Real Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Real Analysis Real Analysis Andrew Kobin Fall 2012 Contents Contents Contents 1 Introduction 1 1.1 The Natural Numbers . .1 1.2 The Rational Numbers . .1 1.3 The Real Numbers . .6 1.4 A Note About Infinity . .8 2 Sequences and Series 9 2.1 Sequences . .9 2.2 Basic Limit Theorems . 12 2.3 Monotone Sequences . 16 2.4 Subsequences . 19 2.5 lim inf and lim sup . 22 2.6 Series . 23 2.7 The Integral Test . 28 2.8 Alternating Series . 30 3 Functions 32 3.1 Continuous Functions . 32 3.2 Properties of Continuous Functions . 35 3.3 Uniform Continuity . 37 3.4 Limits of Functions . 41 3.5 Power Series . 44 3.6 Uniform Convergence . 46 3.7 Applications of Uniform Convergence . 49 4 Calculus 52 4.1 Differentiation and Integration of Power Series . 52 4.2 The Derivative . 54 4.3 The Mean Value Theorem . 57 4.4 Taylor's Theorem . 61 4.5 The Integral . 63 4.6 Properties of Integrals . 67 i 1 Introduction 1 Introduction These notes were compiled from a semester of lectures at Wake Forest University by Dr. Sarah Raynor. The primary text for the course is Ross's Elementary Analysis: The Theory of Calculus. In the introduction, we develop an axiomatic presentation for the real numbers. Subsequent chapters explore sequences, continuity, functions and finally a rigorous study of single-variable calculus. 1.1 The Natural Numbers The following notation is standard. N = f1; 2; 3; 4;:::g the natural numbers Z = f:::; −3; −2; −1; 0; 1; 2; 3;:::g the integers n p o Q = q j p; q 2 Z; q 6= 0 the rational numbers R ? the real numbers Note that N ⊂ Z ⊂ Q ⊂ R. We begin with a short axiomatic presentation of the natural numbers N. The five axioms below are called the Peano Axioms. (1) There is a special element 1 2 N, so N is nonempty. (2) Every element of N has a successor which is also in N. For n 2 N, its successor is denoted n + 1. (3) 1 is not the successor of any element of N. (4) Suppose S ⊆ N is a subset. If 1 2 S and for all n 2 S, n + 1 2 S as well, then S = N. This is called the Axiom of Induction. (5) If the successors of some m; n 2 N are the same, then m and n are the same. In other words, m + 1 = n + 1 =) m = n. Remark. Any set that satisfies all five Peano Axioms is isomorphic to the natural numbers. 1.2 The Rational Numbers Q is the arithmetic completion of N, i.e. the rationals are closed under +; −; × and ÷. 2 However, there are issues withpQ. For example, try finding roots of the polynomial x −2 = 0. The only solutions are x = ± 2, but it turns out that these are not rational numbers: p Theorem 1.2.1. 2 is irrational. 2 p Proof. Suppose x = 2 and x 2 Q. Then x = q for some p; q 2 Z, q 6= 0. We may assume p p and q have no common factors, i.e. q is reduced. Consider p2 x2 = = 2 =) p2 = 2q2: q2 1 1.2 The Rational Numbers 1 Introduction Then p2 is even, so p must be even, i.e. there is some integer k such that p = 2k. This means 2 2 2 2 2 2 p = 4k = 2q =) q = 2k . Thus q is even, so q is even.p This shows that 2 is a common factor of p and q, which contradicts our assumption. Hence 2 is irrational. So it's clear that the rational numbers are missing some ‘stuff' that should be there. Definition. A number x is algebaic if there are integers a0; a1; : : : ; an, with an 6= 0 and n n−1 n ≥ 1, such that anx + an−1x + ::: + a1x + a0 = 0. p p p Example 1.2.2. 