICAL GEOMETRIES So far we have been studying lines and conics in the Euclidean plane. What about circles, 14. The geometry of circles one of the basic objects of study in Euclidean geometry? One approach is to use the complex numbersSo far .we Recall have thatbeen the studying projectivities lines and of conics the projective in the Euclidean plane overplane., whichWhat weabout call 2, circles, Cone of the basic objects of study in Euclidean geometry? One approachC is to use CP are given by 3 by 3 matrices, and these projectivities restricted to a complex projective the complex numbers 1C. Recall that the projectivities of the projective plane over C, line,v.rhich which we wecall call Cp2, a CPare, given are the by Moebius3 by 3 matrices, functions, and whichthese projectivities themselves correspondrestricted to to a 2-by-2 matrices.complex Theprojective Moebius line, functions which we preservecall a Cpl the, are cross the Moebius ratio. This functions, is where which circles themselves come in. correspond to a 2 by 2 matrix. The Moebius functions preserve the cross ratio. This is 13.1where circles The come cross in. ratio for the complex field We14.1 look The for anothercross ratio geometric for the interpretation complex field of the cross ratio for the complex field, or better 1 yet forWeCP look= Cfor[f1g another. Recall geometric the polarinterpretation decomposition of the cross of a complexratio for numberthe complexz = refield,iθ, where r =orjz betterj is the yet magnitude for Cpl = ofCz U, and{ 00 } .Recallθ is the the angle polar that decomposition the line through of a complex 0 and znumbermakes with thez real -rei9, axis. -
The Integral Geometry of Line Complexes and a Theorem of Gelfand-Graev Astérisque, Tome S131 (1985), P
Astérisque VICTOR GUILLEMIN The integral geometry of line complexes and a theorem of Gelfand-Graev Astérisque, tome S131 (1985), p. 135-149 <http://www.numdam.org/item?id=AST_1985__S131__135_0> © Société mathématique de France, 1985, tous droits réservés. L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l’accord avec les conditions générales d’uti- lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Société Mathématique de France Astérisque, hors série, 1985, p. 135-149 THE INTEGRAL GEOMETRY OF LINE COMPLEXES AND A THEOREM OF GELFAND-GRAEV BY Victor GUILLEMIN 1. Introduction Let P = CP3 be the complex three-dimensional projective space and let G = CG(2,4) be the Grassmannian of complex two-dimensional subspaces of C4. To each point p E G corresponds a complex line lp in P. Given a smooth function, /, on P we will show in § 2 how to define properly the line integral, (1.1) f(\)d\ d\. = f(p). d A complex hypersurface, 5, in G is called admissible if there exists no smooth function, /, which is not identically zero but for which the line integrals, (1,1) are zero for all p G 5. In other words if S is admissible, then, in principle, / can be determined by its integrals over the lines, Zp, p G 5. In the 60's GELFAND and GRAEV settled the problem of characterizing which subvarieties, 5, of G have this property. -
Nine Chapters of Analytic Number Theory in Isabelle/HOL
Nine Chapters of Analytic Number Theory in Isabelle/HOL Manuel Eberl Technische Universität München 12 September 2019 + + 58 Manuel Eberl Rodrigo Raya 15 library unformalised 173 18 using analytic methods In this work: only multiplicative number theory (primes, divisors, etc.) Much of the formalised material is not particularly analytic. Some of these results have already been formalised by other people (Avigad, Harrison, Carneiro, . ) – but not in the context of a large library. What is Analytic Number Theory? Studying the multiplicative and additive structure of the integers In this work: only multiplicative number theory (primes, divisors, etc.) Much of the formalised material is not particularly analytic. Some of these results have already been formalised by other people (Avigad, Harrison, Carneiro, . ) – but not in the context of a large library. What is Analytic Number Theory? Studying