Controller Area Network (CAN) Bus J1939 Data Acquisition Methods and Parameter Accuracy Assessment Using Nebraska Tractor Test Laboratory Data Samuel E

Total Page:16

File Type:pdf, Size:1020Kb

Controller Area Network (CAN) Bus J1939 Data Acquisition Methods and Parameter Accuracy Assessment Using Nebraska Tractor Test Laboratory Data Samuel E University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Biological Systems Engineering--Dissertations, Biological Systems Engineering Theses, and Student Research Spring 5-2015 Controller Area Network (CAN) Bus J1939 Data Acquisition Methods and Parameter Accuracy Assessment Using Nebraska Tractor Test Laboratory Data Samuel E. Marx University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/biosysengdiss Part of the Bioresource and Agricultural Engineering Commons, and the Mechanical Engineering Commons Marx, Samuel E., "Controller Area Network (CAN) Bus J1939 Data Acquisition Methods and Parameter Accuracy Assessment Using Nebraska Tractor Test Laboratory Data" (2015). Biological Systems Engineering--Dissertations, Theses, and Student Research. 47. http://digitalcommons.unl.edu/biosysengdiss/47 This Article is brought to you for free and open access by the Biological Systems Engineering at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Biological Systems Engineering--Dissertations, Theses, and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. CONTROLLER AREA NETWORK (CAN) BUS J1939 DATA ACQUISITION METHODS AND PARAMETER ACCURACY ASSESSMENT USING NEBRASKA TRACTOR TEST LABORATORY DATA by Samuel E. Marx A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Agricultural and Biological Systems Engineering Under the Supervision of Professor Joe D. Luck Lincoln, Nebraska May, 2015 CONTROLLER AREA NETWORK (CAN) BUS J1939 DATA ACQUISITION METHODS AND PARAMETER ACCURACY ASSESSMENT USING NEBRASKA TRACTOR TEST LABORATORY DATA Samuel E. Marx, M.S. University of Nebraska, 2015 Adviser: Joe D. Luck Electronics have become a standard in agricultural equipment and the trend of “smarter” equipment is on the rise. To have “smarter” equipment, a working knowledge of the accuracy of the data being transmitted throughout that equipment is needed. The controller area network (CAN) bus is the current interface to machine operation data transmitted between electronic control units (ECUs). Because CAN bus has been around for nearly thirty years, numerous devices have been created for interfacing with the bus. Choosing a device can be a challenge, especially without knowing if there are differences between the logging methods for true data representation. By logging simultaneously with three different methods, data was analyzed to determine if excessive error existed between logged datasets. Additionally because many messages are calculated (e.g., not measured directly), determining the accuracy of those messages can be important for management decisions or research studies. One calculated CAN bus message that holds a great deal of value is the engine fuel rate, and because it is calculated rather than measured, excessive error may exist in the CAN bus value. A comparison between the calculated CAN bus fuel rate message and a physically measured fuel rate provided information on the message accuracy. The Nebraska Tractor Test Laboratory (NTTL) has a certified fuel rate measuring system capable of ±0.5% accuracy (OECD, 2012; Wold, et al., 2015). Results showed that error between logging methods was quite low, however file size was an issue with some of the logging methods. Waveform file logging required only 6% memory space compared to the frame logging methods. Fuel rate as recorded from the CAN bus resulted in a ±5% error from physically measured fuel rates. Error for higher fuel rates within the torque curve were closer to ±1%. These results indicated that the fuel rate given by the CAN bus can indeed be used for management or research purposes. iv Dedication I would like to dedicate this book to all of the people who have supported and encouraged me throughout my life. I can guarantee that I wouldn’t be where I am now if was not for them. v Acknowledgements First and foremost, I must thank God for providing me with daily motivation to complete this project. Also a great deal of thanks to my wife for her constant support. I would also like to thank the Nebraska Tractor Test Laboratory, in particular the engineers of NTTL, Rodney Rohrer, Justin Geyer, Doug Triplett, and Brent Sampson. John Deere for allowing CAN bus collection during NTTL tests. Dustin Dam for aid in National Instruments setup and programming. Dr. Matt Darr at Iowa State University for aid in learning more about CAN bus at conferences as well as an arranged session at ISU for CAN training. Dr. Erin Blankenship for assistance with the statistical analysis and SAS programming. Finally thanks to Julie Thompson for always being around to help with anything needed. vi Table of Contents CHAPTER ONE: INTRODUCTION ............................................................................. 1 Electronics in Agriculture ............................................................................................ 1 CAN Bus Use in Agriculture ....................................................................................... 2 CAN Bus Data Logging in Agriculture ....................................................................... 2 CAN Bus...................................................................................................................... 3 SAE J1939 ................................................................................................................... 