1993 THEA MASHACK Department of Computer Science Stanford
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Computational Learning Theory: New Models and Algorithms
Computational Learning Theory: New Models and Algorithms by Robert Hal Sloan S.M. EECS, Massachusetts Institute of Technology (1986) B.S. Mathematics, Yale University (1983) Submitted to the Department- of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 1989 @ Robert Hal Sloan, 1989. All rights reserved The author hereby grants to MIT permission to reproduce and to distribute copies of this thesis document in whole or in part. Signature of Author Department of Electrical Engineering and Computer Science May 23, 1989 Certified by Ronald L. Rivest Professor of Computer Science Thesis Supervisor Accepted by Arthur C. Smith Chairman, Departmental Committee on Graduate Students Abstract In the past several years, there has been a surge of interest in computational learning theory-the formal (as opposed to empirical) study of learning algorithms. One major cause for this interest was the model of probably approximately correct learning, or pac learning, introduced by Valiant in 1984. This thesis begins by presenting a new learning algorithm for a particular problem within that model: learning submodules of the free Z-module Zk. We prove that this algorithm achieves probable approximate correctness, and indeed, that it is within a log log factor of optimal in a related, but more stringent model of learning, on-line mistake bounded learning. We then proceed to examine the influence of noisy data on pac learning algorithms in general. Previously it has been shown that it is possible to tolerate large amounts of random classification noise, but only a very small amount of a very malicious sort of noise. -
On Computational Tractability for Rational Verification
Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19) On Computational Tractability for Rational Verification Julian Gutierrez1 , Muhammad Najib1 , Giuseppe Perelli2 , Michael Wooldridge1 1Department of Computer Science, University of Oxford, UK 2Department of Informatics, University of Leicester, UK fjulian.gutierrez, mnajib, [email protected], [email protected] Abstract theoretic (e.g., Nash) equilibrium. Unlike model checking, rational verification is still in its infancy: the main ideas, Rational verification involves checking which formal models, and reasoning techniques underlying rational temporal logic properties hold of a concur- verification are under development, while current tool sup- rent/multiagent system, under the assumption that port is limited and cannot yet handle systems of industrial agents in the system choose strategies in game the- size [Toumi et al., 2015; Gutierrez et al., 2018a]. oretic equilibrium. Rational verification can be un- derstood as a counterpart of model checking for One key difficulty is that rational verification is computa- multiagent systems, but while model checking can tionally much harder than model checking, because checking be done in polynomial time for some temporal logic equilibrium properties requires quantifying over the strategies specification languages such as CTL, and polyno- available to players in the system. Rational verification is also mial space with LTL specifications, rational ver- different from model checking in the kinds of properties that ification is much more intractable: 2EXPTIME- each technique tries to check: while model checking is inter- any complete with LTL specifications, even when using ested in correctness with respect to possible behaviour of explicit-state system representations. -
Downloaded from 128.205.114.91 on Sun, 19 May 2013 20:14:53 PM All Use Subject to JSTOR Terms and Conditions 660 REVIEWS
Association for Symbolic Logic http://www.jstor.org/stable/2274542 . Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Association for Symbolic Logic is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Symbolic Logic. http://www.jstor.org This content downloaded from 128.205.114.91 on Sun, 19 May 2013 20:14:53 PM All use subject to JSTOR Terms and Conditions 660 REVIEWS The penultimate chapter, Real machines, is the major exposition on Al techniques and programs found in this book. It is here that heuristic search is discussed and classic programs such as SHRDLU and GPS are described. It is here that a sampling of Al material and its flavor as research is presented. Some of the material here is repeated without real analysis. For example, the author repeats the standard textbook mistake on the size of the chess space. On page 178, he states that 10120 is the size of this space, and uses this to suggest that no computer will ever play perfect chess. Actually, an estimate of 1040 is more realistic. If one considers that no chess board can have more than sixteen pieces of each color and there are many configurations that are illegal or equivalent, then the state space is reduced considerably. -
A Complete Bibliography of Publications in the Journal of Computer and System Sciences