2 is algebraic since it is a root of x2 − 2 = 0. Is 2 + 2 algebraic? To p p see that it is, let x = 2 + 2 and consider p x2 = 2 + 2 (x2 − 2)2 = 2 x4 − 4x2 + 2 = 0: So a4 = 1, a2 = −4 and a0 = 2 shows that x is algebraic. Proposition 1.2.3. Every rational number is algebraic. p Proof. Let x = q for p; q 2 Z and q 6= 0. We can rewrite this as qx − p = 0 so x is algebraic. p The converse is false: note that every algebraic number is rational (see 2 above). Definition. The algebraic completion of Q is the set Q of all algebraic numbers. p Theorem 1.2.4 (Rational Roots Theorem). Let r 2 Q with r = q such that p and q have n no common factors. If anr + ::: + a1r + a0 = 0 with n ≥ 1, an 6= 0 and a0 6= 0, then q j an and p j a0. Proof. Plug in: pn p a + ::: + a + a = 0 n q 1 q 0 n n−1 n n anp + ::: + a1pq + a0q = 0 · q = 0 n n−1 n−1 n anp = −an−1p q − ::: − a1pq − a0q : n Since q divides everything on the right, q must be a factor of anp . But q and p share no common factors, so q divides an. Likewise p divides a0. Example 1.2.5. The rational roots theorem is particularly effective for showing that a 4 2 polynomial has no rational roots. For example, consider x − 4x + 2 = 0. Note that a0 = 2 and a4 = 1, so all possible rational roots are ±1; ±2. But none of these are roots, so all roots of x4 − 4x2 + 2 are irrational. 2 1.2 The Rational Numbers 1 Introduction Are all real numbers algebraic? In other words, does Q = R? It turns out that the answer is no. Examples include π, e, sin(1), etc. but these are hard to prove. In fact, it wasn't until 1844 that Liouville proved the existence of such numbers, called transcendental numbers. It has since been shown that Q is a subset of the complex numbers C. This means that not all real numbers are algebraic and not all algebraic numbers are real. Next we detail an axiomatic presentation of the rationals, similar to the Peano Axioms in Section 1.1. First, there are special numbers 0; 1 2 Q with 0 6= 1, so Q is nonempty. Define the binary operations +; · : Q × Q ! Q that satisfy the following axioms for all a; b; c 2 Q: (1)( a + b) + c = a + (b + c) (additive associativity). (2) a + b = b + a (additive commutativity). (3) a + 0 = a (additive identity). (4) For every a there exists an element −a such that a + (−a) = 0 (additive inverse). (5) a(bc) = (ab)c (multiplicative associativity). (6) ab = ba (multiplicative commutativity). (7) a · 1 = a (multiplicative identity). 1 1 (8) For every a there exists an element a such that a · a = 1 (multiplicative inverse). (9) a(b + c) = ab + ac (distribution). Any set that satisfies (1) { (9) is called a field. Q is an example of a field, however this set of axioms is not a unique presentation of Q. Proposition 1.2.6. Some algebraic rules regarding a; b; c 2 Q are: (a) If a + c = b + c then a = b. (b) a · 0 = 0. (c) (−a)b = −(ab). (d) (−a)(−b) = ab. (e) If ac = bc and c 6= 0 then a = b. (f) If ab = 0 then either a = 0 or b = 0. Proof. All of these may be proven from axioms (1) { (9). We will prove (a), (b) and (e) and leave the rest for exercise. (a) If a + c = b + c for a; b; c 2 Q then (a + c) + (−c) = (b + c) + (−c) a + (c + −c) = b + (c + −c) by axiom (1) a + 0 = b + 0 by axiom (4) a = b by axiom (3). 3 1.2 The Rational Numbers 1 Introduction (b) Take a 2 Q and consider a · 0. By axiom (3) we can write 0 + 0 = 0, so a · 0 = a(0 + 0) =) a · 0 = a · 0 + a · 0 by axiom (9). By axiom (4), there exists an element −(a · 0) 2 Q such that (a · 0) + −(a · 0) = 0, so 0 = a · 0 + −(a · 0) = (a · 0 + a · 0) + −(a · 0) = a · 0 + (a · 0 + −(a · 0)) by association = a · 0 + 0 by additive inverse = a · 0 by additive identity: 1 (e) Let a; b; c 2 Q with c 6= 0 and suppose ac = bc. Then there exists some element c 2 Q 1 such that c · c = 1. Then 1 1 (ac) · = (bc) · c c 1 1 a c · = b c · by association c c a · 1 = b · 1 by multiplicative inverse a = b by multiplicative identity. To further develop the rational numbers, we state the five Order Axioms: for a; b; c 2 Q, we have (10) Either a ≤ b or b ≤ a (comparability). (11) If a ≤ b and b ≤ a then a = b (antisymmetry). (12) If a ≤ b and b ≤ c then a ≤ c (transitivity). (13) If a ≤ b then a + c ≤ b + c. (14) If a ≤ b and c ≥ 0 then ac ≤ bc. Note that (10) { (12) endow Q with a total ordering, so that the 14 axioms together mean that Q is a totally ordered field. There are other examples of ordered fields, such as R. ? Example 1.2.7. C is not an ordered field: 3 + i ≤ 2 + 2i | these can't be ordered.
