Author Index

Total Page:16

File Type:pdf, Size:1020Kb

Author Index Author Index Agrell, S. 0., 54 Durham, J. W., v, 13, 14, 15, 16, 51, 84, Allen, R., 190 105, 188 Arrhenius, G., vi, 169 Aoki, K, vi, 14, 52, 162, 172, 174, 185, Eibl-Eibesfeldt, I., 101, 188 187, 189 Engel, A. E. J., 188 Ericson, D. B., 188 Bailey, E. B., 166, 187 Ewing, M., 170, 188, 189 Bandy, M. C., 187 Banfield, A. F., 5, 22, 55, 56, 59, 60, 70, Fisher, R. L., 188 110, 124, 187 Friedlaender, I, 98, 99, 188 Barr, K. G., 190 Bass, M. N., vi, 167, 169 Gass, I., 175, 177, 189 Bates, H. W., 113, 187 Gast, P. W., 133, 188 Behre, M. H. Jr., 5, 187 Goldberg, E. D., 170, 190 Best, M. G„ 165, 187 Granja, J. C., v, 83, 84, 85, 188 Bott, M. H. P., 181, 187 Green, D. H., 188 Bowman, Robert, v, 79, 80, 90 Green, W. Lowthian, 98, 188 Brown, G. M., 157, 159, 160, 187 Grim, P. J., 189 Bryan, W. B., 187 Bunsen, R., 141, 187 Hedge, C., 188 Heezen, B. C., 188 Carmichael, I. S. E., 159, 187 Hess, H. H„ 157, 188 Carter, G. F. 115, 191 Howard, K. A., 80, 81,190 Castro, Miguel, vi, 76 Cavagnaro, D., 16, 33, 34, 78, 94, 187 Iljima, Azuma, vi, 31, 54 Chase, T. E., vi, 7, 98, 109, 110, 189, 190 Katsura, T., 77, 125, 136, 145, 172, 173, Chesterman, C. W., 11, 31, 168, 188 189 Chubb, L. J., 5, 9, 21, 46, 55, 60, 63, 98, Kennedy, W. Q., 136, 188 103, 188 Keyes, M. G., 124,141,142,191 Clough, C. T., 166, 187 Kroeber, A. L., 102,188 Cox, Allan, v, 10, 14, 19, 22, 38, 41, 59, Kuno, H., 14, 118, 137, 157, 159, 160, 94, 106, 107, 166, 167, 188 188, 191 Kushel, G., 105, 189 Dali, W. H„ 5, 17, 102, 105, 188 Kushiro, I., 175, 176, 189 Dalrymple Brent, vi, 19, 106, 107 Darwin, Charles, 3, 4, 9, 29, 30, 31, 47, Lacroix, Alfred, 52,170,171,189 55, 60, 63, 97, 101,103, 140, 188 Langseth, M. G., 178, 189 Davidson, C. F., 166, 191 Laruelle, J., 51, 189 DePaepe, P., 142, 143, 188 Luna, L. C., 190 193 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/953867/mem118-bm.pdf by guest on 24 September 2021 194 MCBIRNEY AND WILLIAMS—GEOLOGY OF GALA'PAGOS ISLANDS Macdonald, G. A., 77, 118, 125, 136, 145, Shand, S. J., 98, 190 172, 173, 189 Shumway, G., 5, 7, 98, 109, 110, 190 Marshall, P., 189 Simkin, Tom, 80, 81, 190 McBirney, A. R., 172, 174, 175, 176, Slevin, J. R., 86,191 177, 185, 189 Smith, W. C., 191 Menard, H. W., 8, 98, 110, 189 Snow, David, v, vi, 58, 68 Mercy, E. L. P., 165, 187 St. Clair, D., 5, 187 Miller, Alden, 65 Stebbins, R. C., vi, 115, 116 Muir, I. D., 169, 189, 190 Stewart, Alban, 102, 191 Murthy, V. R., 133, 191 Stueber, A. M., 132, 133, 191 Sutherland, F. L., 114, 191 Nagasawa, H., 191 Nockolds, S. R„ 190 Taylor, S. R., vi, 137 Noe-Nygaard, A., 166, 190 Tilley, C. E., 136, 169, 191, 192 Norris, R. M., 188 Tilton, G. R., 188 Nygren, W. E., Ill, 190 Upton, B. G., 191 Ochsner, W. H., 5, 17, 102, 105, 188 Uyeda, S., 178, 191 O'Hara, M. J., 174, 177, 190 Vincent, E. A., 157, 187 Pabst, Adolf, vi Vinton, K. W., 105, 109, 191 Palmer, Clarence, vi, 113 Von Herzen, R. P., 178, 191 Papenfuss, Theodore, 10, 11 Peck, D. L., 137, 153, 190 Wadsworth, W. J., 191 Peterson, M. N. A., 170, 190 Wager, L. R., 191 Presnall, D. C., 165, 190 Wakita, H., 133, 191 Walker, F., 166, 191 Quensel, P. D., 190 Washington, H. S., 124, 141, 142, 191 Whitaker, T. W., 115, 191 Richards, Adrian, 5, 9, 21, 22, 56, 59, Wiggins, Ira, vi, 115, 116 68, 79, 102, 114, 168, 190 Wilcox, R. E. 157, 191 Richardson, Constance, 