Comparative Morphology of the Vestibular Semicircular Canals in Therian Mammals

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Morphology of the Vestibular Semicircular Canals in Therian Mammals Copyright by Jeri Cameron Rodgers 2011 The Dissertation Committee for Jeri Cameron Rodgers Certifies that this is the approved version of the following dissertation: Comparative Morphology of the Vestibular Semicircular Canals in Therian Mammals Committee: Timothy B. Rowe, Supervisor Christopher J. Bell James T. Sprinkle Edward C. Kirk Lawrence M. Witmer Comparative Morphology of the Vestibular Semicircular Canals in Therian Mammals by Jeri Cameron Rodgers, B.S.; M.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin December 2011 Dedication To Michael, Genevieve, and Alexandra Rodgers Acknowledgements My sincerest thanks go to the long-suffering core of my committee: Tim Rowe, Chris Bell, and Jim Sprinkle. Each of these professors has shown patience and provided direction in so many different academic and personal areas of this doctoral trek. Tim Rowe, my advisor, accepted a student he knew nothing about and fulfilled his role as a mentor throughout many discussions and advisements. Chris Bell saw to the teaching of comparative osteology, proper usage of language, and provided an example of a great teacher. Jim Sprinkle gave me the first opportunity to be a teaching assistant, allowed me to accompany him in many student field trips, and showed how to collaborate on a scientific paper. Larry Witmer unknowingly initiated this dissertation through his offhand remark that “ears are hot.” Chris Kirk willingly stepped on to this committee in a moment of great need. These people truly deserve their designation as professors. Numerous non-committee people made this dissertation possible. Ted Macrini volunteered the use of many marsupial CT scans for this work, and also the use of Monodelphis domestica μMRI and HRXCT scans which he and Tim Rowe originally commissioned. He provided editing of the last chapter in this dissertation. Eric Ekdale shared his knowledge of the petrosal and bony labyrinth on many occasions, as well as helping me to learn the imaging programs with which he worked. Michael Cameron Rodgers spent untold hours listening to the requirements of a semicircular canal sensitivity program that I wanted. The staff of The University of Texas High-Resolution v X-ray CT facility (UTCT), particularly Jessie Maisano and Matt Colbert, spent many hours assisting me with scans and directions for working imaging programs and machines in general. Rich Ketcham provided the technical magic necessary to translate the *.nifti format to a format importable into VGStudioMax. Tim Hullar at Washington University in St. Louis, MO, corresponded with me at length regarding his program for canal sensitivity, and about the function of the vestibular system in general. Thanks are also due to the group known collectively as the paleo grad students for support, advice, and social opportunities. In particular, Lyn Murray, Jon Wagner, Jen Olori, Kerin Claeson, Sebastian Egberts, Heather Ahrens, Chris Jass, Christian George, Nick Smith, Michelle Stocker, and Sterling Nesbitt escorted me through these years. The specimens I scanned were paid for in part through the Jackson School of Geosciences Analytic Funds grants. The completion of this dissertation is a multi-generational success story. My parents and siblings though far away, provided support in many ways during critical phases of the work and only rarely asked when I would be done. In an extended family context George Rodgers and Robert Berlin helped me initiate and complete graduate school with support and patient listening. Michael, Genevieve, and Alexandra Rodgers grew up with a graduate student for a mother and did a marvelous job of raising me. My greatest thanks are reserved for them. vi Comparative Morphology of the Vestibular Semicircular Canals in Therian Mammals Publication No._____________ Jeri Cameron Rodgers, PhD. The University of Texas at Austin, 2011 Supervisor: Timothy B. Rowe The peripheral vestibular membranous ducts that detect angular motion are contained within bony semicircular canals of mammalian petrosals. I investigated morphology and function in the three membranous semicircular ducts through measurements on the bony semicircular canals of 31 skeletonized skulls from different genera. While the prevailing theory of semicircular canal researchers is that the locomotor agility of extant and extinct mammals can be understood by measuring the size of the three bony semicircular canal arcs, I propose that there are important and quantifiable features other than the adult size of radius of curvature of the semicircular canal arc (R) that influence angular movement detection in mammals and perhaps in their ancestors. Initially, I sought to verify that there was no significant asymmetry of R across the study specimens. However, there was significant asymmetry in canal pair angles vii between contralateral sets: ipsilateral canal pair angles differed by up to 14◦, and contralateral synergistic angle pairs differed by up to 18◦. Canal pair contralateral differences were lower for specimens of more agile taxa. In addition, the angle between the left and right lateral canals varied by up to 27◦ from parallelism, so the use of the lateral bony canal in one petrosal to represent the horizontal animal resting position could result in significant skull orientation errors. I utilized a program to quantify the effects of canal plane non-orthogonality and to calculate a maximum rotational sensitivity axis for a given taxon. My results concur with earlier research indicating that canal orientation