the multiplicative and additive structure of the integers using analytic methods Much of the formalised material is not particularly analytic. Some of these results have already been formalised by other people (Avigad, Harrison, Carneiro, . ) – but not in the context of a large library. What is Analytic Number Theory? Studying the multiplicative and additive structure of the integers using analytic methods In this work: only multiplicative number theory (primes, divisors, etc.) Some of these results have already been formalised by other people (Avigad, Harrison, Carneiro, . ) – but not in the context of a large library. What is Analytic Number Theory? Studying the multiplicative and additive structure of the integers using analytic methods In this work: only multiplicative number theory (primes, divisors, etc.) Much of the formalised material is not particularly analytic. -
Winding Numbers and Solid Angles
Palestine Polytechnic University Deanship of Graduate Studies and Scientific Research Master Program of Mathematics Winding Numbers and Solid Angles Prepared by Warda Farajallah M.Sc. Thesis Hebron - Palestine 2017 Winding Numbers and Solid Angles Prepared by Warda Farajallah Supervisor Dr. Ahmed Khamayseh M.Sc. Thesis Hebron - Palestine Submitted to the Department of Mathematics at Palestine Polytechnic University as a partial fulfilment of the requirement for the degree of Master of Science. Winding Numbers and Solid Angles Prepared by Warda Farajallah Supervisor Dr. Ahmed Khamayseh Master thesis submitted an accepted, Date September, 2017. The name and signature of the examining committee members Dr. Ahmed Khamayseh Head of committee signature Dr. Yousef Zahaykah External Examiner signature Dr. Nureddin Rabie Internal Examiner signature Palestine Polytechnic University Declaration I declare that the master thesis entitled "Winding Numbers and Solid Angles " is my own work, and hereby certify that unless stated, all work contained within this thesis is my own independent research and has not been submitted for the award of any other degree at any institution, except where due acknowledgment is made in the text. Warda Farajallah Signature: Date: iv Statement of Permission to Use In presenting this thesis in partial fulfillment of the requirements for the master degree in mathematics at Palestine Polytechnic University, I agree that the library shall make it available to borrowers under rules of library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledg- ment of the source is made. Permission for the extensive quotation from, reproduction, or publication of this thesis may be granted by my main supervisor, or in his absence, by the Dean of Graduate Studies and Scientific Research when, in the opinion either, the proposed use of the material is scholarly purpose. -
COMPLEX ANALYSIS–Spring 2014 1 Winding Numbers
COMPLEX ANALYSIS{Spring 2014 Cauchy and Runge Under the Same Roof. These notes can be used as an alternative to Section 5.5 of Chapter 2 in the textbook. They assume the theorem on winding numbers of the notes on Winding Numbers and Cauchy's formula, so I begin by repeating this theorem (and consequences) here. but first, some remarks on notation. A notation I'll be using on occasion is to write Z f(z) dz jz−z0j=r for the integral of f(z) over the positively oriented circle of radius r, center z0; that is, Z Z 2π it it f(z) dz = f z0 + re rie dt: jz−z0j=r 0 Another notation I'll use, to avoid confusion with complex conjugation is Cl(A) for the closure of a set A ⊆ C. If a; b 2 C, I will denote by λa;b the line segment from a to b; that is, λa;b(t) = a + t(b − a); 0 ≤ t ≤ 1: Triangles being so ubiquitous, if we have a triangle of vertices a; b; c 2 C,I will write T (a; b; c) for the closed triangle; that is, for the set T (a; b; c) = fra + sb + tc : r; s; t ≥ 0; r + s + t = 1g: Here the order of the vertices does not matter. But I will denote the boundary oriented in the order of the vertices by @T (a; b; c); that is, @T (a; b; c) = λa;b + λb;c + λc;a. If a; b; c are understood (or unimportant), I might just write T for the triangle, and @T for the boundary. -