Recommended publications
  • Limits Involving Infinity (Horizontal and Vertical Asymptotes Revisited)
    Limits Involving Infinity (Horizontal and Vertical Asymptotes Revisited) Limits as ‘ x ’ Approaches Infinity At times you’ll need to know the behavior of a function or an expression as the inputs get increasingly larger … larger in the positive and negative directions. We can evaluate this using the limit limf ( x ) and limf ( x ) . x→ ∞ x→ −∞ Obviously, you cannot use direct substitution when it comes to these limits. Infinity is not a number, but a way of denoting how the inputs for a function can grow without any bound. You see limits for x approaching infinity used a lot with fractional functions. 1 Ex) Evaluate lim using a graph. x→ ∞ x A more general version of this limit which will help us out in the long run is this … GENERALIZATION For any expression (or function) in the form CONSTANT , this limit is always true POWER OF X CONSTANT lim = x→ ∞ xn HOW TO EVALUATE A LIMIT AT INFINITY FOR A RATIONAL FUNCTION Step 1: Take the highest power of x in the function’s denominator and divide each term of the fraction by this x power. Step 2: Apply the limit to each term in both numerator and denominator and remember: n limC / x = 0 and lim C= C where ‘C’ is a constant. x→ ∞ x→ ∞ Step 3: Carefully analyze the results to see if the answer is either a finite number or ‘ ∞ ’ or ‘ − ∞ ’ 6x − 3 Ex) Evaluate the limit lim . x→ ∞ 5+ 2 x 3− 2x − 5 x 2 Ex) Evaluate the limit lim . x→ ∞ 2x + 7 5x+ 2 x −2 Ex) Evaluate the limit lim .
    [Show full text]
  • Calculus and Differential Equations II
    Calculus and Differential Equations II MATH 250 B Sequences and series Sequences and series Calculus and Differential Equations II Sequences A sequence is an infinite list of numbers, s1; s2;:::; sn;::: , indexed by integers. 1n Example 1: Find the first five terms of s = (−1)n , n 3 n ≥ 1. Example 2: Find a formula for sn, n ≥ 1, given that its first five terms are 0; 2; 6; 14; 30. Some sequences are defined recursively. For instance, sn = 2 sn−1 + 3, n > 1, with s1 = 1. If lim sn = L, where L is a number, we say that the sequence n!1 (sn) converges to L. If such a limit does not exist or if L = ±∞, one says that the sequence diverges. Sequences and series Calculus and Differential Equations II Sequences (continued) 2n Example 3: Does the sequence converge? 5n 1 Yes 2 No n 5 Example 4: Does the sequence + converge? 2 n 1 Yes 2 No sin(2n) Example 5: Does the sequence converge? n Remarks: 1 A convergent sequence is bounded, i.e. one can find two numbers M and N such that M < sn < N, for all n's. 2 If a sequence is bounded and monotone, then it converges. Sequences and series Calculus and Differential Equations II Series A series is a pair of sequences, (Sn) and (un) such that n X Sn = uk : k=1 A geometric series is of the form 2 3 n−1 k−1 Sn = a + ax + ax + ax + ··· + ax ; uk = ax 1 − xn One can show that if x 6= 1, S = a .