significantly affects the location of maximum rotational sensitivity axes in the head, and should be considered in future quantitative research. Finally, I determined the volumes of the subarcuate fossa and the petrosal lobule in three Monodelphis domestica animals (76 days postnatal) by utilizing both cranial and tissue volumes in fresh specimens. The petrosal lobule fills 93-97% of the Monodelphis domestica fossa, a greater volume than the 50% estimated by previous researchers. These results highlight the difficulties of using histologic or preserved specimens to make quantitative determinations of brain tissue volumes, and reopen the question of whether the subarcuate fossa volume provides a record of the agility for an extinct taxon. viii Table of Contents List of Tables ........................................................................................................ xii List of Figures ...................................................................................................... xiv CHAPTER 1: INTRODUCTION TO THE BONY SEMICIRCULAR CANAL SYSTEM OF MAMMALS ............................................................................1 General Structure of the Membranous Semicircular Ducts ............................2 Purpose of This Doctoral Research .................................................................3 Study Considerations ......................................................................................3 Dissertation Overview ....................................................................................5 CHAPTER 2: COMPARISON OF CONTRALATERAL SEMICIRCULAR CANALS IN THERIAN MAMMALS ...........................................................9 ABSTRACT ....................................................................................................9 INTRODUCTION ........................................................................................10 Background ..........................................................................................11 Questions..............................................................................................13 Symmetry of R for contralateral canals (Question 1) ..........................14 Symmetry of canal pair angles (Question 2)........................................15 METHODS ...................................................................................................16 Reference Planes ..................................................................................17 Semicircular Canal Imaging ................................................................18 Comparison of R Calculation Methods................................................19 Defining the Orientation of Semicircular Canals .................................21 RESULTS .....................................................................................................22 Comparison of R calculation methods .................................................22 Radius of curvature for contralateral canals (Question 1) ...................24 Symmetry of angles between canal pairs (Question 2) ........................25 DISCUSSION ...............................................................................................28 Comparison of R calculation methods .................................................28 Radius of curvature for contralateral canals (Question 1) ...................29 ix Symmetry of angles between canal pairs (Question 2) ........................30 Study limitations ..................................................................................34 CONCLUSIONS...........................................................................................35 TABLES .......................................................................................................38 FIGURES ......................................................................................................53
Recommended publications
  • An Examination of Non-Mammalian Cynodont Cranial Endocasts
    .6 \\0 \. \ '3 ~ -=t-5 c. I BLOEMfONTeiN . OUIUOTEEK. LI£lRARY fÏËiliiiËÊKSEÏ'~lPi·AAriM~GëN-D'ËR University Free State 1111111111111111111111\111\111\111111111111111 IIIII ~II IIIII IIIII III 11\1 ,::~:EN O~lSTANDJGHED£ UIT DIE 34300004543215 universiteitVrY'stáat ~~:::[~:!'VERWYDER WORD NIE 'n"'= '.."mc*.,._....,_.,p j----------------------~ AN EXAMINATION OF NON-MAMMALIAN CYNODONT CRANIAL ENDOCASTS by DEWALD DU PLESSIS Submitted in fulfilment of the requirements for the degree MAGISTER SCiENTlAE in the Department of Zoology and Entomo.logy Faculty of Natural and Agricultural Sciences University of the Free State Bloemfontein Study leaders: Dr. J. Botha-Brink Mr. H.J.B. Butler September 2010 DECLARATION I, the undersigned, hereby declare that the work contained in this dissertation is my own original work and that I have not previously in its entirety or in part submitted it at any university for a degree. I further more cede copyright of the dissertation in favour of the University of the Free State. Signature: " Date: " . ii DEDICATION To the King of kings, the only living God, the Lord and my Saviour, Jesus Christ. All of the praise, all of the honour, all of the glorification belongs to You. I thank you for Your gifts, blessings and inspiration. Thank you for the three years during which I was blessed with the privilege to work with these animals. Everything that I am, is grace from Your hands. Without You I am nothing. iii ACKNOWLEDGEMENTS The present study was completed at the University of the Free State, Bloemfontein, in conjunction with the National Museum in Bloemfontein and the Nuclear Energy Corporation of South Africa (Neesa), with the support of a grant from the National Research Foundation.