4 Engine Fuel Rate ......................................................................................................... 6 OBJECTIVES ...................................................................................................................... 6 CHAPTER TWO: COMPARING VARIOUS HARDWARE/SOFTWARE SOLUTIONS AND CONVERSION METHODS FOR CONTROLLER AREA NETWORK (CAN) BUS DATA COLLECTION .......................................................... 8 ABSTRACT ........................................................................................................................ 8 INTRODUCTION ................................................................................................................. 9 OBJECTIVES .................................................................................................................... 10 METHODS AND MATERIALS............................................................................................ 10 Test Setup .................................................................................................................. 11 Controller Area Network Interface ............................................................................ 12 Frame Data ................................................................................................................ 13 Waveform Data .......................................................................................................... 14 SAE J1939 Database ................................................................................................. 14 Data Collection Methods ........................................................................................... 14 Microsoft Excel Hex to Engineering Unit Conversion ............................................. 16 National Instruments Diadem Hex to Engineering Units Conversion ...................... 18 Frame Data Synchronization ..................................................................................... 19 Frame Data Re-Sample/Average ............................................................................... 20 Analysis ..................................................................................................................... 20 RESULTS ......................................................................................................................... 22 File Sizes.................................................................................................................... 22 Hex Data to Engineering Units .................................................................................. 23 Difference Between Logging Methods ...................................................................... 24 Synchronization ......................................................................................................... 26 CONCLUSIONS ................................................................................................................ 27 CHAPTER THREE: VALIDATION OF MACHINE CAN BUS J1939 FUEL RATE ACCURACY USING NEBRASKA TRACTOR TEST LABORATORY FUEL RATE DATA ................................................................................................................... 29 ABSTRACT ...................................................................................................................... 29 INTRODUCTION ............................................................................................................... 30 OBJECTIVES .................................................................................................................... 31 METHODS AND MATERIALS............................................................................................ 32 Test Setup .................................................................................................................. 32 CAN Bus Interface .................................................................................................... 33
Recommended publications
  • J1939/J1708 to USB Adapter
    5940 South Ernest Drive Terre Haute, IN 47802 812-418-0526 wwww.simmasoftware.com Simma Software Introduces New Low Cost J1939/J1708 to USB Adapter Simma Software, Inc. 5940 South Ernest Drive Terre Haute, IN 47802 Heavy Duty Vehicle Network Adapter (VNA) Release date: November 7, 2011 March 17, 2011, Terre Haute, IN – Simma Software, Inc. announced today that they are introducing a new low cost high-performance J1939/J1708 Adapter for the heavy-duty and commercial vehicle market. The VNA product family supports dual J1939 networks and a single J1587/J1708 network. The VNA product will allow OEMs, fleets, and service providers, for heavy duty and commercial vehicles, to connect in real-time to their vehicle networks, allowing them to instantly gather critical information such as active diagnostic faults and fuel economy metrics. For connections back to the host computer, mobile computing device, or a handheld device, the VNA family supports USB, RS-232, and an Ethernet connection. To learn more, see our J1939 to USB Adapter page. Future devices planned for May of 2011 will support wireless connections such as Bluetooth and WiFi (802.11). "The industry loves our new VNA product line and its low price point. Typically devices of this class sell for around $750, but by using new technology and our proven J1939 software, we are able to reach a 5K price point as low as $74.95 depending on volume and options". said JR Simma, the President of Simma Software. About Simma Software, Inc. Simma Software, Inc. specializes in real-time embedded software for the automotive, military, and industrial automation industry.