    [Show full text]
  • Section 8.8: Improper Integrals
    Section 8.8: Improper Integrals One of the main applications of integrals is to compute the areas under curves, as you know. A geometric question. But there are some geometric questions which we do not yet know how to do by calculus, even though they appear to have the same form. Consider the curve y = 1=x2. We can ask, what is the area of the region under the curve and right of the line x = 1? We have no reason to believe this area is finite, but let's ask. Now no integral will compute this{we have to integrate over a bounded interval. Nonetheless, we don't want to throw up our hands. So note that b 2 b Z (1=x )dx = ( 1=x) 1 = 1 1=b: 1 − j − In other words, as b gets larger and larger, the area under the curve and above [1; b] gets larger and larger; but note that it gets closer and closer to 1. Thus, our intuition tells us that the area of the region we're interested in is exactly 1. More formally: lim 1 1=b = 1: b − !1 We can rewrite that as b 2 lim Z (1=x )dx: b !1 1 Indeed, in general, if we want to compute the area under y = f(x) and right of the line x = a, we are computing b lim Z f(x)dx: b !1 a ASK: Does this limit always exist? Give some situations where it does not exist. They'll give something that blows up.
    [Show full text]
  • 1 Mean Value Theorem 1 1.1 Applications of the Mean Value Theorem
    Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary In Section 1, we go over the Mean Value Theorem and its applications. In Section 2, we will recap what we have covered so far this term. Topics Page 1 Mean Value Theorem 1 1.1 Applications of the Mean Value Theorem . .1 2 Midterm Review 5 2.1 Proof Techniques . .5 2.2 Sequences . .6 2.3 Series . .7 2.4 Continuity and Differentiability of Functions . .9 1 Mean Value Theorem The Mean Value Theorem is the following result: Theorem 1.1 (Mean Value Theorem). Let f be a continuous function on [a; b], which is differentiable on (a; b). Then, there exists some value c 2 (a; b) such that f(b) − f(a) f 0(c) = b − a Intuitively, the Mean Value Theorem is quite trivial. Say we want to drive to San Francisco, which is 380 miles from Caltech according to Google Map. If we start driving at 8am and arrive at 12pm, we know that we were driving over the speed limit at least once during the drive. This is exactly what the Mean Value Theorem tells us. Since the distance travelled is a continuous function of time, we know that there is a point in time when our speed was ≥ 380=4 >>> speed limit. As we can see from this example, the Mean Value Theorem is usually not a tough theorem to understand. The tricky thing is realizing when you should try to use it. Roughly speaking, we use the Mean Value Theorem when we want to turn the information about a function into information about its derivative, or vice-versa.
    [Show full text]
  • 3.3 Convergence Tests for Infinite Series
    3.3 Convergence Tests for Infinite Series 3.3.1 The integral test We may plot the sequence an in the Cartesian plane, with independent variable n and dependent variable a: n X The sum an can then be represented geometrically as the area of a collection of rectangles with n=1 height an and width 1. This geometric viewpoint suggests that we compare this sum to an integral. If an can be represented as a continuous function of n, for real numbers n, not just integers, and if the m X sequence an is decreasing, then an looks a bit like area under the curve a = a(n). n=1 In particular, m m+2 X Z m+1 X an > an dn > an n=1 n=1 n=2 For example, let us examine the first 10 terms of the harmonic series 10 X 1 1 1 1 1 1 1 1 1 1 = 1 + + + + + + + + + : n 2 3 4 5 6 7 8 9 10 1 1 1 If we draw the curve y = x (or a = n ) we see that 10 11 10 X 1 Z 11 dx X 1 X 1 1 > > = − 1 + : n x n n 11 1 1 2 1 (See Figure 1, copied from Wikipedia) Z 11 dx Now = ln(11) − ln(1) = ln(11) so 1 x 10 X 1 1 1 1 1 1 1 1 1 1 = 1 + + + + + + + + + > ln(11) n 2 3 4 5 6 7 8 9 10 1 and 1 1 1 1 1 1 1 1 1 1 1 + + + + + + + + + < ln(11) + (1 − ): 2 3 4 5 6 7 8 9 10 11 Z dx So we may bound our series, above and below, with some version of the integral : x If we allow the sum to turn into an infinite series, we turn the integral into an improper integral.