A Complete Bibliography of Publications in the Journal of Computer and System Sciences Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 26 May 2021 Version 1.04 Title word cross-reference (s; t) [1475]. 0(n) [1160]. 1 [270]. 1 − L [1371, 924]. 12n2 [450]. 2 [3525, 3184, 2191, 1048, 3402, 1500, 3364, 2034, 2993, 834, 2473, 3101]. f2; 3g [2843]. #09111 [1814]. #AM01053M 2pn 1=3 − 2 O(n ) [1862, 1877, 1904]. #better 5X8 els [1856]. 2 [2353]. 2 [445]. 2 [1977]. 3 #better 5X8 els.pdf [1856]. #BIS [3184]. [1920, 2242, 2827, 2374, 1961, 2825, 3240, · #BIS-hardness #CSP 1071, 1133]. 43 [3620]. 4 Log2N [655]. 5=4 [3184]. ∗ 0 #econdirectM [1612]. 8 [2998]. =? [1433]. [858]. [2696, 2908, 2500, 3508]. 1 ∗ NP [1893]. #HA03022M [1860, 1875]. [1625, 3418, 1085]. [1523]. [3194]. NP[O(log n)] p ⊆ PH #HA05062N [1876]. #HA05062O [2235]. [995]. 2 [2235]. [1849, 1861]. #HA06043M [1501]. 2 [3418]. H [1565]. a [426, 289]. [1892, 1871, 1889]. #HA08111M [1846]. A[P (x); 2x; x + 1] [500]. Ax = λBx [377]. b · #P [1195, 3598, 1261, 1264]. [3253]. β [3444]. [3418]. d #praise 5X8 els.pdf [1832]. [2527, 1362, 3256, 3563]. δ [3553]. `p [2154]. #sciencejobs N [1802]. [1551, 2617, 1864, 1693]. g [3312]. h [1019]. K [1320, 2756, 191, 3494, 1300, 1546, 3286, #P [1373]. -
Logics for Concurrency
Lecture Notes in Computer Science 1043 Edited by G. Goos, J. Hartmanis and J. van Leeuwen Advisory Board: W. Brauer D. Gries J. Stoer Faron Moiler Graham Birtwistle (Eds.) Logics for Concurrency Structure versus Automata ~ Springer Series Editors Gerhard Goos, Karlsruhe University, Germany Juris Hartmanis, Cornetl University, NY, USA Jan van Leeuwen, Utrecht University, The Netherlands Volume Editors Faron Moller Department ofTeleinformatics, Kungl Tekniska H6gskolan Electrum 204, S-164 40 Kista, Sweden Graham Birtwistle School of Computer Studies, University of Leeds Woodhouse Road, Leeds LS2 9JT, United Kingdom Cataloging-in-Publication data applied for Die Deutsche Bibliothek - CIP-Einheitsaufnahme Logics for concurrency : structure versus automata / Faron Moller; Graham Birtwistle (ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Budapest ; Hong Kong ; London ; Milan ; Paris ; Santa Clara ; Singapore ; Tokyo Springer, 1996 (Lecture notes in computer science ; Voi. 1043) ISBN 3-540-60915-6 NE: Moiler, Faron [Hrsg.]; GT CR Subject Classification (1991): F.3, F.4, El, F.2 ISBN 3-540-60915-6 Springer-Verlag Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer -Verlag. Violations are liable for prosecution under the German Copyright Law. Springer-Verlag Berlin Heidelberg 1996 Printed in Germany Typesetting: Camera-ready by author SPIN 10512588 06/3142 - 5 4 3 2 1 0 Printed on acid-free paper Preface This volume is a result of the VIII TH BANFF HIGHER ORDER WORKSHOP held from August 27th to September 3rd, 1994, at the Banff Centre in Banff, Canada. -
Conversational Concurrency Copyright © 2017 Tony Garnock-Jones
CONVERSATIONALCONCURRENCY tony garnock-jones Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy College of Computer and Information Science Northeastern University 2017 Tony Garnock-Jones Conversational Concurrency Copyright © 2017 Tony Garnock-Jones This document was typeset on December 31, 2017 at 9:22 using the typographical look-and-feel classicthesis developed by André Miede, available at https://bitbucket.org/amiede/classicthesis/ Abstract Concurrent computations resemble conversations. In a conversation, participants direct ut- terances at others and, as the conversation evolves, exploit the known common context to advance the conversation. Similarly, collaborating software components share knowledge with each other in order to make progress as a group towards a common goal. This dissertation studies concurrency from the perspective of cooperative knowledge-sharing, taking the conversational exchange of knowledge as a central concern in the design of concur- rent programming languages. In doing so, it makes five contributions: 1. It develops the idea of a common dataspace as a medium for knowledge exchange among concurrent components, enabling a new approach to concurrent programming. While dataspaces loosely resemble both “fact spaces” from the world of Linda-style lan- guages and Erlang’s collaborative model, they significantly differ in many details. 2. It offers the first crisp formulation of cooperative, conversational knowledge-exchange as a mathematical model. 3. It describes two faithful implementations of the model for two quite different languages. 4. It proposes a completely novel suite of linguistic constructs for organizing the internal structure of individual actors in a conversational setting. The combination of dataspaces with these constructs is dubbed Syndicate. -
A Temporal Logic Approach to Information-Flow Control