    [Show full text]
  • Internationally Standardized As Part of the Train Communication Network (TCN) Applied in Light Rail Vehicles Including Metros, T
    September 2012 CANopen on track Consist network applications and subsystems Internationally standardized as part of the train communication network (TCN) Applied in light rail vehicles including metros, trams, and commuter trains www.can-cia.org International standard for CANopen in rail vehicles IEC 61375 standards In June 2012, the international electro technical commission (IEC) has en- hanced the existing and well-established standard for train communication X IEC 61375-1 systems (TCN; IEC 61375), by the CANopen Consist Network. IEC 61375-3-3 Electronic railway equipment - Train VSHFLÀHVWKHGDWDFRPPXQLFDWLRQEDVHGRQ&$1RSHQLQVLGHDVLQJOHUDLO communication network vehicle or a consist in which several rail vehicles share the same vehicle bus. (TCN) - Part 1: General In general, the lower communication layers as well as the application layer are IEC 61375-3-3 IEC architecture based on the well-proven standards for CAN (ISO 11898-1/-2) and CANopen (1 7KLVDOORZVRQWKHRQHKDQGSURÀWLQJIURPWKHDYDLODEOH&$1 X IEC 61375-2-1 Electronic railway WRROVRQWKHPDUNHW2QWKHRWKHUKDQGLWLVSRVVLEOHWREHQHÀWIURPWKHEURDG equipment - Train UDQJHRIDYDLODEOH&$1RSHQSURWRFROVWDFNV&$1RSHQFRQÀJXUDWLRQDQG communication network diagnostic tools as well as off-the-shelf devices (see CANopen product guide (TCN) - Part 2-1: Wire train DWZZZFLDSURGXFWJXLGHVRUJ :HOOGHÀQHGFRPPXQLFDWLRQLQWHUIDFHVZLOO bus (WTB) therefore simplify system design and maintenance. X IEC 61375-2-2 ,QDGGLWLRQWRHQKDQFHGORZHUOD\HUGHÀQLWLRQV VXFKDVHJ&$1,GHQ- Electronic railway WLÀHUIRUPDWW\SHRIFRQQHFWRUGHIDXOWELWUDWHHWF
    [Show full text]
  • UCC 1 USB-CAN CONVERTER Contents
    Owner’s Manual UCC 1 USB-CAN CONVERTER Contents 1. Description....................................................................................................................... 17 2. Controls and Connections................................................................................................ 18 3. Installation ....................................................................................................................... 19 3.1 Unpacking.................................................................................................................... 19 3.2 Rack-Mounting............................................................................................................ 19 4. Initial Operation............................................................................................................... 20 4.1 PC Connection and CAN Driver Installation .............................................................. 20 4.2 Installing IRIS.............................................................................................................. 20 4.3 CAN-Bus Connection.................................................................................................. 20 4.4 ISOLATED / GROUNDED Switch ............................................................................ 22 5. Monitor Bus..................................................................................................................... 23 6. Technical Information....................................................................................................