    [Show full text]
  • 13 Limits and the Foundations of Calculus
    13 Limits and the Foundations of Calculus We have· developed some of the basic theorems in calculus without reference to limits. However limits are very important in mathematics and cannot be ignored. They are crucial for topics such as infmite series, improper integrals, and multi­ variable calculus. In this last section we shall prove that our approach to calculus is equivalent to the usual approach via limits. (The going will be easier if you review the basic properties of limits from your standard calculus text, but we shall neither prove nor use the limit theorems.) Limits and Continuity Let {be a function defined on some open interval containing xo, except possibly at Xo itself, and let 1 be a real number. There are two defmitions of the· state­ ment lim{(x) = 1 x-+xo Condition 1 1. Given any number CI < l, there is an interval (al> b l ) containing Xo such that CI <{(x) ifal <x < b i and x ;6xo. 2. Given any number Cz > I, there is an interval (a2, b2) containing Xo such that Cz > [(x) ifa2 <x< b 2 and x :;Cxo. Condition 2 Given any positive number €, there is a positive number 0 such that If(x) -11 < € whenever Ix - x 0 I< 5 and x ;6 x o. Depending upon circumstances, one or the other of these conditions may be easier to use. The following theorem shows that they are interchangeable, so either one can be used as the defmition oflim {(x) = l. X--->Xo 180 LIMITS AND CONTINUITY 181 Theorem 1 For any given f.
    [Show full text]
  • What Is on Today 1 Alternating Series
    MA 124 (Calculus II) Lecture 17: March 28, 2019 Section A3 Professor Jennifer Balakrishnan, [email protected] What is on today 1 Alternating series1 1 Alternating series Briggs-Cochran-Gillett x8:6 pp. 649 - 656 We begin by reviewing the Alternating Series Test: P k+1 Theorem 1 (Alternating Series Test). The alternating series (−1) ak converges if 1. the terms of the series are nonincreasing in magnitude (0 < ak+1 ≤ ak, for k greater than some index N) and 2. limk!1 ak = 0. For series of positive terms, limk!1 ak = 0 does NOT imply convergence. For alter- nating series with nonincreasing terms, limk!1 ak = 0 DOES imply convergence. Example 2 (x8.6 Ex 16, 20, 24). Determine whether the following series converge. P1 (−1)k 1. k=0 k2+10 P1 1 k 2. k=0 − 5 P1 (−1)k 3. k=2 k ln2 k 1 MA 124 (Calculus II) Lecture 17: March 28, 2019 Section A3 Recall that if a series converges to a value S, then the remainder is Rn = S − Sn, where Sn is the sum of the first n terms of the series. An upper bound on the magnitude of the remainder (the absolute error) in an alternating series arises form the following observation: when the terms are nonincreasing in magnitude, the value of the series is always trapped between successive terms of the sequence of partial sums. Thus we have jRnj = jS − Snj ≤ jSn+1 − Snj = an+1: This justifies the following theorem: P1 k+1 Theorem 3 (Remainder in Alternating Series).
