Structural Design of an Electrically Erasable EEPROM Memory Cell
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Nanotechnology ? Nram (Nano Random Access
International Journal Of Engineering Research and Technology (IJERT) IFET-2014 Conference Proceedings INTERFACE ECE T14 INTRACT – INNOVATE - INSPIRE NANOTECHNOLOGY – NRAM (NANO RANDOM ACCESS MEMORY) RANJITHA. T, SANDHYA. R GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE 13. containing elements, nanotubes, are so small, NRAM technology will Abstract— NRAM (Nano Random Access Memory), is one of achieve very high memory densities: at least 10-100 times our current the important applications of nanotechnology. This paper has best. NRAM will operate electromechanically rather than just been prepared to cull out answers for the following crucial electrically, setting it apart from other memory technologies as a questions: nonvolatile form of memory, meaning data will be retained even What is NRAM? when the power is turned off. The creators of the technology claim it What is the need of it? has the advantages of all the best memory technologies with none of How can it be made possible? the disadvantages, setting it up to be the universal medium for What is the principle and technology involved in NRAM? memory in the future. What are the advantages and features of NRAM? The world is longing for all the things it can use within its TECHNOLOGY palm. As a result nanotechnology is taking its head in the world. Nantero's technology is based on a well-known effect in carbon Much of the electronic gadgets are reduced in size and increased nanotubes where crossed nanotubes on a flat surface can either be in efficiency by the nanotechnology. The memory storage devices touching or slightly separated in the vertical direction (normal to the are somewhat large in size due to the materials used for their substrate) due to Van der Waal's interactions. -
Nojivw&Ohn? *Joto Omaj
Dec. 18, 1962 W. R. SLOAN 3,069,681 SYSTEM FOR LARGE-AREA DISPLAY OF TWO-COLOR INFORMATION Filed March la, l960 3 Sheets-Sheet 1. r LIMAS9.NIHO BOHABO ??31=== IWWBO-BNI-NOI.-OL SV78EWIlCJE OMAJ.*JOTOO NOJIVW&JOHN? MABIA9.NI BOV-38ñS [] [] INVENTOR. WILLIAM R. SLOAN BY ????????? ? ???? AT TORNEYS Dec. 18, 1962 W. R, SLOAN 3,069,681 SYSTEM FOR LARGE-AREA DISPLAY OF TWO-COLOR INFORMATION Filed March 14, 1960 3. Sheets-Sheet 2 GN2&#OTOO ea? ?——?? AT TORNEYS Dec. 18, 1962 W. R. SOAN 3,069,681 SYSTEM FOR LARGE-AREA DISPLAY OF TWO-COLOR INFORMATION Filed March 14, 1960 3 Sheets-Sheet 3 – E. T =-4 HORIZONAL ? SWEEP GENERATOR 44 68 256 K.C. GENERATORPULSE ( BSTABLE BSTABLE B|STABLE ? B|STABLE BSTABLE ??? ? ??82 m232 -- 198 lost 3 -- SAS JS JAAYeASeSYe SAuSJSJASJLLLTLTMSTTLTTTLLLSLLSS LL LLL LLLLLL DISPLAY SURFACE HORIZONTAL SWEEP GENERATOR INVENTOR. WLLAM R. SOAN ATTORNEYS 3,069,681 United States Patent Office Patented Dec. 18, 1962 2 3,069,681 when the electrodes are respectively pulsed. Each of the SYSTEM FOR LARGE-AREA DISPLAY OF pluralities of electrodes is in spaced-apart alignment along TWO,-COLOR ENSFORMATION one dimension of the sheet and the two pluralities of William R. Sloan, Fort Wayne, Ind., assignor to Inter electrodes are respectively spaced-apart along the other national Telephone and Telegraph Corporation dimension of the sheet. Means are provided for moving Filed Mar. 14, 1960, Ser. No. 14,743 the sheet with respect to the electrodes along the other 9 Claims. (Cl, 346-74) dimension. First switching means is provided sequen tially coupling the first electrodes to the converting means This invention relates to a system for presenting in for sampling one of the color-responsive signals at dis two colors alpha-numeric information, i.e., words and Crete intervals and for pulsing the first electrodes respon numbers, and graphical information, such as maps, sive to the presence of the one color signal at the respec graphs, etc., visually on a large-area display for group tive intervals. -
Solid State Drives Data Reliability and Lifetime