    [Show full text]
  • LK9893 Developed for Product Code LK7629 - CAN Bus Systems and Operation
    Page 1 CAN bus systems and operation Copyright 2009 Matrix Technology Solutions Limited Page 2 Contents CAN bus systems and operation Introduction 3 Overview 5 Building Node A 6 Building Node B 7 Building Node C 8 Building Node D 9 Building the Scan/Fuse Node 10 Wiring It All Up 11 Worksheet 1 - The Startup Routine 12 Worksheet 2 - Seeing the Messages 13 Worksheet 3 - Receiving Messages 15 Worksheet 4 - System Monitoring and ‘Pinging’ 16 Worksheet 5 - System Faults 17 Worksheet 6 - Circuit Faults 19 Worksheet 7 - Fault Diagnosis Using Charts 20 Worksheet 8 - Build Your Own Vehicle! 21 Instructor Guide 22 Scheme of Work 26 Message Code Summary 32 Kvaser Analyser Set Up 33 Programming the MIAC 34 System Graphics 35 About this document: Code: LK9893 Developed for product code LK7629 - CAN bus systems and operation Date Release notes Release version 01 01 2010 First version released LK9893-80-1 revision 1 10 06 2010 MIAC programming notes included LK8392-80-1 revision 2 01 10 2012 Programming notes revised LK9893-80-3 25 09 2013 Warning that some faults require reprogramming LK9893-80-4 22 06 2015 Updated sensing resistors and diagrams LK9893-80-5 13 09 2017 Added to introduction and made less car-specific LK9893-80-6 Copyright 2009 Matrix Technology Solutions Limited Page 3 Introduction CAN bus systems and operation What is this all about? protocol to be used ‘on top’ of the basic CAN The ‘CAN’ in CAN bus stands for ‘Controller Area bus protocol to give additional functionality Network’ and ‘bus’ a bundle of wires.
    [Show full text]
  • CAN-To-Flexray Gateways and Configuration Tools
    CAN-to-Flexray gateways Device and confi guration tools lexray and CAN net- Listing bus data traffic toring channels it is possi- power management func- Fworks will coexists in (tracing) ble to compare timing rela- tionality offers configurable the next generation or pas- Graphic and text displays tionships and identify timing sleep, wake-up conditions, senger cars. Flexray orig- of signal values problems. and hold times. The data inally designed for x-by- Interactive sending of GTI has developed a manipulation functionality wire applications gains mar- pre-defined PDUs und gateway, which provides has been extended in or- ket acceptance particular- frames two CAN and two Flexray der to enable the user to ap- ly in driver assistance sys- Statistics on nodes and ports. It is based on the ply a specific manipulation tems. Nevertheless, Flexray messages with the Clus- MPC5554 micro-controller. function several times. Also applications need informa- ter Monitor The gateway is intended to available for TTXConnexion tion already available in ex- Logging messages for be used for diagnostic pur- is the PC tool TTXAnalyze, isting CAN in-vehicle net- later replay or offline poses, generating start-up/ which allows simultaneous works. Therefore, CAN-to- evaluation sync frames, and it can be viewing of traffic, carried on Flexray gateways are nec- Display of cycle multi- used with existing software the various bus systems. essary. Besides deeply em- plexing, in-cycle rep- tools. The Flexray/CAN bedded micro-controller etition and PDUs in the The TTXConnexion by gateway by Ixxat is a with CAN and Flexray inter- analysis windows TTControl is a gateway tool configurable PC application faces, there is also a need Agilent also provides an combining data manipula- allowing Flexray messag- for gateway devices as in- analyzing tool for Flexray tion, on-line viewing, and es and signals to be trans- terface modules for system and CAN.
    [Show full text]
  • LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS by Microcontroller Division Applications
    AN1278 APPLICATION NOTE LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS by Microcontroller Division Applications INTRODUCTION Many mechanical components in the automotive sector have been replaced or are now being replaced by intelligent mechatronical systems. A lot of wires are needed to connect these components. To reduce the amount of wires and to handle communications between these systems, many car manufacturers have created different bus systems that are incompatible with each other. In order to have a standard sub-bus, car manufacturers in Europe have formed a consortium to define a new communications standard for the automotive sector. The new bus, called LIN bus, was invented to be used in simple switching applications like car seats, door locks, sun roofs, rain sensors, mirrors and so on. The LIN bus is a sub-bus system based on a serial communications protocol. The bus is a single master / multiple slave bus that uses a single wire to transmit data. To reduce costs, components can be driven without crystal or ceramic resonators. Time syn- chronization permits the correct transmission and reception of data. The system is based on a UART / SCI hardware interface that is common to most microcontrollers. The bus detects defective nodes in the network. Data checksum and parity check guarantee safety and error detection. As a long-standing partner to the automotive industry, STMicroelectronics offers a complete range of LIN silicon products: slave and master LIN microcontrollers covering the protocol handler part and LIN transceivers for the physical line interface. For a quick start with LIN, STMicroelectronics supports you with LIN software enabling you to rapidly set up your first LIN communication and focus on your specific application requirements.