    [Show full text]
  • 1.1 Constructing the Real Numbers
    18.095 Lecture Series in Mathematics IAP 2015 Lecture #1 01/05/2015 What is number theory? The study of numbers of course! But what is a number? • N = f0; 1; 2; 3;:::g can be defined in several ways: { Finite ordinals (0 := fg, n + 1 := n [ fng). { Finite cardinals (isomorphism classes of finite sets). { Strings over a unary alphabet (\", \1", \11", \111", . ). N is a commutative semiring: addition and multiplication satisfy the usual commu- tative/associative/distributive properties with identities 0 and 1 (and 0 annihilates). Totally ordered (as ordinals/cardinals), making it a (positive) ordered semiring. • Z = {±n : n 2 Ng.A commutative ring (commutative semiring, additive inverses). Contains Z>0 = N − f0g closed under +; × with Z = −Z>0 t f0g t Z>0. This makes Z an ordered ring (in fact, an ordered domain). • Q = fa=b : a; 2 Z; b 6= 0g= ∼, where a=b ∼ c=d if ad = bc. A field (commutative ring, multiplicative inverses, 0 6= 1) containing Z = fn=1g. Contains Q>0 = fa=b : a; b 2 Z>0g closed under +; × with Q = −Q>0 t f0g t Q>0. This makes Q an ordered field. • R is the completion of Q, making it a complete ordered field. Each of the algebraic structures N; Z; Q; R is canonical in the following sense: every non-trivial algebraic structure of the same type (ordered semiring, ordered ring, ordered field, complete ordered field) contains a copy of N; Z; Q; R inside it. 1.1 Constructing the real numbers What do we mean by the completion of Q? There are two possibilities: 1.
    [Show full text]
  • Math 137 Calculus 1 for Honours Mathematics Course Notes
    Math 137 Calculus 1 for Honours Mathematics Course Notes Barbara A. Forrest and Brian E. Forrest Version 1.61 Copyright c Barbara A. Forrest and Brian E. Forrest. All rights reserved. August 1, 2021 All rights, including copyright and images in the content of these course notes, are owned by the course authors Barbara Forrest and Brian Forrest. By accessing these course notes, you agree that you may only use the content for your own personal, non-commercial use. You are not permitted to copy, transmit, adapt, or change in any way the content of these course notes for any other purpose whatsoever without the prior written permission of the course authors. Author Contact Information: Barbara Forrest ([email protected]) Brian Forrest ([email protected]) i QUICK REFERENCE PAGE 1 Right Angle Trigonometry opposite ad jacent opposite sin θ = hypotenuse cos θ = hypotenuse tan θ = ad jacent 1 1 1 csc θ = sin θ sec θ = cos θ cot θ = tan θ Radians Definition of Sine and Cosine The angle θ in For any θ, cos θ and sin θ are radians equals the defined to be the x− and y− length of the directed coordinates of the point P on the arc BP, taken positive unit circle such that the radius counter-clockwise and OP makes an angle of θ radians negative clockwise. with the positive x− axis. Thus Thus, π radians = 180◦ sin θ = AP, and cos θ = OA. 180 or 1 rad = π . The Unit Circle ii QUICK REFERENCE PAGE 2 Trigonometric Identities Pythagorean cos2 θ + sin2 θ = 1 Identity Range −1 ≤ cos θ ≤ 1 −1 ≤ sin θ ≤ 1 Periodicity cos(θ ± 2π) = cos θ sin(θ ± 2π) = sin
    [Show full text]
  • G-Convergence and Homogenization of Some Sequences of Monotone Differential Operators
    Thesis for the degree of Doctor of Philosophy Östersund 2009 G-CONVERGENCE AND HOMOGENIZATION OF SOME SEQUENCES OF MONOTONE DIFFERENTIAL OPERATORS Liselott Flodén Supervisors: Associate Professor Anders Holmbom, Mid Sweden University Professor Nils Svanstedt, Göteborg University Professor Mårten Gulliksson, Mid Sweden University Department of Engineering and Sustainable Development Mid Sweden University, SE‐831 25 Östersund, Sweden ISSN 1652‐893X, Mid Sweden University Doctoral Thesis 70 ISBN 978‐91‐86073‐36‐7 i Akademisk avhandling som med tillstånd av Mittuniversitetet framläggs till offentlig granskning för avläggande av filosofie doktorsexamen onsdagen den 3 juni 2009, klockan 10.00 i sal Q221, Mittuniversitetet, Östersund. Seminariet kommer att hållas på svenska. G-CONVERGENCE AND HOMOGENIZATION OF SOME SEQUENCES OF MONOTONE DIFFERENTIAL OPERATORS Liselott Flodén © Liselott Flodén, 2009 Department of Engineering and Sustainable Development Mid Sweden University, SE‐831 25 Östersund Sweden Telephone: +46 (0)771‐97 50 00 Printed by Kopieringen Mittuniversitetet, Sundsvall, Sweden, 2009 ii Tothememoryofmyfather G-convergence and Homogenization of some Sequences of Monotone Differential Operators Liselott Flodén Department of Engineering and Sustainable Development Mid Sweden University, SE-831 25 Östersund, Sweden Abstract This thesis mainly deals with questions concerning the convergence of some sequences of elliptic and parabolic linear and non-linear oper- ators by means of G-convergence and homogenization. In particular, we study operators with oscillations in several spatial and temporal scales. Our main tools are multiscale techniques, developed from the method of two-scale convergence and adapted to the problems stud- ied. For certain classes of parabolic equations we distinguish different cases of homogenization for different relations between the frequen- cies of oscillations in space and time by means of different sets of local problems.