    [Show full text]
  • Bibliography and Index
    Bulletin No. 203. Series G, Miscellaneous, 23 DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY CHARLES .1). YVALCOTT, DIRECTOR BIBLIOGRAPHY AND INDEX FOR T I-I E Y E A. R 1 9 O 1 BY FRED BOUGHTON "WEEKS WASHINGTON - GOVERNMENT PRINTING OFFICE 1902 CONTENTS, Page. Letter of transmittal....................................................... 5 Introduction ......... 4 ................................................... 7 List of publications examined ............................................. 9 Bibliography ............................................................ 13 Addenda to bibliographies for previous years............................... 95 Classified key to the index ...........'.......... ............................ 97 Index ..................................................................... 103 LETTER OF TRANSM1TTAL. DEPARTMENT OF THE INTERIOR, UNITED STATES GEOLOGICAL SURVEY, Washington, D. 0., July % SIR: I have the honor to transmit herewith the manuscript of a Bibliography and Index of North American Geology, Paleontology, Petrology, and Mineralogy for the Year 1901, and to request that it be published as a Bulletin of the Survey. Yours respectfully, F. B. WEEKS. Hon. CHARLES D. WALCOTT, director United State* Geological Survey. BIBLIOGRAPHY AND INDEX OF NORTH AMERICAN GEOLOGY, PALEONTOLOGY, PETROLOGY, AND MINERALOGY FOR THE YEAR 1901. By FRED BOUGHTON WEEKS. INTRODUCTION. The preparation and arrangement of the material of the Bibliog­ raphy and Index for 1901 is similar to that adopted for the previous publications.(Bulletins Nos. 130, 135, 146, 149, 156, 162, 172, 188, and 189). Several papers that should have been entered in the pre­ vious bulletins are here recorded, and the date of publication is given with each entry. Bibliography. The bibliography consists of full titles of separate papers, arranged alphabetically by authors' names, an abbreviated reference to the publication in which the paper is printed, and a brief description of the contents, each paper being numbered for index reference.
    [Show full text]
  • North American Geology, Paleontology, Petrology, and Mineralogy
    Bulletin No. 240 Series G, Miscellaneous, 28 DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY CHARLES D. VVALCOTT, DIRECTOR BIBIIOGRAP.HY AND INDEX OF NORTH AMERICAN GEOLOGY, PALEONTOLOGY, PETROLOGY, AND MINERALOGY FOR THE YEAJR, 19O3 BY IFIRIEID WASHINGTON GOVERNMENT PRINTING OFFICE 1904 CONTENTS Page. Letter of transmittal...................................................... 5 Introduction.....:....................................,.................. 7 List of publications examined ............................................. 9 Bibliography............................................................. 13 Addenda to bibliographies J'or previous years............................... 139 Classi (led key to the index................................................ 141 Index .._.........;.................................................... 149 LETTER OF TRANSMITTAL DEPARTMENT OF THE INTERIOR, UNITED STATES GEOLOGICAL SURVEY, Washington, D. 0. , June 7, 1904.. SIR: I have the honor to transmit herewith the manuscript of a bibliography and index of North American geology, paleontology, petrology, and mineralogy for the year 1903, and to request that it be published as a bulletin of the Survey. Very respectfully, F. B. WEEKS, Libraria/ii. Hon. CHARLES D. WALCOTT, Director United States Geological Survey. BIBLIOGRAPHY AND INDEX OF NORTH AMERICAN GEOLOGY,- PALEONTOLOGY, PETROLOGY, AND MINERALOGY FOR THE YEAR 1903. By FRED BOUGHTON WEEKS. INTRODUCTION, The arrangement of the material of the Bibliography and Index f Or 1903 is similar
    [Show full text]
  • An Analysis of Anchitherine Equids Across the Eocene–Oligocene Boundary in the White River Group of the Western Great Plains