Solid State Drives Data Reliability and Lifetime White Paper Alan R. Olson & Denis J. Langlois April 7, 2008 Abstract The explosion of flash memory technology has dramatically increased storage capacity and decreased the cost of non-volatile semiconductor memory. The technology has fueled the proliferation of USB flash drives and is now poised to replace magnetic hard disks in some applications. A solid state drive (SSD) is a non-volatile memory system that emulates a magnetic hard disk drive (HDD). SSDs do not contain any moving parts, however, and depend on flash memory chips to store data. With proper design, an SSD is able to provide high data transfer rates, low access time, improved tolerance to shock and vibration, and reduced power consumption. For some applications, the improved performance and durability outweigh the higher cost of an SSD relative to an HDD. Using flash memory as a hard disk replacement is not without challenges. The nano-scale of the memory cell is pushing the limits of semiconductor physics. Extremely thin insulating glass layers are necessary for proper operation of the memory cells. These layers are subjected to stressful temperatures and voltages, and their insulating properties deteriorate over time. Quite simply, flash memory can wear out. Fortunately, the wear-out physics are well understood and data management strategies are used to compensate for the limited lifetime of flash memory. Floating Gate Flash Memory Cells Flash memory was invented by Dr. Fujio Masuoka while working for Toshiba in 1984. The name "flash" was suggested because the process of erasing the memory contents reminded him of the flash of a camera. -
Embedded DRAM
Embedded DRAM Raviprasad Kuloor Semiconductor Research and Development Centre, Bangalore IBM Systems and Technology Group DRAM Topics Introduction to memory DRAM basics and bitcell array eDRAM operational details (case study) Noise concerns Wordline driver (WLDRV) and level translators (LT) Challenges in eDRAM Understanding Timing diagram – An example References Slide 1 Acknowledgement • John Barth, IBM SRDC for most of the slides content • Madabusi Govindarajan • Subramanian S. Iyer • Many Others Slide 2 Topics Introduction to memory DRAM basics and bitcell array eDRAM operational details (case study) Noise concerns Wordline driver (WLDRV) and level translators (LT) Challenges in eDRAM Understanding Timing diagram – An example Slide 3 Memory Classification revisited Slide 4 Motivation for a memory hierarchy – infinite memory Memory store Processor Infinitely fast Infinitely large Cycles per Instruction Number of processor clock cycles (CPI) = required per instruction CPI[ ∞ cache] Finite memory speed Memory store Processor Finite speed Infinite size CPI = CPI[∞ cache] + FCP Finite cache penalty Locality of reference – spatial and temporal Temporal If you access something now you’ll need it again soon e.g: Loops Spatial If you accessed something you’ll also need its neighbor e.g: Arrays Exploit this to divide memory into hierarchy Hit L2 L1 (Slow) Processor Miss (Fast) Hit Register Cache size impacts cycles-per-instruction Access rate reduces Slower memory is sufficient Cache size impacts cycles-per-instruction For a 5GHz -
Teelllliedi Siteeifieatittil CONTENTS
'. INTERACTIVE GRAPHIC SYSTEMS t;DSn teellllieDI Siteeifieatittil CONTENTS Section Page Section Page 1 Introducing GDS II ........................................... 1-1 4 Specifications ................................................ 4-1 2 General Description .......................................... 2-1 4.1 Database Features ....................................... 4-1 4.2 Input/Editing ............................................ 4-1 2.1 The Problems of VLSI .................................... 2-1 4.3 Display Control .......................................... 4-3 2.2 The Solution - GDS II .................................... 2-1 4.4 Background Programs ................................... 4-4 2.3 Exploiting the Latest Technology .................. , ...... 2-2 4.5 Application Programming Tools .......................... 4-5 4.6 Hardware ............................................... 4-6 3 System Operation ............................................ 3-1 5 Software ..................................................... 5-1 3.1 Database Extensibility ................................... 3-1 3.2 Database Elements ...................................... 3-1 5.1 Multiground RDOS ...................................... 5-1 3.3 Database Construction ................................... 3-2 5.2 Database Management System ........................... 5-3 3.4 Menu Operations ........................................ 3-2 5.3 GPL™ ................................................... 5-7 3.5 Graphic Display ......................................... 3-2 -