ROBERT L. FOOTE CURRICULUM VITA March 2017 Address
ROBERT L. FOOTE CURRICULUM VITA March 2017 Address/Telephone/E-Mail Department of Mathematics & Computer Science Wabash College Crawfordsville, Indiana 47933 (765) 361-6429 [email protected] Personal Date of Birth: December 2, 1953 Citizenship: USA Education Ph.D., Mathematics, University of Michigan, April 1983 Dissertation: Curvature Estimates for Monge-Amp`ere Foliations Thesis Advisor: Daniel M. Burns Jr. M.A., Mathematics, University of Michigan, April 1978 B.A., Mathematics, Kalamazoo College, June 1976 Magna cum Laude with Honors in Mathematics, Phi Beta Kappa, Heyl Science Scholarship Employment 1989–present, Wabash College Department Chair, 1997–2001, 2009–2012 Full Professor since 2004 Associate Professor, 1993–2004 Assistant Professor, 1991–1993 Byron K. Trippet Assistant Professor, 1989–1991 1983–1989, Texas Tech University, Assistant Professor (granted tenure) 1983, Kalamazoo College, Visiting Instructor 1976–1982, University of Michigan, Graduate Student Teaching Assistant 1976, 1977, The Upjohn Company, Mathematical Analyst Research Visits 2009, Korea Institute for Advanced Study (KIAS), Visiting Scholar Three weeks at the invitation of C. K. Han. 2009, Pennsylvania State Univ., Shapiro Visitor Four weeks at the invitation of Sergei Tabachnikov. 2008–2009, Univ. of Georgia, Visiting Scholar (sabbatical leave) 1996–1997, 2003–2004, Univ. of Illinois at Urbana Champaign, Visiting Scholar (sabbatical leave) 1991, Pohang Institute of Science and Technology, Pohang, Korea Three months at the invitation of C. K. Han. 1990, Texas Tech University Ten weeks at the invitation of Lance D. Drager. Current Fields of Interest Primary: Differential Geometry, Integral Geometry Professional Affiliations American Mathematical Society, Mathematical Association of America. Teaching Experience Graduate courses Differentiable manifolds, real analysis, complex analysis. -
CR Singular Immersions of Complex Projective Spaces
Beitr¨agezur Algebra und Geometrie Contributions to Algebra and Geometry Volume 43 (2002), No. 2, 451-477. CR Singular Immersions of Complex Projective Spaces Adam Coffman∗ Department of Mathematical Sciences Indiana University Purdue University Fort Wayne Fort Wayne, IN 46805-1499 e-mail: Coff[email protected] Abstract. Quadratically parametrized smooth maps from one complex projective space to another are constructed as projections of the Segre map of the complexifi- cation. A classification theorem relates equivalence classes of projections to congru- ence classes of matrix pencils. Maps from the 2-sphere to the complex projective plane, which generalize stereographic projection, and immersions of the complex projective plane in four and five complex dimensions, are considered in detail. Of particular interest are the CR singular points in the image. MSC 2000: 14E05, 14P05, 15A22, 32S20, 32V40 1. Introduction It was shown by [23] that the complex projective plane CP 2 can be embedded in R7. An example of such an embedding, where R7 is considered as a subspace of C4, and CP 2 has complex homogeneous coordinates [z1 : z2 : z3], was given by the following parametric map: 1 2 2 [z1 : z2 : z3] 7→ 2 2 2 (z2z¯3, z3z¯1, z1z¯2, |z1| − |z2| ). |z1| + |z2| + |z3| Another parametric map of a similar form embeds the complex projective line CP 1 in R3 ⊆ C2: 1 2 2 [z0 : z1] 7→ 2 2 (2¯z0z1, |z1| − |z0| ). |z0| + |z1| ∗The author’s research was supported in part by a 1999 IPFW Summer Faculty Research Grant. 0138-4821/93 $ 2.50 c 2002 Heldermann Verlag 452 Adam Coffman: CR Singular Immersions of Complex Projective Spaces This may look more familiar when restricted to an affine neighborhood, [z0 : z1] = (1, z) = (1, x + iy), so the set of complex numbers is mapped to the unit sphere: 2x 2y |z|2 − 1 z 7→ ( , , ), 1 + |z|2 1 + |z|2 1 + |z|2 and the “point at infinity”, [0 : 1], is mapped to the point (0, 0, 1) ∈ R3. -