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Earth and Earth and Atmospheric Sciences, Department Atmospheric Sciences of 2010 An Analysis of Anchitherine Equids Across the Eocene–Oligocene Boundary in the White River Group of the Western Great Plains David M. Masciale University of Nebraska at Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/geoscidiss Part of the Geology Commons, Paleobiology Commons, and the Paleontology Commons Masciale, David M., "An Analysis of Anchitherine Equids Across the Eocene–Oligocene Boundary in the White River Group of the Western Great Plains" (2010). Dissertations & Theses in Earth and Atmospheric Sciences. 11. https://digitalcommons.unl.edu/geoscidiss/11 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. AN ANALYSIS OF ANCHITHERINE EQUIDS ACROSS THE EOCENE– OLIGOCENE BOUNDARY IN THE WHITE RIVER GROUP OF THE WESTERN GREAT PLAINS by David M. Masciale A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Geosciences Under the Supervision of Professors Ross Secord and Robert M. Hunt, Jr. Lincoln, NE April, 2010 AN ANALYSIS OF ANCHITHERINE EQUIDS ACROSS THE EOCENE– OLIGOCENE BOUNDARY IN THE WHITE RIVER GROUP OF THE WESTERN GREAT PLAINS David M. Masciale, M.S. University of Nebraska, 2010 Advisers: Ross Secord and Robert M.
    [Show full text]
  • Changes in Mammalian Abundance Through the Eocene-Oligocene
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Earth and Atmospheric Earth and Atmospheric Sciences, Department of Sciences Summer 7-30-2019 Changes in Mammalian Abundance Through the Eocene-Oligocene Climate Transition in the White River Group of Nebraska, USA Robert Gillham University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/geoscidiss Part of the Oceanography and Atmospheric Sciences and Meteorology Commons, Paleobiology Commons, and the Paleontology Commons Gillham, Robert, "Changes in Mammalian Abundance Through the Eocene-Oligocene Climate Transition in the White River Group of Nebraska, USA" (2019). Dissertations & Theses in Earth and Atmospheric Sciences. 120. https://digitalcommons.unl.edu/geoscidiss/120 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Changes in Mammalian Abundance Through the Eocene- Oligocene Climate Transition in the White River Group of Nebraska, USA By Robert B. Gillham A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Geosciences Under the Supervision of Professor Ross Secord Lincoln, NE August, 2019 Changes in Mammalian Abundance Through the Eocene- Oligocene Climate Transition in the White River Group of Nebraska, USA Robert B. Gillham M.S. University of Nebraska, 2019 Advisor: Ross Secord Marine records show major cooling during the Eocene-Oligocene Climate Transition (EOCT).
    [Show full text]
  • A Taxonomic and Geologic Study on the History of the Extinct Oreodonts, Based on the Fossils of the University Museum in Utrecht
    A taxonomic and geologic study on the history of the extinct oreodonts, based on the fossils of the University Museum in Utrecht Master’s thesis Biogeology, Universiteit Utrecht. Linda Gilein, 3657272 Supervisors: Dr. Wilma Wessels and Prof. Dr. Jelle Reumer Abstract Fossil skulls of oreodonts, family Merycoidodontidae (Artiodactyla), from the White River Badlands (USA) in the collection of the University Museum in Utrecht were bought late in the twentieth century by Professor Wichmann (UU). The oreodonts, now identified on species level, must have been collected from Oligocene and Eocene layers from the White River Badlands. The fossils range in age from Middle Chadronian (35.7 Ma) to Early Whitneyan (31.4 Ma). An overview of the geological setting of the White river Badlands is given as well as an overview of the Oligocene paleoclimate and paleoenvironment. Keywords: Oreodont, Merycoidodontidae, White River Badlands, North-America, Oligocene. 1 Table of contents Chapter Page Abstract 1 Table of contents 2 1. Introduction 3 1.1 Acknowledgements 5 2. A short overview of research around the beginning of the twentieth century. 5 2.1 Geological setting 5 2.2 Paleoenvironment & paleoclimate 22 2.3 Early research on the fossil mammals 26 3. Oreodonts 27 3.1 First descriptions of the oreodonts 28 3.2 Dentition 29 3.3 Lifestyle 30 3.5 Taxonomy 34 4. Material and methods 41 4.1The collections 45 5. Results 47 5.1 Description of the skulls and dentition 47 5.2 Measurements of the skulls and dentition 60 5.3 Mesowear 63 6. Discussion 67 7. Conclusions 70 8.