47, 52, 54, 70, Williams, Howel, 172, 191 72, 120 Willis, Bailey, 191 Richey, J. E., 166, 187 Wilson, J. Tuzo, 107, 110, 192 Rick, Charles, vi, 32, 33 Wilson, J. V. 166, 187 Ringwood, A. E., 188 Winchell, H., 192 Robinson, B. L., 102, 190 Wolf, Teodoro, 5, 55, 101, 192 Robson, G. R., 181, 190 Wright, T. L. 190 Wright, W. B., 187 Saha, P., 190 Schairer, J. F., 191 Yoder, H. S., 192 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/953867/mem118-bm.pdf by guest on 24 September 2021 Subject Index Abingdon (Pinta) Island, 29, 71, 84, Cabo Marshall, 68 88-94, 97, 107, 122 Calderas Academy Bay, 13, 33, 35, 38, 80 Duncan Island, 37-38 Aeolian Cove, 17, 19 Albemarle Island, 56-61, 64-67 Age determinations, radiometric, 19, Narborough Island, 73-83 106 Bindloe Island, 85-87 Albemarle (Isabela) Island, 4, 5, 30, Wenman Island, 94-95 33, 54-72, 77, 97, 99, 101, 102, 107, Caldwell Island, 26 110, 119-121, 124, 130, 131, 140 Cape Berkeley, 56- 63, 68-71, 99, 102, Alcedo Volcano, 55, 56, 58, 59, 73, 102, 121 113, 121, 147 Cowan, 46 Alae lava lake, Hawaii, 153 Ibbetsen, 90 Amphibole, 161-162 Trenton, 48 analysis, 162 Carnegie Ridge, 55-57 Ascension Island, 132 Caroline Islands, 114 Cerro Bainbridge Rocks, 51 Azul, 55-57 Baltra Island, 9, 12, 14, 17-20, 46, 97, Brujo, 29 101, 105, 107, 177, 118 Chivo, 29 Barcena Volcano, Mexico, 114 Colorado, 13-16, 106 Barrington (Santa Pe) Island, 9, 11- de los Gemelos, 25-26 14, 15, 33, 39, 46, 52, 97, 101, 117- de Pajas, 23-25 119, 160 Inn, 48, 50, 52 Bartholomew Island, 51 Mundo, 29 Basalt Patricia, 29 analyses, 118, 121, 122-125 Champion Island, 26 feldspar-phyric, 92-94, 136-137 Charles (Florena) Island, 21-28, 33, principal types, 119-130 76, 77, 97, 99, 106, 123, 126, 130- submarine, 9-12, 13-17, 117-118, 169- 133, 158 170 Chatham (San Cristobal) Island 3, 4, Beagle Cone, 56, 60, 62-64, 72, 130, 133 5, 12, 21, 28-31, 99, 101, 107, 124, Bindloe (Marchena) Island, 21, 29, 77, 127, 140, 166 84-88, 97, 107, 113, 122 Clipperton fracture zone, 169 Biological dispersal, 113-116 Biotite, 161 Cocos Island, 166, 167 Boobies, 143 Cocos Ridge, 7, 98, 105, 109 Brito-Icelandic province, 166 Conway Bay, 16, 33, 103 Buccaneer (Fresh Water) Bay, 4, 47, Cormorant Point, 21, 25 53, 123, 130, 131, 144, 146, 150 Costa Rica, 7, 105, 109, 114, 168 195 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/953867/mem118-bm.pdf by guest on 24 September 2021 196 MCBIRNEY AND WILLIAMS—GEOLOGY OF GALA'PAGOS ISLANDS Culpepper (Darwin) Island, 7, 29, 84, Galápagos Platform, 83, 97, 98, 110, 94, 95, 97, 122, 127 111, 117 Genovesa Island, see Tower Island Daphne Islands, 36, 140, 141 Gough Island, Atlantic Ocean, 132 Darwin, Charles, studies in the Galápagos Islands, 3-5, 30-31, 46- Hawaiian Islands, 98, 114, 125, 128, 47, 54, 63, 97 129, 130, 132, 133, 136, 153, 158, Darwin Bay, 83, 84 168, 172, 173 Darwin Island, see Culpepper Island Heat-flow, relation to volcanic rocks, Darwin Station, 18, 35, 52, 123, 140 178, 179 Darwin Volcano, 59-64, 73, 76 Hood (Española) Island, 3, 9-12, 21, Daylight Point, 21, 22, 25, 97, 106 46, 101, 102, 106, 117-119 Desventuradas Islands, 105 Differentiated rocks, 143-166 Icelandite, 38-40, 42, 145 volumetric relataions and analyses, 147, 149 distribution, 143-144 Inclusions, mafic and ultramafic, 23, plutonic, 148-152 26-28, 53-45,47, 52-53, 64, 130-136 Differentiation Indefatigable (Santa Cruz) Island, 13, chemical and mineralogic effects, 15-18, 21, 31-35, 46, 77, 97, 101, 152-163 105, 113, 166 mechanism, 163-166, 183-186 Isabela Island, see Albemarle Island Duncan (Pinzón) Island, 36-40, 99, Istmo Perry, 59, 121 113, 213, 144, 146, 147, 153, 168 Itabaca Channel, 15, 17 Dunite, analysis, 131 James Bay, 123, 127 James (San Salvador) Island, 4, 30, East Pacific Rise, 7, 98, 107, 110, 151, 44-54, 77, 97, 113, 119, 120, 124, 169, 170, 174, 177 126, 130, 140, 144, 146, 153 Easter Island, 105, 153, 168, 169, 174, Jervis (Rábida) Island, 36, 40-45, 99, 177 106, 120, 130, 144-154, 158, 160- Eden Island (Islet), 33, 124, 141 163, 168 Elizabeth Bay, 58 Juan Fernandez Islands, 105 Enderby Island, 26 Eruptions, historic, 55 Kapoho lava, Hawaii, 141 Abingdon Island, 90 Kicker Rock, 28, 30, 31, 32 Alcedo volcano, 59 Cerro Azul, 56 Lake Myvatn, Iceland, 64 Charles Island, 22-23 Leucodiorite, 44-45, 150-152, 164-165 James Island, 46 analyses, 150 Narborough volcano, 79-83 Los Pozos, 33, 35 Sierra Negra volcano, 56-58 Wolf volcano, 68 Magma generation and rise, 179-186 Española Island, see Hood Island Malpelo Island, 166-169 Marquesas Islands, 98 Faroe Islands, 166 Marshall Islands, 114 Feldspar, 136-137, 154-156 Masatierra Island, 167 analysis, 156 Mauna Kea, Hawaii, 140 Fernandina Island, see Narborough Mauna Loa, Hawaii, 140 Island Mull, 166 Forrobasalt, 40-42, 144, 148 analyses, 146, 148 Narborough (Fernandina) Island, 33, Floreana Island, see Charles Island 73-83, 107, 110, 119-121, 124 Fracture patterns, 97-99 Northern Channel, 17 Gabbro, 43-45, 47, 52-53, 148-149, 162 Onslow Island, 25 analyses, 131, 150 Ore minerals, 162-163 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/953867/mem118-bm.pdf by guest on 24 September 2021 INDEX 197 Palagonite, 3, 13, 26, 30, 31, 36, 47-48, San Benedicto Island, Mexico, 168 54, 86-87, 140-143 San Cristobal Island, see Chatham analyses, 143 Island Paleomagnetic measurements, 106-107 San Salvador Island, see James Baltra Island, 19 Island Barrington Island, 14 Santa Cruz Island, see Indefatigable Bindloe Island, 86 Island Culpepper Island, 94 Santa Fe Island, see Barrington Island Duncan Island, 38 Santa Maria Island, see Charles Island Hood Island, 10 Sappho Cove, 28, 29, 31 Jervis Island, 41 Seymour Island, 9, 17, 19 Wenman Island, 94 Sierra Negra volcano, 55, 56, 58, 124 Peridotite, 26-28, 131-133 Society Islands, 98 analysis, 131 South Sandwich Islands, 114 Pinta Island, see Tower Island Stephens Bay, 30 Pinzón Island, see Duncan Island Strontium isotopes, 132 Plaza Island, 15 Sullivan Bay, 51, 52, 123, 127 Post Office Bay, 21, 25, 26 Progreso, 28, 29, 31, 123 Tagus Cone, 56, 60, 62-64, 121, 124, Pumice, 51, 59, 113-116 130, 131, 133, 158, 162 Punta Espinosa, 79, 83, 121 Tahiti, 172, 174-176 Moreno, 58 Thingmuli volcano, Iceland, 149,
Recommended publications
  • The Political Biogeography of Migratory Marine Predators