Of 38 an Inexpensive VTCT Adapter for All Tektronix Scts Version. 1.04.1
Page 1 of 38 An Inexpensive VTCT Adapter for All Tektronix SCTs Version. 1.04.1 Page 2 of 38 An Inexpensive VTCT Adapter for All Tektronix SCTs Version. 1.04.1 Figure 1 Front cover—Tektronix 577 Semiconductor Curve Tracer displaying the characteristic curves of a TRIODE VACUUM TUBE. Page 3 of 38 An Inexpensive VTCT Adapter for All Tektronix SCTs Version. 1.04.1 AN INEXPENSIVE VACUUM TUBE CURVE TRACER ADAPTER FOR ALL TEKTRONIX SEMICONDUCTOR CURVE TRACERS © Dennis Tillman W7pF, [email protected], Version 1.04.1, Mar. 10, 2020 CONTENTS INTRODUCTION ................................................................................................................................... 5 TEKTRONIX CURVE TRACER FEATURE COMPARISON .................................................................. 6 TEKTRONIX CURVE TRACERS .......................................................................................................... 6 VACUUM TUBE TESTER FEATURE COMPARISON .......................................................................... 8 THEORY OF OPERATION .................................................................................................................. 11 EICO 667 MODIFICATIONS................................................................................................................ 13 WHAT CAN I EXPECT WITH THE CURVE TRACER I MAY ALREADY OWN? ................................ 13 WHAT YOU WILL NEED TO MAKE THIS VTCT ................................................................................ 14 TWO CHARACTERISTIC CURVES -
A 3T Gain Cell Embedded DRAM Utilizing Preferential Boosting for High Density and Low Power On-Die Caches Ki Chul Chun, Pulkit Jain, Jung Hwa Lee, and Chris H
IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 46, NO. 6, JUNE 2011 1495 A 3T Gain Cell Embedded DRAM Utilizing Preferential Boosting for High Density and Low Power On-Die Caches Ki Chul Chun, Pulkit Jain, Jung Hwa Lee, and Chris H. Kim, Senior Member, IEEE Abstract—Circuit techniques for enabling a sub-0.9 V logic-com- for achieving low static power and high operating speed. patible embedded DRAM (eDRAM) are presented. A boosted 3T SRAMs have been the embedded memory of choice due to gain cell utilizes Read Word-line (RWL) preferential boosting to their logic compatibility and fast access time. Recently, em- increase read margin and improve data retention time. Read speed is enhanced with a hybrid current/voltage sense amplifier that al- bedded DRAMs (eDRAMs) have been gaining popularity in lows the Read Bit-line (RBL) to remain close to VDD. A regu- the research community due to features such as small cell size, lated bit-line write scheme for driving the Write Bit-line (WBL) is low cell leakage, and non-ratioed circuit operation. There have equipped with a steady-state storage node voltage monitor to over- been a number of successful eDRAM designs based on tradi- come the data ‘1’ write disturbance problem of the PMOS gain cell without introducing another boosted supply for the Write Word- tional 1T1C DRAM cells as well as logic-compatible gain cells line (WWL) over-drive. An adaptive and die-to-die adjustable read [2]–[9]. 1T1C cells are denser than gain cells, but at the cost of a reference bias generator is proposed to cope with PVT variations. -
Frequency Spectrum Generated by Thyristor Control J