    [Show full text]
  • What Fossils Tell Us About the Evolution of the Neocortex
    Jerison - Fossils and Evolution of Neocortex Page 1 What Fossils Tell Us about the Evolution of the Neocortex Harry J Jerison The story of the brain’s evolution is told by casts of the cranial cavities of extinct species. These endocasts document much of the evolution of the mammalian brain during the past 65 million years, the Cenozoic era. A single late Jurassic fossil (Simpson, 1927; Jerison, 1973) had extended the known evidence to about 150 million years ago (mya), and other explorations (Hu et al., 2005; Kielan-Jaworowska et al., 2004; Novacek, 1996) fill gaps in our knowledge of the Cretaceous period (65-145 mya). Mammals first appeared during the Triassic period of the Mesozoic, and it may one day be possible to trace the history of the mammalian brain almost to its beginnings, perhaps 225 mya. Encephalization is the increase in relative size of the brain as a whole over geological time. Its history was reviewed in depth in Jerison (1973; cf. Falk & Gibson, 2001). Other recent evolutionary analysis emphasizes methodological innovations in cladistic analysis, with major revisions of mammalian phylogeny (McKenna & Bell, 1997; cf. Simpson, 1945). This chapter is consistent with those revisions. Our central topic is neocorticalization, the increase of the relative amount of neocortex in the brain of mammals. Identifiable neocortex is a feature of the external morphology only of mammalian brains, but neural structures with similar functional significance have also evolved in birds and reptiles (Butler & Hodos, 2005; Karten, 1997; Reiner, Yamamoto & Karten, 2005). Avian and reptilian brain structures homologous with mammalian neocortex must first have appeared in the common amniote ancestor of these classes of vertebrates, but fossils are unlikely to be helpful in identifying these earlier ancestral connections.
    [Show full text]
  • The Early Evolution of the North American Peccaries (Artiodactyla: Tayassuidae)
    Albright, L. B. III, ed., 2009. Papers on Geology, Vertebrate Paleontology, and Biostratigraphy in Honor of Michael O. Woodburne. Museum of Northern Arizona Bulletin 65, Flagstaff, Arizona. THE EARLY EVOLUTION OF THE NORTH AMERICAN PECCARIES (ARTIODACTYLA: TAYASSUIDAE) DONALD R. PROTHERO Department of Geology, Occidental College, Los Angeles, CA 90041; [email protected] ABSTRACT—The understanding of the systematics of the earliest peccaries in North America has long been hampered by poor and relatively scarce material, but new collections help redefine the species and genera, and add greatly to our knowledge of their anatomy and temporal range. The genera Perchoerus and Thinohyus were confused due to their poor type specimens, but comparison with topotypic specimens of White River Whitneyan Perchoerus probus and John Day Thinohyus lentus shows that the two genera can easily be distinguished. Even though there are only slight differences in the size and proportions of teeth, the skulls of Thinohyus are much more robust, dolichocephalic, with weaker sagittal crests than seen in Perchoerus. Thinohyus has a large posterior cingulum on M3 with a postero-internal cusp, and diastemata between the canines and first premolars, and sometimes between the first and second premolars. The earliest species of Perchoerus is the tiny Chadronian taxon P. minor, the smallest peccary yet known, which marks the immigration of peccaries from Asia in the early Chadronian (at least 36 Ma). It was previously known only from a lower jaw, but its skull and upper teeth are described based on new material. Slightly larger is the rare Orellan taxon P. nanus, also originally known only from a lower jaw, but here redescribed based on new skull material.