    1 The political biogeography of migratory marine predators 2 Authors: Autumn-Lynn Harrison1, 2*, Daniel P. Costa1, Arliss J. Winship3,4, Scott R. Benson5,6, 3 Steven J. Bograd7, Michelle Antolos1, Aaron B. Carlisle8,9, Heidi Dewar10, Peter H. Dutton11, Sal 4 J. Jorgensen12, Suzanne Kohin10, Bruce R. Mate13, Patrick W. Robinson1, Kurt M. Schaefer14, 5 Scott A. Shaffer15, George L. Shillinger16,17,8, Samantha E. Simmons18, Kevin C. Weng19, 6 Kristina M. Gjerde20, Barbara A. Block8 7 1University of California, Santa Cruz, Department of Ecology & Evolutionary Biology, Long 8 Marine Laboratory, Santa Cruz, California 95060, USA. 9 2 Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, 10 Washington, D.C. 20008, USA. 11 3NOAA/NOS/NCCOS/Marine Spatial Ecology Division/Biogeography Branch, 1305 East 12 West Highway, Silver Spring, Maryland, 20910, USA. 13 4CSS Inc., 10301 Democracy Lane, Suite 300, Fairfax, VA 22030, USA. 14 5Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine 15 Fisheries Service, National Oceanic and Atmospheric Administration, Moss Landing, 16 California 95039, USA. 17 6Moss Landing Marine Laboratories, Moss Landing, CA 95039 USA 18 7Environmental Research Division, Southwest Fisheries Science Center, National Marine 19 Fisheries Service, National Oceanic and Atmospheric Administration, 99 Pacific Street, 20 Monterey, California 93940, USA. 21 8Hopkins Marine Station, Department of Biology, Stanford University, 120 Oceanview 22 Boulevard, Pacific Grove, California 93950 USA. 23 9University of Delaware, School of Marine Science and Policy, 700 Pilottown Rd, Lewes, 24 Delaware, 19958 USA. 25 10Fisheries Resources Division, Southwest Fisheries Science Center, National Marine 26 Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA 92037, 27 USA.
    [Show full text]
  • Marine Biodiversity in Juan Fernández and Desventuradas Islands, Chile: Global Endemism Hotspots
    RESEARCH ARTICLE Marine Biodiversity in Juan Fernández and Desventuradas Islands, Chile: Global Endemism Hotspots Alan M. Friedlander1,2,3*, Enric Ballesteros4, Jennifer E. Caselle5, Carlos F. Gaymer3,6,7,8, Alvaro T. Palma9, Ignacio Petit6, Eduardo Varas9, Alex Muñoz Wilson10, Enric Sala1 1 Pristine Seas, National Geographic Society, Washington, District of Columbia, United States of America, 2 Fisheries Ecology Research Lab, University of Hawaii, Honolulu, Hawaii, United States of America, 3 Millennium Nucleus for Ecology and Sustainable Management of Oceanic Islands (ESMOI), Coquimbo, Chile, 4 Centre d'Estudis Avançats (CEAB-CSIC), Blanes, Spain, 5 Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, United States of America, 6 Universidad Católica del Norte, Coquimbo, Chile, 7 Centro de Estudios Avanzados en Zonas Áridas, Coquimbo, Chile, 8 Instituto de Ecología y Biodiversidad, Coquimbo, Chile, 9 FisioAqua, Santiago, Chile, 10 OCEANA, SA, Santiago, Chile * [email protected] OPEN ACCESS Abstract Citation: Friedlander AM, Ballesteros E, Caselle JE, Gaymer CF, Palma AT, Petit I, et al. (2016) Marine The Juan Fernández and Desventuradas islands are among the few oceanic islands Biodiversity in Juan Fernández and Desventuradas belonging to Chile. They possess a unique mix of tropical, subtropical, and temperate Islands, Chile: Global Endemism Hotspots. PLoS marine species, and although close to continental South America, elements of the biota ONE 11(1): e0145059. doi:10.1371/journal. pone.0145059 have greater affinities with the central and south Pacific owing to the Humboldt Current, which creates a strong biogeographic barrier between these islands and the continent. The Editor: Christopher J Fulton, The Australian National University, AUSTRALIA Juan Fernández Archipelago has ~700 people, with the major industry being the fishery for the endemic lobster, Jasus frontalis.