    [Show full text]
  • Generalizations of the Riemann Integral: an Investigation of the Henstock Integral
    Generalizations of the Riemann Integral: An Investigation of the Henstock Integral Jonathan Wells May 15, 2011 Abstract The Henstock integral, a generalization of the Riemann integral that makes use of the δ-fine tagged partition, is studied. We first consider Lebesgue’s Criterion for Riemann Integrability, which states that a func- tion is Riemann integrable if and only if it is bounded and continuous almost everywhere, before investigating several theoretical shortcomings of the Riemann integral. Despite the inverse relationship between integra- tion and differentiation given by the Fundamental Theorem of Calculus, we find that not every derivative is Riemann integrable. We also find that the strong condition of uniform convergence must be applied to guarantee that the limit of a sequence of Riemann integrable functions remains in- tegrable. However, by slightly altering the way that tagged partitions are formed, we are able to construct a definition for the integral that allows for the integration of a much wider class of functions. We investigate sev- eral properties of this generalized Riemann integral. We also demonstrate that every derivative is Henstock integrable, and that the much looser requirements of the Monotone Convergence Theorem guarantee that the limit of a sequence of Henstock integrable functions is integrable. This paper is written without the use of Lebesgue measure theory. Acknowledgements I would like to thank Professor Patrick Keef and Professor Russell Gordon for their advice and guidance through this project. I would also like to acknowledge Kathryn Barich and Kailey Bolles for their assistance in the editing process. Introduction As the workhorse of modern analysis, the integral is without question one of the most familiar pieces of the calculus sequence.
    [Show full text]
  • Be a Metric Space
    2 The University of Sydney show that Z is closed in R. The complement of Z in R is the union of all the Pure Mathematics 3901 open intervals (n, n + 1), where n runs through all of Z, and this is open since every union of open sets is open. So Z is closed. Metric Spaces 2000 Alternatively, let (an) be a Cauchy sequence in Z. Choose an integer N such that d(xn, xm) < 1 for all n ≥ N. Put x = xN . Then for all n ≥ N we have Tutorial 5 |xn − x| = d(xn, xN ) < 1. But xn, x ∈ Z, and since two distinct integers always differ by at least 1 it follows that xn = x. This holds for all n > N. 1. Let X = (X, d) be a metric space. Let (xn) and (yn) be two sequences in X So xn → x as n → ∞ (since for all ε > 0 we have 0 = d(xn, x) < ε for all such that (yn) is a Cauchy sequence and d(xn, yn) → 0 as n → ∞. Prove that n > N). (i)(xn) is a Cauchy sequence in X, and 4. (i) Show that if D is a metric on the set X and f: Y → X is an injective (ii)(xn) converges to a limit x if and only if (yn) also converges to x. function then the formula d(a, b) = D(f(a), f(b)) defines a metric d on Y , and use this to show that d(m, n) = |m−1 − n−1| defines a metric Solution.
    [Show full text]