R S V E I T I A N S U S S A I R S A V I E N A Temporal Logic Approach to Information-flow Control Thesis for obtaining the title of Doctor of Natural Science of the Faculty of Natural Science and Technology I of Saarland University by Markus N. Rabe Saarbrücken February, 2016 Dean of the Faculty Prof. Dr. Markus Bläser Day of Colloquium January 28, 2016 Chair of the Committee Prof. Dr. Dr. h.c. Reinhard Wilhelm Reviewers Prof. Bernd Finkbeiner, Ph.D. Prof. David Basin, Ph.D. Prof. Sanjit A. Seshia, Ph.D. Academic Assistant Dr. Swen Jacobs i Abstract Information leaks and other violations of information security pose a severe threat to individuals, companies, and even countries. The mechanisms by which attackers threaten information security are diverse and to show their absence thus proved to be a challenging problem. Information-flow control is a principled approach to prevent security incidents in programs and other tech- nical systems. In information-flow control we define information-flow proper- ties, which are sufficient conditions for when the system is secure in a particu- lar attack scenario. By defining the information-flow property only based on what parts of the executions of the system a potential attacker can observe or control, we obtain security guarantees that are independent of implementa- tion details and thus easy to understand. There are several methods available to enforce (or verify) information-flow properties once defined. We focus on static enforcement methods, which automatically determine whether a given system satisfies a given information-flow property for all possible inputs to the system. -
Symposium on Principles of Database Systems Paris, France – June 14-16, 2004
23ndACM SIGMOD-SIGACT- SIGART Symposium on Principles of Database Systems Paris, France – June 14-16, 2004 http://www.sciences.univ-nantes.fr/irin/SIGMODPODS04/ The symposium invites papers on fundamental aspects of data management. Original research papers on the theory, design, specification, or implementation of data management tools are solicited. Papers emphasizing new topics or foundations of emerging areas are especially welcome. The symposium will be held at the Maison de la Chimie, Paris, in conjunction with the ACM SIGMOD Intl. Conference on Management of Data (SIGMOD’04). Suggested topics include the following (this list is not exhaustive and the order does not reflect priorities): Access Methods & Physical Design Databases & Workflows Real-time Databases Active Databases Deductive Databases & Knowledge Bases Security & Privacy Complexity & Performance Evaluation Distributed Databases Semistructured Data & XML Data Integration & Interoperability Information Processing on the Web Spatial & Temporal Databases Data Mining Logic in Databases Theory of recovery Data Models Multimedia Databases Transaction Management Data Stream Management Object-oriented Databases Views & Warehousing Database Programming Languages Query Languages Web Services & Electronic Commerce Databases & Information Retrieval Query Optimization XML Databases Important Dates: Paper abstracts due: December 1, 2003 (11:59pm PST) Full papers due: December 8, 2003 (11:59pm PST) Notification of acceptance/rejection: February 23, 2004 Camera-ready due: March 22, 2004 -
Self-Sorting SSD: Producing Sorted Data Inside Active Ssds
Foreword This volume contains the papers presentedat the Third Israel Symposium on the Theory of Computing and Systems (ISTCS), held in Tel Aviv, Israel, on January 4-6, 1995. Fifty five papers were submitted in response to the Call for Papers, and twenty seven of them were selected for presentation. The selection was based on originality, quality and relevance to the field. The program committee is pleased with the overall quality of the acceptedpapers and, furthermore, feels that many of the papers not used were also of fine quality. The papers included in this proceedings are preliminary reports on recent research and it is expected that most of these papers will appear in a more complete and polished form in scientific journals. The proceedings also contains one invited paper by Pave1Pevzner and Michael Waterman. The program committee thanks our invited speakers,Robert J. Aumann, Wolfgang Paul, Abe Peled, and Avi Wigderson, for contributing their time and knowledge. We also wish to thank all who submitted papers for consideration, as well as the many colleagues who contributed to the evaluation of the submitted papers. The latter include: Noga Alon Alon Itai Eric Schenk Hagit Attiya Roni Kay Baruch Schieber Yossi Azar Evsey Kosman Assaf Schuster Ayal Bar-David Ami Litman Nir Shavit Reuven Bar-Yehuda Johan Makowsky Richard Statman Shai Ben-David Yishay Mansour Ray Strong Allan Borodin Alain Mayer Eli Upfal Dorit Dor Mike Molloy Moshe Vardi Alon Efrat Yoram Moses Orli Waarts Jack Feldman Dalit Naor Ed Wimmers Nissim Francez Seffl Naor Shmuel Zaks Nita Goyal Noam Nisan Uri Zwick Vassos Hadzilacos Yuri Rabinovich Johan Hastad Giinter Rote The work of the program committee has been facilitated thanks to software developed by Rob Schapire and FOCS/STOC program chairs. -
Download This PDF File