    [Show full text]
  • Non-Native Small Terrestrial Vertebrates in the Galapagos 2 3 Diego F
    1 Non-Native Small Terrestrial Vertebrates in the Galapagos 2 3 Diego F. Cisneros-Heredia 4 5 Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Zoología 6 Terrestre & Museo de Zoología, Quito 170901, Ecuador 7 8 King’s College London, Department of Geography, London, UK 9 10 Email address: [email protected] 11 12 13 14 Introduction 15 Movement of propagules of a species from its current range to a new area—i.e., extra-range 16 dispersal—is a natural process that has been fundamental to the development of biogeographic 17 patterns throughout Earth’s history (Wilson et al. 2009). Individuals moving to new areas usually 18 confront a different set of biotic and abiotic variables, and most dispersed individuals do not 19 survive. However, if they are capable of surviving and adapting to the new conditions, they may 20 establish self-sufficient populations, colonise the new areas, and even spread into nearby 21 locations (Mack et al. 2000). In doing so, they will produce ecological transformations in the 22 new areas, which may lead to changes in other species’ populations and communities, speciation 23 and the formation of new ecosystems (Wilson et al. 2009). 24 25 Human extra-range dispersals since the Pleistocene have produced important distribution 26 changes across species of all taxonomic groups. Along our prehistory and history, we have aided 27 other species’ extra-range dispersals either by deliberate translocations or by ecological 28 facilitation due to habitat changes or modification of ecological relationships (Boivin et al. 29 2016).
    [Show full text]
  • Bryozoa De La Placa De Nazca Con Énfasis En Las Islas Desventuradas
    Cienc. Tecnol. Mar, 28 (1): 75-90, 2005 Bryozoa de la Placa de Nazca 75 BRYOZOA DE LA PLACA DE NAZCA CON ÉNFASIS EN LAS ISLAS DESVENTURADAS ON THE NAZCA PLATE BRYOZOANS WITH EMPHASIS ON DESVENTURADAS ISLANDS HUGO I. MOYANO G. Departamento de Zoología Universidad de Concepción Casilla 160-C Concepción Recepción: 27 de abril de 2004 – Versión corregida aceptada: 1 de octubre de 2004. RESUMEN Esta es una revisión parcial de las faunas de briozoos conocidas hasta ahora provenientes de la Placa de Nazca. A partir de las publicaciones preexistentes y del examen de algunas muestras se compa- raron zoogeográficamente Pascua (PAS), Salas y Gómez (SG), Juan Fernández (JF), Desventuradas (DES) y Galápagos (GAL). Para la comparación se utilizaron tres conjuntos de 115, 140 y 170 géneros de los territorios insulares ya indicados, los que incluyen también aquellos de las costas chileno-peruanas influi- das por la corriente de Humboldt (CHP) y los de las islas Kermadec (KE). Los dendrogramas resultantes demuestran que los territorios insulares más afines son los de Juan Fernández y las Desventuradas en términos de afinidad genérica briozoológica. El dendrograma basado en 170 géneros de los órdenes Ctenostomatida y Cheilostomatida muestra dos conjuntos principales a saber: a) JF, DES y CHP y b) PAS, GA y KE a los cuales se une solitariamente SG. Sobre la base de la comparación a nivel genérico indicada más arriba, para las islas Desventura- das no se justifica un status zoogeográfico separado de nivel de provincia tropical sino que debería integrarse a la provincia temperado-cálida de Juan Fernández.
