Leafspot & Blight of Basil, Ocimum Basilicum, Caused By

Total Page:16

File Type:pdf, Size:1020Kb

Leafspot & Blight of Basil, Ocimum Basilicum, Caused By Proc. Fla. State Hart. Soc. 99:249-251. 1986. LEAFSPOT & BLIGHT OF BASIL, OCIMUM BASILICUM, CAUSED BY PSEUDOMONAS CICHORII Stephanie M. Burgess, Ora Bell Lawson, a yellow, butyrous growth on lima bean agar and gave a John W. Miller positive hypersensitive reaction on tobacco and tomato Florida Department of Agriculture & Consumer Services plants, and xanthomonadin pigment was extracted from Division of Plant Industry these isolates (3). This identifies the bacterium as Xanth P. O. Box 1269, Gainesville, FL 32602 omonas sp. Our objectives were to test the pathogenicity of P. cichorii and Xanthomonas sp. on basil, to compare the and A. R. Chase pathogenicity of P. cichorii isolates from basil and other University of Florida, IFAS hosts on Ficus lyrata Warb., to determine the'influence of Agricultural Research 6? Education Center moisture on disease development on basil, and to evaluate 2807 Binion Road, Apopka, FL 32703 the effectiveness of streptomycin and copper-maneb as protectants for disease control. Abstract. A new disease with severe leaf spot symptoms was observed on basil, Ocimum basilicum L. from a nursery in Materials and Methods southeast Florida. The disease is characterized by circular, Expt. 1. Healthy field grown seedlings were pulled from gray to black watersoaked lesions on the leaves and dark- the initial disease site at Pontano Farms. The seedlings gray sunken areas on the stems. The lesions coalesce, become were transplanted to 4-inch pots in a Gainesville irregular, dry, and dark-brown with age. Two bacterial types greenhouse and grown until the start of the experiment. were consistently isolated from the lesions. One type was In order to test the pathogenicity of P. cichorii and Xanth off-white, produced a green fluorescent pigment on King's omonas sp. on basil, five isolates of P. cichorii and two iso Medium B, negative on arginine dihydrolase medium and lates of Xanthomonas sp. from basil were grown for 24 hr positive for the oxidase test, identifying it as Pseudomonas on two lima bean agar (LBA) slants each. The resulting cichorii (Swingle) Stapp. The second type produced a yellow, bacterial colonies were suspended in 0.85% sterile saline butyrous growth on lima bean agar slants and gave a positive and spray inoculated (0.2 fl. oz./plant) on three basil plants hypersensitive reaction on tobacco and tomato. It appears to each using a glass atomizer and pressure pump at 1 psi. be a species of Xanthomonas. Pathogenicity tests on healthy The plants were placed in a mist chamber 24 hr prior to basil plants proved P. cichorii to be the cause of the disease. inoculation (30 sec mist 3 times/hr). Three plants each were High moisture levels greatly increased severity of disease de sprayed with 0.85% sterile saline only to serve as controls. velopment. Streptomycin and copper-maneb provided excel The plants were covered with polyethylene bags, arranged lent disease control when applied as preventative treatments. in three replications in a randomized block design and re turned to the greenhouse. Two days later the bags were Ocimum basilicum commonly known as Sweet Basil, is a removed from the plants and disease ratings were made spice of the family Labiatae. Native to tropical Asia, this by counting the number of lesions per plant. Reisolations herb is widely distributed in tropical areas. Basil is a small were done by crushing lesions in 2 ml of sterile tap H2O, plant, rather bushy and somewhat woody at the base with and streaking the resulting suspension on nutrient agar. glands in the leaves containing an aromatic oil. It is grown Characteristic colonies of P. cichorii and Xanthomonas sp. from seed as an annual herbaceous plant, although it is a were transferred to LBA following 24 hr inoculation perennial species. The foliage is normally removed and period, and the bacteria were identified by the above dried for domestic and commercial food and beverage criteria. flavoring (2). Florida, basil is a very difficult crop to grow because of its sensitivity to high humidity and cold temper atures and also its sensitivity to packing for transport to market areas (Personal communication, Mike Pontano, Pontano Farms, Lake Worth, Fla.). Plants are also grown for the fresh produce market in which leaves are used for spices and in teas. A new disease with severe leafspot and stem symptoms was observed on basil from a nursery in southeast Florida. The disease is characterized by circular, gray to black, watersoaked lesions on the leaves. The lesions coalesce, become irregular in shape, dry, and dark-brown with age (Fig. 1). In some cases, the petioles become necrotic and the disease advances into the stems causing sunken lesions. Two bacterial types were isolated from the lesions. One type was off-white, produced a green fluorescent pigment on King's medium B (4), was negative for arginine dihyd rolase production (7), positive for oxidase (6) and positive for hypersensitivity (5). These results identify the bac terium as Pseudomonas cichorii. The second type produced Fig. 1. Irregular, dark-brown leaf spots on Ocimum basilicum caused by Pseudomonas cichorii. Proc. Fla. State Hort. Soc. 99: 1986. 