Electrocomponent Science and Technology (C) Gordon and Breach Science Publishers Ltd. 1974, Vol. 1, pp. 43-49 Printed in Great Britain FREQUENCY SPECTRUM GENERATED BY THYRISTOR CONTROL J. K. HALL and N. C. JONES Loughborough University of Technology, Loughborough, Leics. U.K. (Received October 30, 1973; in final form December 19, 1973) This paper describes the measured harmonics in the load currents of thyristor circuits and shows that with firing angle control the harmonic amplitudes decrease sharply with increasing harmonic frequency, but that they extend to very high harmonic orders of around 6000. The amplitudes of the harmonics are a maximum for a firing delay angle of around 90 Integral cycle control produces only low order harmonics and sub-harmonics. It is also shown that with firing angle control apparently random inter-harmonic noise is present and that the harmonics fall below this noise level at frequencies of approximately 250 KHz for a switched 50 Hz waveform and for the resistive load used. The noise amplitude decreases with increasing frequency and is a maximum with 90 firing delay. INTRODUCTION inductance. 6,7 Literature on the subject tends to assume that noise is due to the high frequency Thyristors are now widely used for control of power harmonics generated by thyristor switch-on and the in both d.c. and a.c. circuits. The advantages of design of suppression components is based on this. relatively small size, low losses and fast switching This investigation has been performed in order to speeds have contributed to the vast growth in establish the validity of this assumption, since it is application since their introduction, when they were believed that there may be a number of perhaps basically a solid-state replacement for mercury-arc separate sources of noise in thyristor circuits. -
SRAM Edram DRAM
Technology Challenges and Directions of SRAM, DRAM, and eDRAM Cell Scaling in Sub- 20nm Generations Jai-hoon Sim SK hynix, Icheon, Korea Outline 1. Nobody is perfect: Main memory & cache memory in the dilemma in sub-20nm era. 2. SRAM Scaling: Diet or Die. 6T SRAM cell scaling crisis & RDF problem. 3. DRAM Scaling: Divide and Rule. Unfinished 1T1C DRAM cell scaling and its technical direction. 4. eDRAM Story: Float like a DRAM & sting like a SRAM. Does logic based DRAM process work? 5. All for one. Reshaping DRAM with logic technology elements. 6. Conclusion. 2 Memory Hierarchy L1$ L2$ SRAM Higher Speed (< few nS) Working L3$ Better Endurance eDRAM Memory (>1x1016 cycles) Access Speed Access Stt-RAM Main Memory DRAM PcRAM ReRAM Lower Speed Bigger Size Storage Class Memory NAND Density 3 Technologies for Cache & Main Memories SRAM • 6T cell. • Non-destructive read. • Performance driven process Speed technology. eDRAM • Always very fast. • 1T-1C cell. • Destructive read and Write-back needed. • Leakage-Performance compromised process technology. Standby • Smaller than SRAM and faster than Density Power DRAM. DRAM • 1T-1C cell. • Destructive read and Write-back needed. • Leakage control driven process technology. • Not always fast. • Smallest cell and lowest cost per bit. 4 eDRAM Concept: Performance Gap Filler SRAM 20-30X Cell Size Cell eDRAM DRAM 50-100X Random Access Speed • Is there any high density & high speed memory solution that could be 100% integrated into logic SoC? 5 6T-SRAM Cell Operation VDD WL WL DVBL PU Read PG SN SN WL Icell PD BL VSS BL V SN BL BL DD SN PD Read Margin: Write PG PG V Write Margin: SS PU Time 6 DRAM’s Charge Sharing DVBL VS VBL Charge Sharing Write-back VPP WL CS CBL V BL DD 1 SN C V C V C C V S DD B 2 DD S B BL 1/2VDD Initial Charge After Charge Sharing DVBL T d 1 1 V BL SS DVBL VBL VBL VDD 1 CB / CS 2 VBBW Time 1 1 I t L RET if cell leakage included Cell select DVBL VDD 1 CB / CS 2 CS 7 DRAM Scalability Metrics BL Cell WL CS • Cell CS. -
Tabulation of Published Data on Electron Devices of the U.S.S.R. Through December 1976
NAT'L INST. OF STAND ms & TECH R.I.C. Pubii - cations A111D4 4 Tfi 3 4 4 NBSIR 78-1564 Tabulation of Published Data on Electron Devices of the U.S.S.R. Through December 1976 Charles P. Marsden Electron Devices Division Center for Electronics and Electrical Engineering National Bureau of Standards Washington, DC 20234 December 1978 Final QC— U.S. DEPARTMENT OF COMMERCE 100 NATIONAL BUREAU OF STANDARDS U56 73-1564 Buraev of Standard! NBSIR 78-1564 1 4 ^79 fyr *'• 1 f TABULATION OF PUBLISHED DATA ON ELECTRON DEVICES OF THE U.S.S.R. THROUGH DECEMBER 1976 Charles P. Marsden Electron Devices Division Center for Electronics and Electrical Engineering National Bureau of Standards Washington, DC 20234 December 1978 Final U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary / Dr. Sidney Harman, Under Secretary Jordan J. Baruch, Assistant