    [Show full text]
  • CAN / RS485 Interface Adapter for SHP Series
    Technical Reference Note CAN / RS485 Interface Adapter For SHP Series Total Power: < 1 Watts Input Voltage: 5V Internal Outputs: CAN, RS485, USB, I2C Special Features Product Description The new SHP Extension adapter enables both USB and Controller Area Network (CAN) or RS485 Bus connectivity, providing a complete interface between the • Input Protocols: SHP device and the I2C bus with a simple command set which enables the 1) RS485 using Modbus highest levels of configuration flexibility. 2) CAN using modified Modbus The CAN/RS485 to I2C interface adapter modules connect with CAN Bus • Output Protocol: architectures through CaseRx/CaseTx interfaces found on the SHP case. The I2C with SMBus Support modules communicate with on-board I2C Bus via MODbus Protocol for RS485 Bus and modified MODbus for CANbus. The new adapters now enable the SHP to be used in a host of new ruggedized applications including automotive networks, industrial networks, medical equipment and building automation systems. The RS485/CAN-to-I2C uses 2 Input Protocols and 1 Output Protocol. The Input Protocols used are: RS485 using Modbus (Command Index: 0x01), and CAN using modified Modus (Command Index: 0x02). The Output Protocol use is: I2C with SMBus support (Command Index: 0x80). www.solahd.com [email protected] Technical Reference Note Table of Contents 1. Model Number ………………………….………………………………………………………………. 4 2. General Description ……………………………………………………………………………………. 5 3. Electrical Specifications ……………………………………………………………………………..… 6 4. Mechanical Specification …………………………………………………….….…………………….. 9 5. Hardware Interfaces ………………………………………………………….……………………..... 12 6. Software Interfaces ……………………………………………………………................................ 13 6.1 Adapter Protocol Overview ……………………………………………………………………… 13 6.2 Protocol Transaction …………………………………………………………………………….. 13 6.3 Adapter Command and Response Packets …………………………………………….…..… 14 6.4 Adapter Control Commands ……………………………………………………………..……..
    [Show full text]
  • EN CAN-RS-485 BUS Gateway
    MTGW Installation Guide EN CAN-RS-485 BUS Gateway MTGW | Installation Instructions | 1.0 Overview CAN bus wiring requirements are as follows: Trademarks • CAN Bus Interface: Connect the CAN bus to the Microsoft® Windows® 98/2000/XP are registered MTR Communication Receiver with at least trademarks of Microsoft Corporation in the United 1.5 mm (16 AWG) shielded twisted-pair wire; States and other countries. maximum length: 2000 m (6500 ft). • RS-485 Buses 1-3: Use at least 1.0 mm (20 AWG) 1.0 Overview shielded twisted-pair wire for the RS-485 bus; maximum length: 1200 m (3900 ft). RS-485 bus 1.1 Multi-Tenant System (MTS) Overview wiring status is supervised. MTS is a distributed security system for monitoring 1.2 MTS Device Address and controlling a large number of small sites. You must assign an address to each device in the Examples include apartment and condominium system. The address consists of at least four segments. complexes, retail plazas, office buildings, and For example: educational and hospital campuses. 1.2.5.3.6 A typical MTS installation consists of the following components: • 1: This segment identifies the number assigned to the MTR central receiver (1 to 99). • MTSW Security Station Software: MTSW is an ® ® • 2: This segment identifies the CAN bus number application based on Microsoft Windows , occupied by the MTGW (1 or 2). installed on a PC and monitored by guard station • personnel. 5 : This segment identifies the MTGW’s CAN bus address (1 to 100). • MTR Communication Receiver: The MTR • receives and handles alarm events from devices 3 : This segment identifies the device’s RS-485 connected to the CAN RS-485 bus.