249 Expt. 2. The pathogenicity of P. dchorii isolates from Table 2. Effect of strain source on severity of pseudomonas leaf spot of Ficus lyrata caused by Pseudomonas dchorii. basil and other hosts was tested on F. lyrata. Single 4-inch tall plants obtained from commercial producers were were Strain established in steam-treated Canadian peat and pine bark Mean percentage of foliage (1:1 by volume). The medium was amended with 10 lbs. designation source with symptoms Osmocote (19:6:12 slow-release fertilizer from Sierra Control 0 ax Chemical Co., Milpitas, CA 95035 USA), 7 lbs. dolomite P14 Chrysanthemum morifolium 7.8 ab and 1.5 lbs. Micromax (micronutrient source, Sierra P110 Chrysanthemum morifolium 27.5 c Chemical Co.) per cubic yard of medium. Tests were per P80 Ficus lyrata 15.6 abc formed in a glasshouse with temperatures from 18 to 32° P105 Ficus lyrata 10.0 ab P109 Ficus lyrata 16.1 abc C and a maximum light level of 1500 ft-c. Plants were P89 Gerberajamesonii 20.6 be grown for 3 to 5 weeks and then placed under an intermit P28 Hibiscus rosa-sinensis 16.7 abc tent (5 sec every 30 min from 0800 to 2000 hr) aqueous P115 Ocimum basilium 16.7 abc mist. About 24 hr later, plants were removed, sprayed P101 Schefflera arboricola 17.8 abc ATCC type culture 10857 5.8 ab (three per treatment) to runoff with SDW alone or a bacte P78 rial suspension (1 x 108 colony forming units/ml), covered xMeans separated by Duncan's new multiple range test. with polyethylene bags and replaced under mist. The bags were removed after 3 days. At 14 days after inoculation, each of the four treatments were placed in mist chambers plants were examined for symptoms and suspect lesions and three plants of each treatment were put on were removed and treated as described above. Growth of greenhouse benches. The bags were removed after three bacteria on KMB was similar to that of the suspect bac days and readings were made using a rating system like terium used to inoculate plants and was considered a posi that in experiment 3. tive reisolation (A. R. Chase, unpublished). Expt. 3. The most virulent isolate of P. dchorii from Results and Discussion experiment 1, P86-919, was grown for 24 hrs. on six LBA slants to study the effect of moisture on disease develop Expt. 1. All isolates of P. dchorii caused circular to ir ment on basil. Bacterial cells were suspended in 0.85% regular dark gray lesions on the leaves of healthy basil sterile saline and spray inoculated on 12 basil plants (0.2 plants (Table 1). These symptoms were indistinguishable fl. oz./plant) in the same manner as used in experiment 1. from those caused by natural infection. No stem infection The plants had been misted for 24 hrs. prior to inocula was induced presumably because the stems were old and tion. The plants were separated into two groups; six in the woody at the time of inoculation. One isolate, P86-919, was mist chambers and six in the greenhouse with 2 sterile much more virulent than the others and was selected for saline controls and three replications in each group. The use in future tests. The two isolates of Xanthomonas were plants in the mist chamber were misted three times per hr not pathogenic on basil. Although a few lesions developed for 30 seconds duration each time. All the plants were following inoculations with isolate P86-1648 of Xanth covered with polyethylene bags. Bags were removed 2 days omonas (Table 1), this bacterium was not recovered in reiso later and disease readings made based on a scale of 0-10, lation attempts. Xanthomonas sp. and P. dchorii were reiso- where 0 was no infection, 1 was 1-10% of the leaves in lated from all plants that had been inoculated only with P. fected, and 10 was 90-100% of the leaves had lesions. dchorii. This indicates that Xanthomonas survives epiphyti Expt. 4. The effectiveness of streptomycin and copper- cally on the host plant rather than causing disease. maneb as protectants for disease control was tested. Six Expt. 2. Results from the test on strains of P. dchorii plants were sprayed with streptomycin at 100 ppm, six with from different hosts show that although strain virulence copper-maneb at 1.5 lbs. each/100 gal (Kocide 101 at 1 1/8 does differ somewhat, there was no evidence of host tsp/gal + Manzate 200 at 2 3/4 tsp/ga/), six were inoculated specificity (Table 2).