Rotation and Winding Numbers for Planar Polygons and Curves
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 322, Number I, November 1990 ROTATION AND WINDING NUMBERS FOR PLANAR POLYGONS AND CURVES BRANKO GRUNBAUM AND G. C. SHEPHARD ABSTRACT. The winding and rotation numbers for closed plane polygons and curves appear in various contexts. Here alternative definitions are presented, and relations between these characteristics and several other integer-valued func- tions are investigated. In particular, a point-dependent "tangent number" is defined, and it is shown that the sum of the winding and tangent numbers is independent of the point with respect to which they are taken, and equals the rotation number. 1. INTRODUCTION Associated with every planar polygon P (or, more generally, with certain kinds of closed curves in the plane) are several numerical quantities that take only integer values. The best known of these are the rotation number of P (also called the "tangent winding number") of P and the winding number of P with respect to a point in the plane. The rotation number was introduced for smooth curves by Whitney [1936], but for polygons it had been defined some seventy years earlier by Wiener [1865]. The winding numbers of polygons also have a long history, having been discussed at least since Meister [1769] and, in particular, Mobius [1865]. However, there seems to exist no literature connecting these two concepts. In fact, so far we are aware, there is no instance in which both are mentioned in the same context. In the present note we shall show that there exist interesting alternative defi- nitions of the rotation number, as well as various relations between the rotation numbers of polygons, winding numbers with respect to given points, and several other integer-valued functions that depend on the embedding of the polygons in the plane. -
Complex Analysis and Complex Geometry
Complex Analysis and Complex Geometry Finnur Larusson,´ University of Adelaide Norman Levenberg, Indiana University Rasul Shafikov, University of Western Ontario Alexandre Sukhov, Universite´ des Sciences et Technologies de Lille May 1–6, 2016 1 Overview of the Field Complex analysis and complex geometry form synergy through the geometric ideas used in analysis and an- alytic tools employed in geometry, and therefore they should be viewed as two aspects of the same subject. The fundamental objects of the theory are complex manifolds and, more generally, complex spaces, holo- morphic functions on them, and holomorphic maps between them. Holomorphic functions can be defined in three equivalent ways as complex-differentiable functions, convergent power series, and as solutions of the homogeneous Cauchy-Riemann equation. The threefold nature of differentiability over the complex numbers gives complex analysis its distinctive character and is the ultimate reason why it is linked to so many areas of mathematics. Plurisubharmonic functions are not as well known to nonexperts as holomorphic functions. They were first explicitly defined in the 1940s, but they had already appeared in attempts to geometrically describe domains of holomorphy at the very beginning of several complex variables in the first decade of the 20th century. Since the 1960s, one of their most important roles has been as weights in a priori estimates for solving the Cauchy-Riemann equation. They are intimately related to the complex Monge-Ampere` equation, the second partial differential equation of complex analysis. There is also a potential-theoretic aspect to plurisubharmonic functions, which is the subject of pluripotential theory. In the early decades of the modern era of the subject, from the 1940s into the 1970s, the notion of a complex space took shape and the geometry of analytic varieties and holomorphic maps was developed. -
Lecture Note for Math 220A Complex Analysis of One Variable