    [Show full text]
  • Department of Geological Sciences Newsletter No. 19, October 1970
    Departmental News Two new members will be added to the teaching staff this Dr. Ted H. Foss,Manned SpacecraftCenter,Houston. "Caul- year, Rolland B. Bartholomew and John C. Maxwell. Mr. dron Subsidence in Trans-Pecos Texas." Bartholomew will be employed as Assistant Professor half- Dr. D. P. Gold, Pennsylvania State University, University time in our Department and half-time in Science Education. Park. "Kimberlites and Carbonatites" and "Craters, Ter- He received his B.A.degree in 1948 from the University of restrialandLunar,andTheir Origins." Colorado and a Master's degreeinEducation from that school Dr. 0.T. Hayward,Department of Geology, Baylor Univer- in1950.In 1960,hereceived hisM.A. degree inGeology from sity, Waco. "Urban Geology: AGeological Obligation." the University of New Mexico and is currently completing Dr. Leo Horvitz, Horvitz Research Laboratories, Houston. his Ph.D. inScienceEducation at the Universityof Maryland. "GeochemicalProspecting for Petroleum." He had additional training at Stanford and extensive teach- Dr. Ralph Johnson, Department of Geophysical Sciences, ing experience at the secondary and college level, and hehas University of Chicago. "Variations inDiversity inBenthic been associated with the Earth Science Curriculum Project. Marine Communities." Dr.Maxwell joinsthe staff as William Stamps Farish Profes- Mr. RufusLeßlanc, Shell Development Company, Houston. sor; a special story on him will be found elsewhere in the "Significant Studies of Clastic Sediments." Newsletter. He willbe teachinga graduate courseinstructural Dr. Richard J. Moiola,Field Research Laboratory, Mobil geology and regional tectonics.Dr.SimonM. F.Sheppardhas Oil Corporation, Dallas. "Environmental Analysis of Mod- resigned to accept the Directorship of the United Kingdom's ern and Ancient Sand Bodies with Emphasis on Discrimi- StableIsotopeLaboratory inScotland.
    [Show full text]
  • Coprolites and Mammalian Carnivores from Pipestone Springs, Montana, and Their Paleoecological Significance
    ANNALS OF CARNEGIE MUSEUM VOL. 84, NUMBER 4, PP. 265–285 31 OCTOBER 2017 COPROLITES AND MAMMALIAN CARNIVORES FROM PIPESTONE SPRINGS, MONTANA, AND THEIR PALEOECOLOGICAL SIGNIFICANCE DONALD L. LOFGREN [Research Associate, Section of Vertebrate Paleontology, Carnegie Museum of Natural History] Raymond M. Alf Museum of Paleontology, 1175 Baseline Road, Claremont, California 91711-2199 [email protected] CLIFFORD Y. S HEN The Webb Schools, 1175 Baseline Road, Claremont, California 91711-2199 [email protected] NAOMI N. BUDAY The Webb Schools, 1175 Baseline Road, Claremont, California 91711-2199 [email protected] CLARISSA A.C. YLAGAN The Webb Schools, 1175 Baseline Road, Claremont, California 91711-2199 [email protected] KATHRYN K. LOFGREN The Webb Schools, 1175 Baseline Road, Claremont, California 91711-2199 [email protected] REBECCA LAI The Webb Schools, 1175 Baseline Road, Claremont, California 91711-2199 [email protected] DAKOTA D. SANTANA-GRACE The Webb Schools, 1175 Baseline Road, Claremont, California 91711-2199 [email protected] ALAN R. TABRUM Section of Vertebrate Paleontology, Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (deceased) ABSTRACT Pipestone Springs Main Pocket (PSMP) (Renova Formation, Jefferson County, Montana) has yielded an unusually rich concentration of mostly small-bodied Chadronian (late Eocene) mammals. Coprolites are common at PSMP and indicate which taxa and skeletal elements were consumed, as well as provide insight as to which carnivore species were likely to have deposited their feces at the site. Two distinct coprolite groupings were recognized based on differences in diameter, morphology, and abundance of bone. The sample of larger coprolites ranges in diameter from 16–29 mm and lacks a distinct mode.