Recommended publications
  • Pseudomonas Cichorii
    Plant Pathology Bulletin 15:275-285, 2006 Pseudomonas cichorii 1 1 1, 2 1 2 [email protected] 95 12 02 2006 Pseudomonas cichorii 15 275-285 60 (RAPD) Pseudomonas cichorii (Swingle) Stapp 1,100 bp Topo pCR®II-TOPO Pseudomonas cichorii SfL1/SfR2 (polymerase chain reaction, PCR) 379 bp 6 21 SfL1 / SfR2 P. cichorii DNA 5~10 pg 5.5~9 (P. cichorii) 10 6 cfu/ml 10 5~10 8 cfu/ml SfL1/ SfR2 P. cichorii 3 - 4 hr SfL1/SfR2 P. cichorii PCR Pseudomonas cichorii (3) (Swingle) Stapp P. cichorii (10) (13) (lettuce) (10) (27) (15) (33) (cabbage) (celery) (tomato) (14) (chrysanthemum) (16) (geranium) (16) (dwarf schefflera) (11) (sunflower) (22) (magnolia) (19) (5, 10) (5) (3) ( polymerase chain reaction PCR) (20) RFLP ( 276 15 4 2006 restriction fragment length polymorphism) AFLP RAPD PCR (amplified fragment length polymorphism) RAPD Table 1. Bacterial isolates used in experiments of RAPD (random amplified polymorphic DNA) (17, 18, 32) and PCR. Bacterium Strain Pseudomonas Burkholderia andropogonis Pan1 Pseudomonas B. caryophylli Tw7, Tw9 syringae pv. cannabina efe gene DNA B. gladioli pv. gladioli Bg ETH1 ETH2 ETH3 P. syringae pv. Erwinia carotovora subsp. carotovora Zan01~15 Ech10~22 cannabina P. syringae pv. glycinea P. syringae pv. Erwinia chrysanthemi Sr53~56 (24) phaseolicola P. Pantoea agglomerans Yx5, Yx7 syringae pv. atropurpurea cfl gene DNA Pseudomonas aeruginosa Pae Primer 1 Primer 2 P. syringae pv. glycinea P. P. cichorii Sf syringae pv. maculicola P. syringae pv. tomato P. fluorescens Pf (8) (30) P. putida Pu P. syringae pv. atropurpurea P. P. syringae pv.