    [Show full text]
  • Distribution of Fire Ants Solenopsis Geminata and Wasmannia Auropunctata (Hymenoptera: Formicidae) in the Galapagos Islands
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aquatic Commons December 2008 Research Articles 11 DISTRIBUTION OF FIRE ANTS SOLENOPSIS GEMINATA AND WASMANNIA AUROPUNCTATA (HYMENOPTERA: FORMICIDAE) IN THE GALAPAGOS ISLANDS By: Henri W. Herrera & Charlotte E. Causton Charles Darwin Research Station, Galapagos, Ecuador. <[email protected]> SUMMARY The Little Fire Ant Wasmannia auropunctata (Roger) and the Tropical Fire Ant Solenopsis geminata (Fabricius) are consid- ered two of the most serious threats to the terrestrial fauna of Galapagos, yet little is known about their distribution in the archipelago. Specimens at the Charles Darwin Research Station and literature were reviewed and distribution maps compiled for both species. W. auropunctata is currently recorded on nine islands and six islets and S. geminata is recorded on seven islands and six islets. New locations were registered, including the first record of W. auropunctata on Española and North Seymour islands, and of S. geminata on Fernandina Island. We recommend further survey, especially in sensitive areas, in order to plan management of these species. RESUMEN La Pequeña Hormiga de Fuego Wasmannia auropunctata (Roger) y la Hormiga Tropical de Fuego Solenopsis geminata (Fabricius) son especies introducidas consideradas de mayor amenaza a la fauna terrestre de Galápagos, sin embargo poco se conoce sobre su distribución en el archipiélago. A través de consultas bibliográficas y revisiones a los especimenes de la Estación Científica Charles Darwin, se determinó su actual distribución. W. auropunctata esta registrada en nueve islas y seis islotes y S. geminata se encuentra en siete islas y seis islotes.
    [Show full text]
  • Winter 2019 1 the Iris 135 P 1-5 Layout 1 25/10/2019 11:43 Page 2
    The Iris Cover 135_Iris cover 28/10/2019 08:10 Page 1 ISSN 1757-2991 RPS Nature Group Residential Weekend 2020 Foxlease, New Forest Foxlease Girlguiding Activities Centre, Lyndhurst, Hampshire SO43 7DE Friday 16th - Monday 19th October 2020 S Leader: James Foad LRPS P R E H T F O P U O R G E 9 R 1 U 0 T 2 A r e N t E n i H W T / F 5 O 3 E 1 . N I James Foad LRPS, the organiser of this event, is now accepting bookings on a first come first served o Z N basis for the 2020 Autumn residential Weekend to be held at Foxlease Girlguiding Activities Centre, A e Lyndhurst, Hampshire. Foxlease combines the classic charm of a Georgian Manor House and the beauty G u A of the surrounding area of the New Forest. All rooms are en-suite. s s I M I am told by Heather Angel that it is quite some time ago that the Nature Group stayed here. There will be opportunities to photograph a wide range of fungi, plants, invertebrates and vertebrates. S The cost for the for Single room occupancy is £310.00 I A deposit of £125.00 is required to secure your place For further details please contact: R James Foad LRPS I Tel: 07834 – 810430 E E-mail: [email protected] H T The Iris Cover 135_Iris cover 28/10/2019 08:10 Page 2 RPS Nature Group Summer Residential weekend Skomer Island and Margam Discovery Centre Wednesday 24th June to Monday 29th June 2020 James Foad LRPS, the organiser of this event, is now accepting bookings for the 2020 Summer Residential weekend which is going to be slightly different to previous years! Participants should book their own accommodation for the nights of 24th and 25th June in the Martin Haven area.
    [Show full text]
  • Redalyc.Initial Assessment of Coastal Benthic Communities in the Marine Parks at Robinson Crusoe Island
    Latin American Journal of Aquatic Research E-ISSN: 0718-560X [email protected] Pontificia Universidad Católica de Valparaíso Chile Rodríguez-Ruiz, Montserrat C.; Andreu-Cazenave, Miguel; Ruz, Catalina S.; Ruano- Chamorro, Cristina; Ramírez, Fabián; González, Catherine; Carrasco, Sergio A.; Pérez- Matus, Alejandro; Fernández, Miriam Initial assessment of coastal benthic communities in the Marine Parks at Robinson Crusoe Island Latin American Journal of Aquatic Research, vol. 42, núm. 4, octubre, 2014, pp. 918-936 Pontificia Universidad Católica de Valparaíso Valparaíso, Chile Available in: http://www.redalyc.org/articulo.oa?id=175032366016 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Lat. Am. J. Aquat. Res., 42(4): 918-936, 2014 Marine parks at Robinson Crusoe Island 918889 “Oceanography and Marine Resources of Oceanic Islands of Southeastern Pacific ” M. Fernández & S. Hormazábal (Guest Editors) DOI: 10.3856/vol42-issue4-fulltext-16 Research Article Initial assessment of coastal benthic communities in the Marine Parks at Robinson Crusoe Island Montserrat C. Rodríguez-Ruiz1, Miguel Andreu-Cazenave1, Catalina S. Ruz2 Cristina Ruano-Chamorro1, Fabián Ramírez2, Catherine González1, Sergio A. Carrasco2 Alejandro Pérez-Matus2 & Miriam Fernández1 1Estación Costera de Investigaciones Marinas and Center for Marine Conservation, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, P.O. Box 114-D, Santiago, Chile 2Subtidal Ecology Laboratory and Center for Marine Conservation, Estación Costera de Investigaciones Marinas, Pontificia Universidad Católica de Chile, P.O. Box 114-D, Santiago, Chile ABSTRACT.