Secretary for Science and Technology NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director - 1 TABLE OF CONTENTS Page Preface i v 1. Introduction 2. Description of the Tabulation ^ 1 3. Organization of the Tabulation ’ [[ ] in ’ 4. Terminology Used the Tabulation 3 5. Groups: I. Numerical 7 II. Receiving Tubes 42 III . Power Tubes 49 IV. Rectifier Tubes 53 IV-A. Mechanotrons , Two-Anode Diode 54 V. Voltage Regulator Tubes 55 VI. Current Regulator Tubes 55 VII. Thyratrons 56 VIII. Cathode Ray Tubes 58 VIII-A. Vidicons 61 IX. Microwave Tubes 62 X. Transistors 64 X-A-l . Integrated Circuits 75 X-A-2. Integrated Circuits (Computer) 80 X-A-3. Integrated Circuits (Driver) 39 X-A-4. Integrated Circuits (Linear) 89 X- B. -
Hereby the Screen Stands in For, and Thereby Occludes, the Deeper Workings of the Computer Itself
John Warnock and an IDI graphical display unit, University of Utah, 1968. Courtesy Salt Lake City Deseret News . 24 doi:10.1162/GREY_a_00233 Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/GREY_a_00233 by guest on 27 September 2021 The Random-Access Image: Memory and the History of the Computer Screen JACOB GABOURY A memory is a means for displacing in time various events which depend upon the same information. —J. Presper Eckert Jr. 1 When we speak of graphics, we think of images. Be it the windowed interface of a personal computer, the tactile swipe of icons across a mobile device, or the surreal effects of computer-enhanced film and video games—all are graphics. Understandably, then, computer graphics are most often understood as the images displayed on a computer screen. This pairing of the image and the screen is so natural that we rarely theorize the screen as a medium itself, one with a heterogeneous history that develops in parallel with other visual and computa - tional forms. 2 What then, of the screen? To be sure, the computer screen follows in the tradition of the visual frame that delimits, contains, and produces the image. 3 It is also the skin of the interface that allows us to engage with, augment, and relate to technical things. 4 But the computer screen was also a cathode ray tube (CRT) phosphorescing in response to an electron beam, modified by a grid of randomly accessible memory that stores, maps, and transforms thousands of bits in real time. The screen is not simply an enduring technique or evocative metaphor; it is a hardware object whose transformations have shaped the ma - terial conditions of our visual culture. -
Design and Comparative Analysis of Low Power Dynamic Random Access Memory Array Strucyure
International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 4 Issue 04, April-2015 Design and Comparative Analysis of Low Power Dynamic Random Access Memory Array Strucyure Mr. K. Gavaskar Mr. E. Kathikeyan, Ms. S. Rohini, Assistant professor/ECE, Mr. S. Kavinkumar Kongu Engineering College UG scholar/ECE, Erode, India Kongu Engineering College Erode, India Abstract- Memory plays an essential role in the design of structure is simplicity [8] and it is used in high densities. electronic systems where storage of data is required. In this DRAM is used in main memories in personal computers paper comparative analysis of different DRAM (Dynamic and in mainframes [7]. Random Access Memory) cell based memory array structure In modern day processor power dissipation plays a major has been carried out in nanometer scale memories. Modern advanced processor use DRAM cells for chip and program role because of the miniaturization of the chip memory. But the major drawback of DRAM is the power design. So this stack technique can be used in future for dissipation. The major contribution of power dissipation in reducing the power consumption. Further enhancement can DRAM is off-state leakage current. Also the improvement of also be made in the design in future to reduce the delay, power efficiency is difficult in DRAM cells. This paper because stacking of transistors increases delay and this investigates the power dissipation analysis in DRAM cells. DRAM cell can be used effectively. Since the cost and size Here 1T1C dram cell, 3T dram cell, 4T dram cell has been of DRAM cells are less when compared to SRAM cells and designed using TANNER EDA Tool.