    [Show full text]
  • Feeding Damage of the Introduced Leafhopper Sophonia Rufofascia (Homoptera: Cicadellidae) to Plants in Forests and Watersheds of the Hawaiian Islands
    POPULATION AND COMMUNITY ECOLOGY Feeding Damage of the Introduced Leafhopper Sophonia rufofascia (Homoptera: Cicadellidae) to Plants in Forests and Watersheds of the Hawaiian Islands VINCENT P. JONES, PUANANI ANDERSON-WONG, PETER A. FOLLETT,1 PINGJUN YANG, 2 3 DAPHNE M. WESTCOT, JOHN S. HU, AND DIANE E. ULLMAN Department of Entomology, University of Hawaii at Manoa, Honolulu, HI 96822 Environ. Entomol. 29(2): 171Ð180 (2000) ABSTRACT Experiments were performed to determine the role of the leafhopper Sophonia rufofascia (Kuoh & Kuoh) in damage observed on forest and watershed plants in the Hawaiian Islands. Laboratory manipulation of leafhopper populations on Þddlewood, Citharexylum spinosum L., caused interveinal chlorosis and vein browning on young fully expanded leaves similar to that observed on leafhopper infested plants seen in the Þeld and necrosis on older leaves. Field studies with caged “uluhe” fern, Dicranopteris linearis (Burman), demonstrated that frond veins turned brown within2dofleafhopper feeding; and by 141 d after feeding, an average of 85% of the surface area of the fronds were necrotic compared with only 12% necrosis in untreated cages. Field trials with stump-cut Þretree, Myrica faya Aiton, were performed to determine the effect of leafhopper feeding on new growth. Our studies showed that the new growth in exclusion cages had signiÞcantly greater stem length and diameter, a higher number of nodes, fewer damaged leaves, and almost twice as much leaf area compared with plants caged but with the sides left open to permit leafhopper access. Microscopic examination of sections through damaged areas of several leafhopper host plants showed vascular bundle abnormalities similar to those associated with hopperburn caused by potato leafhopper, Empoasca fabae (Harris), feeding on alfalfa.
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • III III USOOPPO9323P United States Patent (19) (11 Patent Number: Plant 9,323 Van Der Knaap 45
    III III USOOPPO9323P United States Patent (19) (11 Patent Number: Plant 9,323 van der Knaap 45. Date of Patent: Oct. 10, 1995 54 FICUS LYRATA PLANT NAMED BAMBINO+2 Attorney, Agent, or Firm-Burns, Doane, Swecker & Mathis 76 Inventor: Eduard J. M. van der Knaap, 57 ABSTRACT Wilgenlei 15, 2665 KN Bleiswijk, A new and distinct Ficus lyrata cultivar named Bambino is Netherlands provided that is well suited for growing in pots as an attractive foliage plant. The growth habit of the new cultivar (21) Appl. No.: 354,143 is extremely compact. The leaves are uniformly green with 22 Filed: Dec. 6, 1994 light venation and lack variegation. The leaves also are smaller and thicker than those commonly exhibited by Ficus (51) Int. Cl. ..................................... A01H 5700 lyrata. Additionally, the petioles are extremely short when 52 U.S. Cl. ........................................................ Pt/88.9 compared to those commonly exhibited by Ficus lyrata. 58 Field of Search ................................... Plt./33.1, 88.9 Primary Examiner-James R. Feyrer 2 Drawing Sheets 1. 2 SUMMARY OF THE INVENTION FIG. 1 illustrates a typical potted plant of the Bambino The present invention comprises a new and distinct cultivar wherein the attractive glossy foliage and extremely Fiddle-Leaf Fig cultivar name Bambino. compact growth habit are apparent. Ficus lyrata plants frequently are potted and are grown as FIG. 2 illustrates for comparative purposes plants of the ornamental foliage plants. Commonly, such plants are not same age prepared from vegetative cuttings wherein the new sold by cultivar designation; however, Ficus lyrata plants of Bambino cultivar is shown on the right and a typical Ficus the Full Speed and Goldy cultivars are established and lyrata plant is shown on the left.