    [Show full text]
  • ERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II Analisi Dei
    UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II Analisi dei trend di taglia corporea nei mammiferi cenozoici in relazione agli assetti climatici. Dr. Federico Passaro Tutor Dr. Pasquale Raia Co-Tutor Dr. Francesco Carotenuto Do ttorato in Scienze della Terra (XXVI° Ciclo) 2013/2014 Indice. Introduzione pag. 1 Regola di Cope e specializzazione ecologica 2 - Materiali e metodi 2 - Test sull’applicabilità della regola di Cope 3 - Risultati dei test sulla regola di Cope 4 - Discussione dei risultati sulla regola di Cope 6 Habitat tracking e stasi morfologica 11 - Materiali e metodi 11 - Risultati 12 - Discussione 12 Relazione tra diversificazione fenotipica e tassonomica nei Mammiferi cenozoici 15 - Introduzione 15 - Materiali e metodi 16 - Risultati 19 - Discussione 20 Influenza della regola di Cope sull’evoluzione delle ornamentazioni in natura 24 - Introduzione 24 - Materiali e metodi 25 - Risultati 28 - Discussione 29 Considerazioni finali 33 Bilbiografia 34 Appendice 1 48 Appendice 2 65 Appendice 3 76 Appendice 4 123 Introduzione. La massa corporea di un individuo, oltre alla sua morfologia e struttura, è una delle caratteristiche che influisce maggiormente sulla sua ecologia. La variazione della taglia (body size), sia che essa diminuisca o sia che essa aumenti, porta a cambiamenti importanti nell’ecologia della specie: influisce sulla sua “longevità stratigrafica” (per le specie fossili), sulla complessità delle strutture ornamentali, sulla capacità di occupare determinati habitat, sulla grandezza degli areali che possono occupare (range size), sull’abbondanza (densità di individui) che esse possono avere in un determinato areale, sulla capacità di sfruttare le risorse, sul ricambio generazionale, sulla loro capacità di dispersione e conseguentemente sulla capacità di sopravvivere ai mutamenti ambientali (in seguito ai mutamenti si estinguono o tendono a spostarsi per seguire condizioni ecologiche ottimali – habitat tracking).
    [Show full text]
  • Vertebrate Paleontology of Montana
    VERTEBRATE PALEONTOLOGY OF MONTANA John R. Horner1 and Dale A. Hanson2 1Chapman University, Orange, California; Montana State University, Bozeman, Montana 2South Dakota School of Mines & Technology, Rapid City, South Dakota (1) INTRODUCTION derived concerning the evolution, behavior, and paleo- Montana is renowned for its rich paleontological ecology of vertebrate fossil taxa from Montana. treasures, particularly those of vertebrate animals All Paleozoic vertebrates from Montana come such as fi shes, dinosaurs, and mammals. For exam- from marine sediments, whereas the Mesozoic as- ple, the most speciose fi sh fauna in the world comes semblages are derived from transgressive–regressive from Fergus County. The fi rst dinosaur remains noted alternating marine and freshwater deposits, and the from the western hemisphere came from an area near Cenozoic faunas are derived strictly from freshwater the mouth of the Judith River in what would become terrestrial environments. Fergus County. The fi rst Tyrannosaurus rex skeleton, (2) PALEOZOIC VERTEBRATES and many more since, have come from Garfi eld and McCone Counties. The fi rst dinosaur recognized to Two vertebrate assemblages are known from the show the relationship between dinosaurs and birds Paleozoic, one of Early Devonian age, and the other of came from Carbon County, and the fi rst dinosaur eggs, Late Mississippian age. embryos, and nests revealing dinosaur social behav- a. Early Devonian (Emsian: 407–397 Ma) iors were found in Teton County. The fi rst dinosaur Beartooth Butte Formation confi rmed to have denned in burrows was found in The oldest vertebrate remains found in Montana Beaverhead County. come from the Beartooth Butte Formation exposed Although Montana is not often thought of for in the Big Belt and Big Snowy Mountains of central mammal fossils, a great diversity of late Mesozoic Montana.
    [Show full text]