    [Show full text]
  • Vector Informatik Gmbh
    THE HANSEN REPORT ON AUTOMOTIVE ELECTRONICS. A Business and Technology Newsletter VOL. 18, NO. 6◆◆ PORTSMOUTH, NH USA JULY/AUGUST 2005 Software Process BMW Leads in Chassis Control Standards Gaining FlexRay Network Is Key Enabler from steering angle, acceleration and ride height sensors. Influence FlexRay is not just for steer- or brake- “This is a pilot project for us to learn by-wire anymore. BMW is about to bring what it means to bring FlexRay into a se- As software becomes more and more to market some groundbreaking new chas- ries car,” noted Karl-Heinz Gaubatz, gen- essential to the delivery of vehicle fea- sis control features implemented on a eral manager of electronics driving tures, carmakers and suppliers, particularly FlexRay network—a world’s first. This dynamics and lateral dynamics for BMW. in the West, are taking steps to ensure unexpected deployment of FlexRay comes BMW will build 15,000 cars per year with that their software development processes well before by-wire brakes or steering will this FlexRay application so the carmaker yield high-quality, reliable products. Two be ready for production vehicles. and its suppliers can gain experience with approaches have emerged: CMMI (Capa- By-wire systems operate without me- the network hardware and software before bility Maturity Model Integration) and chanical or hydraulic linkages so they it goes into high volume production. ISO/IEC (International Standards Orga- need safety-critical components such as “In the future, all new cars from BMW nization/International Electro-technical FlexRay to ensure reliability. FlexRay is a that come into production after 2006 will Commission) 15504, a.k.a.
    [Show full text]
  • Cyber Security Mechanisms for Connected Vehicles
    Infineon Security Partner Network Partner Use Case Cyber Security Mechanisms for Connected Vehicles Protecting automotive vehicle networks and business models from cyber security attacks Products AURIX™ www.infineon.com/ispn Partner Use Case Use case Application context and security requirement The rapidly growing connectivity of vehicles is opening numerous opportunities for new features and attractive business models. At the same time, the potential for cyber-attacks on vehicle networks is also growing. Such attacks threaten the functional safety of the vehicle and could cause financial damage. Challenge Vehicles consist of numerous interconnected electronic control units (ECUs) with numerous internal and external interfaces. The overall system only works if the software executed on the ECUs and the data transmitted between ECUs is protected against manipulation. Implementation The solution requires multiple layers of security mechanisms. The foundation is provided by microcontrollers which are equipped with security cores e.g. Aurix Hardware Security Module (HSM). They provide hardware acceleration for cryptographic primitives such as Advanced Encryption Standard (AES) and Elliptic Curve Cryptography (ECC) as well as protected storage of cryptographic keys. Based on these capabilities Vector is providing software and drivers for these HSMs that enable higher level security mechanisms such as secured boot, secured communication or secured diagnostic access. User benefits: Vehicle Electrical/Electronic (EE) architectures which integrate
    [Show full text]
  • Univerzita Pardubice Dopravní Fakulta Jana Pernera Diagnostika Nákladních Vozidel Pomocí Převodníku Pierre Litvák Bakalá