    [Show full text]
  • Ornamental Garden Plants of the Guianas Pt. 2
    Surinam (Pulle, 1906). 8. Gliricidia Kunth & Endlicher Unarmed, deciduous trees and shrubs. Leaves alternate, petiolate, odd-pinnate, 1- pinnate. Inflorescence an axillary, many-flowered raceme. Flowers papilionaceous; sepals united in a cupuliform, weakly 5-toothed tube; standard petal reflexed; keel incurved, the petals united. Stamens 10; 9 united by the filaments in a tube, 1 free. Fruit dehiscent, flat, narrow; seeds numerous. 1. Gliricidia sepium (Jacquin) Kunth ex Grisebach, Abhandlungen der Akademie der Wissenschaften, Gottingen 7: 52 (1857). MADRE DE CACAO (Surinam); ACACIA DES ANTILLES (French Guiana). Tree to 9 m; branches hairy when young; poisonous. Leaves with 4-8 pairs of leaflets; leaflets elliptical, acuminate, often dark-spotted or -blotched beneath, to 7 x 3 (-4) cm. Inflorescence to 15 cm. Petals pale purplish-pink, c.1.2 cm; standard petal marked with yellow from middle to base. Fruit narrowly oblong, somewhat woody, to 15 x 1.2 cm; seeds up to 11 per fruit. Range: Mexico to South America. Grown as an ornamental in the Botanic Gardens, Georgetown, Guyana (Index Seminum, 1982) and in French Guiana (de Granville, 1985). Grown as a shade tree in Surinam (Ostendorf, 1962). In tropical America this species is often interplanted with coffee and cacao trees to shade them; it is recommended for intensified utilization as a fuelwood for the humid tropics (National Academy of Sciences, 1980; Little, 1983). 9. Pterocarpus Jacquin Unarmed, nearly evergreen trees, sometimes lianas. Leaves alternate, petiolate, odd- pinnate, 1-pinnate; leaflets alternate. Inflorescence an axillary or terminal panicle or raceme. Flowers papilionaceous; sepals united in an unequally 5-toothed tube; standard and wing petals crisped (wavy); keel petals free or nearly so.
    [Show full text]
  • Increased Moisture Content of Propagation Media Enhances Bacterial Rot of Chrysanthemum
    Table 4, Effectiveness of chemical treatments to control leaf spot of basil when applied as protectants (Table 4). No sign of caused by Pseudomonas cichorii. phytotoxicity was seen on any of the sprayed plants under conditions of this experiment. However, to our knowledge, Plant rating2 neither has EPA registered for use on basil. Chemical Greenhouse Mist chamber Literature Cited Saline control 0.0 0.5 Inoculated control 8.0 9.5 1. Chase, A. R. and D. D. Brunk. 1984. Bacterial leaf incited by Streptomycin 0.5 0.0 Pseudomonas cichorii in Schefflera arboricola and some related plants. Copper-maneb 0.5 1.0 Plant Dis. 68:73-74. 2. Crockett, J. U. and O. Tanner. 1977. The Time-Life Encyclopedia of zRating based on 0-10 where 0 = no infection, 1 = 1- and 10 Gardening, Herbs. Time-Life Books, Alexandia, VA. 90-100%. Average of 3 replications. 3. Irey, M. S. 1980. Taxonomic value of the yellow pigment of the genus Xanthomonas. M.S. Thesis, Univ. Florida, Gainesville. showed that the disease level was much higher at high 4. King, E. O., M. K. Ward, and D. E. Raney. 1954. Two simple media moisture levels than at low moisture levels even at approx for the demonstration of pyocyanin and fluorescin. J. Lab. Med. 44 imately equal temperature regimes (Table 3). This indi 301-307. 5. Klement, Z., G. L. Farkas, and I. Lovrekovich. 1964. Hypersensitive cates that high moisture levels favor severe disease de reaction induced by phytopathogenic bacteria in the tobacco leaf. velopment. Thus, keeping the foliage as dry as possible Phytopathology 54:474-477.
    [Show full text]
  • Ficus Plants for Hawai'i Landscapes
    Ornamentals and Flowers May 2007 OF-34 Ficus Plants for Hawai‘i Landscapes Melvin Wong Department of Tropical Plant and Soil Sciences icus, the fig genus, is part of the family Moraceae. Many ornamental Ficus species exist, and probably FJackfruit, breadfruit, cecropia, and mulberry also the most colorful one is Ficus elastica ‘Schrijveriana’ belong to this family. The objective of this publication (Fig. 8). Other Ficus elastica cultivars are ‘Abidjan’ (Fig. is to list the common fig plants used in landscaping and 9), ‘Decora’ (Fig. 10), ‘Asahi’ (Fig. 11), and ‘Gold’ (Fig. identify some of the species found in botanical gardens 12). Other banyan trees are Ficus lacor (pakur tree), in Hawai‘i. which can be seen at Foster Garden, O‘ahu, Ficus When we think of ficus (banyan) trees, we often think benjamina ‘Comosa’ (comosa benjamina, Fig. 13), of large trees with aerial roots. This is certainly accurate which can be seen on the UH Mänoa campus, Ficus for Ficus benghalensis (Indian banyan), Ficus micro­ neriifolia ‘Nemoralis’ (Fig. 14), which can be seen at carpa (Chinese banyan), and many others. Ficus the UH Lyon Arboretum, and Ficus rubiginosa (rusty benghalensis (Indian banyan, Fig. 1) are the large ban­ fig, Fig. 15). yans located in the center of Thomas Square in Hono­ In tropical rain forests, many birds and other animals lulu; the species is also featured in Disneyland (although feed on the fruits of different Ficus species. In Hawaii the tree there is artificial). Ficus microcarpa (Chinese this can be a negative feature, because large numbers of banyan, Fig.