T G¨ P 2012 C N Deadline: December 31, 2011 The Gödel Prize for outstanding papers in the area of theoretical computer sci- ence is sponsored jointly by the European Association for Theoretical Computer Science (EATCS) and the Association for Computing Machinery, Special Inter- est Group on Algorithms and Computation Theory (ACM-SIGACT). The award is presented annually, with the presentation taking place alternately at the Inter- national Colloquium on Automata, Languages, and Programming (ICALP) and the ACM Symposium on Theory of Computing (STOC). The 20th prize will be awarded at the 39th International Colloquium on Automata, Languages, and Pro- gramming to be held at the University of Warwick, UK, in July 2012. The Prize is named in honor of Kurt Gödel in recognition of his major contribu- tions to mathematical logic and of his interest, discovered in a letter he wrote to John von Neumann shortly before von Neumann’s death, in what has become the famous P versus NP question. The Prize includes an award of USD 5000. AWARD COMMITTEE: The winner of the Prize is selected by a committee of six members. The EATCS President and the SIGACT Chair each appoint three members to the committee, to serve staggered three-year terms. The committee is chaired alternately by representatives of EATCS and SIGACT. The 2012 Award Committee consists of Sanjeev Arora (Princeton University), Josep Díaz (Uni- versitat Politècnica de Catalunya), Giuseppe Italiano (Università a˘ di Roma Tor Vergata), Mogens Nielsen (University of Aarhus), Daniel Spielman (Yale Univer- sity), and Eli Upfal (Brown University). ELIGIBILITY: The rule for the 2011 Prize is given below and supersedes any di fferent interpretation of the parametric rule to be found on websites on both SIGACT and EATCS. -
COMP 516 Research Methods in Computer Science Research Methods in Computer Science Lecture 3: Who Is Who in Computer Science Research
COMP 516 COMP 516 Research Methods in Computer Science Research Methods in Computer Science Lecture 3: Who is Who in Computer Science Research Dominik Wojtczak Dominik Wojtczak Department of Computer Science University of Liverpool Department of Computer Science University of Liverpool 1 / 24 2 / 24 Prizes and Awards Alan M. Turing (1912-1954) Scientific achievement is often recognised by prizes and awards Conferences often give a best paper award, sometimes also a best “The father of modern computer science” student paper award In 1936 introduced Turing machines, as a thought Example: experiment about limits of mechanical computation ICALP Best Paper Prize (Track A, B, C) (Church-Turing thesis) For the best paper, as judged by the program committee Gives rise to the concept of Turing completeness and Professional organisations also give awards based on varying Turing reducibility criteria In 1939/40, Turing designed an electromechanical machine which Example: helped to break the german Enigma code British Computer Society Roger Needham Award His main contribution was an cryptanalytic machine which used Made annually for a distinguished research contribution in computer logic-based techniques science by a UK based researcher within ten years of their PhD In the 1950 paper ‘Computing machinery and intelligence’ Turing Arguably, the most prestigious award in Computer Science is the introduced an experiment, now called the Turing test A. M. Turing Award 2012 is the Alan Turing year! 3 / 24 4 / 24 Turing Award Turing Award Winners What contribution have the following people made? The A. M. Turing Award is given annually by the Association for Who among them has received the Turing Award? Computing Machinery to an individual selected for contributions of a technical nature made Frances E. -
Computational Thinking
0 Computational Thinking Jeannette M. Wing President’s Professor of Computer Science and Department Head Computer Science Department Carnegie Mellon University Microsoft Asia Faculty Summit 26 October 2012 Tianjin, China My Grand Vision • Computational thinking will be a fundamental skill used by everyone in the world by the middle of the 21st Century. – Just like reading, writing, and arithmetic. – Incestuous: Computing and computers will enable the spread of computational thinking. – In research: scientists, engineers, …, historians, artists – In education: K-12 students and teachers, undergrads, … J.M. Wing, “Computational Thinking,” CACM Viewpoint, March 2006, pp. 33-35. Paper off http://www.cs.cmu.edu/~wing/ Computational Thinking 2 Jeannette M. Wing Computing is the Automation of Abstractions Abstractions 1. Machine 2. Human Automation 3. Network [Machine + Human] Computational Thinking focuses on the process of abstraction - choosing the right abstractions - operating in terms of multiple layers of abstraction simultaneously as in - defining the relationships the between layers Mathematics guided by the following concerns… Computational Thinking 3 Jeannette M. Wing Measures of a “Good” Abstraction in C.T. as in • Efficiency Engineering – How fast? – How much space? NEW – How much power? • Correctness – Does it do the right thing? • Does the program compute the right answer? – Does it do anything? • Does the program eventually produce an answer? [Halting Problem] • -ilities – Simplicity and elegance – Scalability – Usability – Modifiability – Maintainability – Cost – … Computational Thinking 4 Jeannette M. Wing Computational Thinking, Philosophically • Complements and combines mathematical and engineering thinking – C.T. draws on math as its foundations • But we are constrained by the physics of the underlying machine – C.T.