    [Show full text]
  • Petrogenesis of Alkalic Seamounts on the Galápagos Platform T ⁎ Darin M
    Deep-Sea Research Part II 150 (2018) 170–180 Contents lists available at ScienceDirect Deep-Sea Research Part II journal homepage: www.elsevier.com/locate/dsr2 Petrogenesis of alkalic seamounts on the Galápagos Platform T ⁎ Darin M. Schwartza, , V. Dorsey Wanlessa, Rebecca Berga, Meghan Jonesb, Daniel J. Fornarib, S. Adam Souleb, Marion L. Lytlea, Steve Careyc a Department of Geosciences, Boise State University, 1910 University Drive, Boise, ID 83725, United States b Geology and Geophysics Department, Woods Hole Oceanographic Institution, United States c Graduate School of Oceanography, University of Rhode Island, United States ARTICLE INFO ABSTRACT Keywords: In the hotspot-fed Galápagos Archipelago there are transitions between volcano morphology and composition, Seamounts effective elastic thickness of the crust, and lithospheric thickness in the direction of plate motion from west to Geochemistry east. Through sampling on the island scale it is unclear whether these transitions are gradational or sharp and Monogenetic whether they result in a gradational or a sharp boundary in terms of the composition of erupted lavas. Clusters of Hotspot interisland seamounts are prevalent on the Galápagos Platform, and occur in the transition zone in morphology Galápagos between western and eastern volcanoes providing an opportunity to evaluate sharpness of the compositional Basalt E/V Nautilus boundary resulting from these physical transitions. Two of these seamounts, located east of Isabela Island and southwest of the island of Santiago, were sampled by remotely operated vehicle in 2015 during a telepresence- supported E/V Nautilus cruise, operated by the Ocean Exploration Trust. We compare the chemistries of these seamount lavas with samples erupted subaerially on the islands of Isabela and Santiago, to test whether sea- mounts are formed from melt generation and storage similar to that of the western or eastern volcanoes, or transitional between the two systems.
    [Show full text]
  • Management of Introduced Animals in Galapagos
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aquatic Commons 46 Galapagos Commentary Galapagos Research 65 MANAGEMENT OF INTRODUCED ANIMALS IN GALAPAGOS By: Victor Carrión, Christian Sevilla & Washington Tapia Galápagos National Park, Puerto Ayora, Galapagos, Ecuador. <[email protected]> SUMMARY We review programmes to control or eradicate introduced vertebrates and invertebrates in Galapagos. RESUMEN El manejo de los animales introducidos en Galápagos. Revisamos los programas de control y erradicación de vertebrados e invertebrados en Galápagos. INTRODUCTION trained dogs; a monitoring phase using radio tagged “Judas goats” that associate with remaining feral animals, The arrival of humans in the Galapagos Islands, since after the goat population has been significantly reduced their discovery in 1535, brought a series of negative by aerial and land hunting. Goat eradication projects on impacts and, in some cases, irreversible damage, such as Isabela and Santiago islands reached the monitoring stage the extinction of endemic plants and rodents on several in 2006. At the end of 2006, a goat (and donkey) eradication islands. A major cause of these impacts was the deliberate program was begun on Floreana, and was thought or unintentional introduction of non-native organisms. successful by 2008. Monitoring will continue in order to There have been substantial efforts to eradicate introduced ensure successful eradication. species on the islands over the last 20 years and, in other cases when it has not been possible to eradicate a species, Eradication of feral Pig control activities have at least reversed negative impacts. Pigs were eradiated from Santiago at the end of 2001, after almost 25 years of work.