    [Show full text]
  • Some “Green” Alternatives for Winter
    Winter 2007 / Vol. 3, No. 2 Friends In This Issue… 02 Director’s Message Some “Green” Alternatives for Winter 03 A Winter Bird Walk Rick Meader 04 Development Matters As winter begins, you may be The forms of trees and shrubs become very contemplating your landscape evident in winter. Their underlying shape, masked Curator’s Corner by luxuriant foliage in the summer, becomes 05 and wondering where the color is. Unless your exposed and available for closer inspection during yard resembles a Christmas tree farm or nursery Updates our “naked tree” months. The strongly horizontal 06 teeming with evergreens, you probably are missing limbs of the non-evergreen conifer, tamarack Happenings the friendly sight of green as your foliage becomes 07 (Larix laricina), and cockspur hawthorn (Crataegus compost. If this is the case, you may be missing out Registration, p. 14 crus-galli) can become magical with a light covering More Happenings, p. 20 on subtle but quite interesting textures and colors of frost or snow. The cascading canopy of weeping offered by some deciduous trees and shrubs and cherry (Prunus subhirtella) trees can create a virtual 09 Calendar other herbaceous material. icy waterfall after an ice storm or night of hoarfrost. One of the joys of winter that helps compensate Profile The gnarled, twisting branches of contorted 15 for the loss of foliage and the shortening of the days American hazelnut (Corylus americana ‘Contorta’ ) From the Editor is the new openness of the canopy. The sunlight can actually match your own body shape on a frigid Arb & Gardens in the that is available reaches right down to the ground Press (and in a Salad) January morning.
    [Show full text]
  • Ficus Lyrata Fiddle-Leaf Fig, Banjo Fig Ficus Lyrata Is Native to Tropical Cameroon in Africa and Is in Mulberry Family, Moraceae
    435 W. Glenside Ave. The Gardener’s Resource Glenside, PA 19038 Since 1943 215-887-7500 Ficus lyrata Fiddle-Leaf Fig, Banjo Fig Ficus lyrata is native to tropical Cameroon in Africa and is in mulberry family, Moraceae. Its natural environment is hot, humid and it rains often but lightly. They have giant green leaves with lots of cells that need lots of sunlight for food production. The Fiddle is like other plants, in that it uses the sun’s energy for food, but the Fiddle’s leaves are giant compared to most other plants, so they’ll need lots of sunlight. If the leaves are dropping, the plant is not getting enough Feed the plant once during the Spring light. Fiddles are going to need consistent, and then monthly throughout the bright, filtered, sunlight. Turn the plant Summer. Over-fertilization can cause the every few months once it begins to lean Fiddle Leaf Fig to grow leggy and can towards the light. It prefers an east-facing, even kill it. No fertilizer is necessary sunny window as afternoon sun from a south during the Winter when plant growth or west facing window is too strong and will naturally slows down. burn the leaves. TIPS: Water when the top 50%-75% of the soil • Fiddles do well in temperatures becomes dry, then thoroughly drench until between 60-80°F. the water drains into the saucer. Empty the • Keep the plant away from air saucer if the water level is high so as not to conditioners, drafts and heating drown the roots.