Lecture Note for Math 220A Complex Analysis of One Variable Song-Ying Li University of California, Irvine Contents 1 Complex numbers and geometry 2 1.1 Complex number field . 2 1.2 Geometry of the complex numbers . 3 1.2.1 Euler's Formula . 3 1.3 Holomorphic linear factional maps . 6 1.3.1 Self-maps of unit circle and the unit disc. 6 1.3.2 Maps from line to circle and upper half plane to disc. 7 2 Smooth functions on domains in C 8 2.1 Notation and definitions . 8 2.2 Polynomial of degree n ...................... 9 2.3 Rules of differentiations . 11 3 Holomorphic, harmonic functions 14 3.1 Holomorphic functions and C-R equations . 14 3.2 Harmonic functions . 15 3.3 Translation formula for Laplacian . 17 4 Line integral and cohomology group 18 4.1 Line integrals . 18 4.2 Cohomology group . 19 4.3 Harmonic conjugate . 21 1 5 Complex line integrals 23 5.1 Definition and examples . 23 5.2 Green's theorem for complex line integral . 25 6 Complex differentiation 26 6.1 Definition of complex differentiation . 26 6.2 Properties of complex derivatives . 26 6.3 Complex anti-derivative . 27 7 Cauchy's theorem and Morera's theorem 31 7.1 Cauchy's theorems . 31 7.2 Morera's theorem . 33 8 Cauchy integral formula 34 8.1 Integral formula for C1 and holomorphic functions . 34 8.2 Examples of evaluating line integrals . 35 8.3 Cauchy integral for kth derivative f (k)(z) . 36 9 Application of the Cauchy integral formula 36 9.1 Mean value properties . -
Arxiv:1708.02778V2 [Cond-Mat.Other] 22 Jan 2018
Topological characterization of chiral models through their long time dynamics Maria Maffei,1, 2, ∗ Alexandre Dauphin,1 Filippo Cardano,2 Maciej Lewenstein,1, 3 and Pietro Massignan1, 4 1ICFO { Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain 2Dipartimento di Fisica, Universit´adi Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126 Napoli, Italy 3ICREA { Instituci´oCatalana de Recerca i Estudis Avan¸cats, Pg. Lluis Companys 23, 08010 Barcelona, Spain 4Departament de F´ısica, Universitat Polit`ecnica de Catalunya, Campus Nord B4-B5, 08034 Barcelona, Spain (Dated: January 23, 2018) We study chiral models in one spatial dimension, both static and periodically driven. We demon- strate that their topological properties may be read out through the long time limit of a bulk observable, the mean chiral displacement. The derivation of this result is done in terms of spectral projectors, allowing for a detailed understanding of the physics. We show that the proposed detec- tion converges rapidly and it can be implemented in a wide class of chiral systems. Furthermore, it can measure arbitrary winding numbers and topological boundaries, it applies to all non-interacting systems, independently of their quantum statistics, and it requires no additional elements, such as external fields, nor filled bands. Topological phases of matter constitute a new paradigm by escaping the standard Ginzburg-Landau theory of phase transitions. These exotic phases appear without any symmetry breaking and are not characterized by a local order parameter, but rather by a global topological order. In the last decade, topological insulators have attracted much interest [1]. -
Daniel Huybrechts
Universitext Daniel Huybrechts Complex Geometry An Introduction 4u Springer Daniel Huybrechts Universite Paris VII Denis Diderot Institut de Mathematiques 2, place Jussieu 75251 Paris Cedex 05 France e-mail: [email protected] Mathematics Subject Classification (2000): 14J32,14J60,14J81,32Q15,32Q20,32Q25 Cover figure is taken from page 120. Library of Congress Control Number: 2004108312 ISBN 3-540-21290-6 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springeronline.com © Springer-Verlag Berlin Heidelberg 2005 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: Erich Kirchner, Heidelberg Typesetting by the author using a Springer KTjiX macro package Production: LE-TgX Jelonek, Schmidt & Vockler GbR, Leipzig Printed on acid-free paper 46/3142YL -543210 Preface Complex geometry is a highly attractive branch of modern mathematics that has witnessed many years of active and successful research and that has re- cently obtained new impetus from physicists' interest in questions related to mirror symmetry.