    [Show full text]
  • Calipso 2021 Rates
    www.royalgalapagos.com Calipso 2021 Rates KEY FEATURES Naturalist and Diving Cruises Recently Refurbished Brand new and beautiful cabins PAX Excellent Itineraries PRICES RACK RATES Program Type 8 Days 5 Days 4 Days Naturalist Cruise $5,845 $3,845 $2,445 RACK CHARTER RATES Naturalist Cruise $83,450 $51,450 $33,450 Ask your account manager for your comission rate. INCLUDED: NOT INCLUDED: IMPORTANT NOTES: All meals and excursions Roundtrip Airfare to / from Galapagos • Discount for groups from 4 to 14 pax* 10% Transfers in the islands Alcoholic drinks • Discount for children under 12 years* 20% Bilingual National Park Guide $100 Galapagos National Park fee • Single supplement 50% $20 Transit Control Card • Christmas and New Year: special conditions Travel / medical insurance apply. Contact us for details. Tips • Penalty fee applies for Galapagos air tickets not Personal Expenses issued by Royal Galapagos • All prices in United States Dollars and commissionable * Discount does not apply on 2X1 promotions. CALIPSO ITINERARIES 2021 am Arrival to San Cristobal Airport: Transfer to boat El Arco, DARWIN DARWIN Thu El Arenal WOLF WOLF pm San Cristobal: Lobos Island Shark Bay Point, GENOVESA GENOVESA El Derrumbe, La Ventana, La Banana am Santa Cruz Island: Carrión Point MARCHENA MARCHENA ISABELA ISABELA ) Fri pm Baltra Island: North East Seymour A Cape Marshall ( Vicente Roca Point am Wolf Island: La Ventana Islet / La Banana SANTIAGO SANTIAGO E Sat pm Wolf Island: Shark Bay Point / El Derrumbe S Cousins Rocks Espinosa Point I Tagus Cove BARTHOLOMEW Cape Douglas U NORTH SEYMOUR am Darwin Island: Darwin’s Arch North East Seymour (Baltra) Urbina Bay Chinese Hat NORTH SEYMOUR Sun RABIDA RABIDA pm Darwin Island: El Arenal & Darwin’s Arch Carrión Point FERNANDINA FERNANDINA South Plaza C Tortoise Breeding Tortoise Breeding SAN CRISTOBAL SAN CRISTOBAL am Darwin Island: Darwin’s Arch & El Arenal El Chato Center Center Y Moreno Point Mon Witch Hill pm Wolf: La Banana / Shark Bay Point / Anchor Bay SANTA CRUZ Lobos Island SANTA CRUZ A SANTA FE D Pto.
    [Show full text]
  • V·M·I University Microfilms International a Bell & Howell Information Company 300 North Zeeb Road
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adverselyaffect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyrightmaterial had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sectionswith small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. V·M·I University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor. M148106-1346 USA 313/761-4700 800:521·0600 Order Number 9312207 The application of remotely sensed data to studies of volcanism within the Galapagos Islands Munro, Duncan Crawford, Ph.D. University of Hawaii, 1992 Copyright @1992 by Munro, Duncan Crawford.
    [Show full text]
  • Use of Geothermal Energy for Seawater Desalination in the Galápagos Islands, Ecuador
    Orkustofnun, Grensasvegur 9, Reports 2015 IS-108 Reykjavik, Iceland Number 19 USE OF GEOTHERMAL ENERGY FOR SEAWATER DESALINATION IN THE GALÁPAGOS ISLANDS, ECUADOR Andrés Lloret C. National Institute of Energy Efficiency and Renewable Energy, INER Av. 6 de Diciembe N33-32 e Ignacion Bossano ECUADOR [email protected], [email protected] ABSTRACT The lack of reliable sources of potable water is a health and social problem in the Galápagos. The presence of geothermal resources in the islands opens a window of opportunity for the development of a geothermal energy-driven desalination system. Analysis on the available research studies on three shield volcanoes located on the western side of Isabela Island, reveals that Alcedo Volcano presents the most active hydrothermal system with a liquid-dominated reservoir. This type of system is suitable to achieve the separation of nearly salt-free fresh water by implementing a Single Stage Flash Geothermal desalination system (SSF-G). The concept implies the use of geothermal brine from a separator unit as the heat input source for desalination, while producing electricity from the steam to power the plant totally detached from the grid. Results from a thermodynamic model and exergy analysis of the system, using Engineering Equation Solver (EES) software, show that the geothermal resource can be successfully coupled to this desalination method. It also reveals that most of the energy received from the well, exits the plant while still containing substantial exergy, which can be used to perform usable work by the system. As a result of irreversibilities, exergy destruction occurs in all the heat exchangers of the desalination process.
    [Show full text]