    [Show full text]
  • 11 Microbial Communities in the Phyllosphere Johan H.J
    Biology of the Plant Cuticle Edited by Markus Riederer, Caroline Müller Copyright © 2006 by Blackwell Publishing Ltd Biology of the Plant Cuticle Edited by Markus Riederer, Caroline Müller Copyright © 2006 by Blackwell Publishing Ltd 11 Microbial communities in the phyllosphere Johan H.J. Leveau 11.1 Introduction The term phyllosphere was coined by Last (1955) and Ruinen (1956) to describe the plant leaf surface as an environment that is physically, chemically and biologically distinct from the plant leaf itself or the air surrounding it. The term phylloplane has been used also, either instead of or in addition to the term phyllosphere. Its two- dimensional connotation, however, does not do justice to the three dimensions that characterise the phyllosphere from the perspective of many of its microscopic inhab- itants. On a global scale, the phyllosphere is arguably one of the largest biological surfaces colonised by microorganisms. Satellite images have allowed a conservative approximation of 4 × 108 km2 for the earth’s terrestrial surface area covered with foliage (Morris and Kinkel, 2002). It has been estimated that this leaf surface area is home to an astonishing 1026 bacteria (Morris and Kinkel, 2002), which are the most abundant colonisers of cuticular surfaces. Thus, the phyllosphere represents a significant refuge and resource of microorganisms on this planet. Often-used terms in phyllosphere microbiology are epiphyte and epiphytic (Leben, 1965; Hirano and Upper, 1983): here, microbial epiphytes or epiphytic microorganisms, which include bacteria, fungi and yeasts, are defined as being cap- able of surviving and thriving on plant leaf and fruit surfaces. Several excellent reviews on phyllosphere microbiology have appeared so far (Beattie and Lindow, 1995, 1999; Andrews and Harris, 2000; Hirano and Upper, 2000; Lindow and Leveau, 2002; Lindow and Brandl, 2003).
    [Show full text]
  • Field Manual of Diseases on Garden and Greenhouse Flowers Field Manual of Diseases on Garden and Greenhouse Flowers
    R. Kenneth Horst Field Manual of Diseases on Garden and Greenhouse Flowers Field Manual of Diseases on Garden and Greenhouse Flowers R. Kenneth Horst Field Manual of Diseases on Garden and Greenhouse Flowers R. Kenneth Horst Plant Pathology and Plant Microbe Biology Cornell University Ithaca, NY , USA ISBN 978-94-007-6048-6 ISBN 978-94-007-6049-3 (eBook) DOI 10.1007/978-94-007-6049-3 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2013935122 © Springer Science+Business Media Dordrecht 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, speci fi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on micro fi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied speci fi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc.
    [Show full text]
  • NO EXIT New Music Ensemble
    edwin wade design noexitnewmusic Sept 2019 noexitnewmusic.com le ic ensemb us m w ne NoExit New Music Ensemble from left to right; James Rhodes, Nicholas Underhill, Sean Gabriel, James Praznik, Nick Diodore, Edwin Wade, Cara Tweed, Timothy Beyer, Gunnar Owen Hirthe and Luke Rinderknecht. Since its inception, the idea behind noexit has been to serve as an outlet for the commission and performance of contemporary avant-garde concert music. Now in our 11th season and with over 140 commissions to date, NoExit is going strong in our efforts to promote the music of living composers and to be an impetus for the creation of new works. We have strived to create exciting, meaningful and thought-provoking programs; always with the philosophy of bringing the concert hall to the community (not the other way around) and by presenting our programs in a manner which allows for our audience to really connect with the experience......... free and open to the public in every sense. For our 2019-2020 season, NoExit will be welcoming a very special guest, cimbalom virtuoso Chester Englander, who will be performing with NoExit over the next two seasons as part of an ambitious project to commission and record 2 CD’s of all new work. As always, there will be more world premiere music than you can count on one hand (we have 10 new pieces planned for this season). We are particularly happy to be presenting the music of 5 very impressive and talented student composers from Northeast Ohio, representing various colleges from the area. As in past seasons, the ensemble will be participating in the NEOSonicFest, collaborating with Zeitgeist (our favorite co-consprirators) and so much more.
    [Show full text]