    Univerzita Pardubice Dopravní fakulta Jana Pernera Diagnostika nákladních vozidel pomocí převodníku Pierre Litvák Bakalářská práce 2014 Prohlášení autora Prohlašuji, že jsem tuto práci vypracoval samostatně. Veškeré literární prameny a informace, které jsem v práci využil, jsou uvedeny v seznamu použité literatury. Byl jsem seznámen s tím, že se na moji práci vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb., autorský zákon, zejména se skutečností, že Univerzita Pardubice má právo na uzavření licenční smlouvy o užití této práce jako školního díla podle § 60 odst. 1 autorského zákona, a s tím, že pokud dojde k užití této práce mnou nebo bude poskytnuta licence o užití jinému subjektu, je Univerzita Pardubice oprávněna ode mne požadovat přiměřený příspěvek na úhradu nákladů, které na vytvoření díla vynaložila, a to podle okolností až do jejich skutečné výše. Souhlasím s prezenčním zpřístupněním své práce v Univerzitní knihovně. V Pardubicích dne 29. 5. 2014 Pierre Litvák Poděkování Rád bych poděkoval mému vedoucímu bakalářské práce panu Ing. Václavu Lenochovi a konzultantovi panu Ing. Zdeňku Maškovi, Ph.D. za odborné vedení, trpělivost a odbornou pomoc, rodině za podporu a důvěru ve mě vloženou, zejména pak bratrovi, mému kamarádovi Filipovi za pozitivní myšlenky a netradiční náhled na svět, spolužákům za výbornou spolupráci. V neposlední řadě bych dále poděkoval všem pracovníkům KEEZ DFJP za ochotu a pomoc po celou dobu mého studia. Anotace Bakalářská práce je rozdělena na teoretickou a praktickou část. V teoretické části je popsána automobilová diagnostika, komunikace na sběrnici CAN, převodník STN1110 a vývojové prostředí LabVIEW. V praktické části je cílem této bakalářské práce vypracovat návrh převodníku dle doporučeného schématu výrobcem a na základě tohoto návrhu vytvořit přípravek, kterým bude možno sledovat komunikaci na sběrnici CAN v nákladních vozidlech, na kterých se dnes používá pro komunikaci protokol SAE J1939.
    [Show full text]
  • Grafikbasierte Analyse Und Bewertung Heterogener Automobiler Netzwerke
    Masterthesis Jonathan Wendeborn Entwurf und Vergleich zweier Verfahren zur Analyse und Bewertung heterogener automobiler Netzwerke Fakultät Technik und Informatik Faculty of Engineering and Computer Science Department Informations- und Department of Information and Elektrotechnik Electrical Engineering Jonathan Wendeborn Entwurf und Vergleich zweier Verfahren zur Analyse und Bewertung heterogener automobiler Netzwerke Masterthesis eingereicht im Rahmen der Masterprüfung im Masterstudiengang Informations- und Kommunikationstechnik am Department Informations- und Elektrotechnik der Fakultät Technik und Informatik der Hochschule für Angewandte Wissenschaften Hamburg in Zusammenarbeit mit: Vector Informatik GmbH Borsteler Bogen 27d 22453 Hamburg Betreuender Prüfer: Prof. Dr.-Ing. Aining Li Zweitgutachter: Prof. Dr. Franz Korf Industrieller Betreuer: Dipl.-Ing. Jörn Haase Abgegeben am 25. August 2016 Jonathan Wendeborn Thema der Masterthesis Entwurf und Vergleich zweier Verfahren zur Analyse und Bewertung heterogener automobiler Netzwerke Stichworte System-Level-Simulation, Analyse, Bewertung, heterogene Netzwerke, Echtzeit-Ethernet, Time-Triggered-Ethernet, AVB, TSN, CAN, Gateway, OMNeT++, CANoe, Elektrik-/Elektronik-Architektur, Metrik, Latenz, Jitter, Datenübertragungsrate, Paketverlustrate, Puffer, Binlog, BLF, COM, .NET, CAPL Kurzzusammenfassung Durch die Einführung von Echtzeitfähigkeit bei Ethernet können neuartige Netzwerke entwickelt werden, welche neue Funktionen ermöglichen und Kosten sparen. Um die Tauglichkeit eines Netzwerks
    [Show full text]