Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) in , in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration – Principles and Applications Chapter 8 – Fouling in Nanofiltration

1 INTRODUCTION AccordingtoKoroset al.[1]foulingis“the process resulting in loss of performance of a due to deposition of suspended or dissolved substances on its external surfaces, at its pore openings, or within its pores”.Foulingisalso Chapter8 decribed as flux decline which is irreversible and can only be removed by, for example, chemical cleaning [2]. This is different to flux decline due to chemistry effects or concentration polarisationwhichisdescribedinmoredetaillaterinthischapter.Thosefluxdeclinescanbereversed withcleanwaterandarehencenotconsideredasfouling. Foulingofisimportantasitlimitsthecompetitivenessoftheprocessduetoanincreasein FoulinginNanofiltration costs due to an increased energy demand, additional labour for maintenance and chemical costs for cleaning as well as a shorter lifetime of the membranes. Essential for effective fouling control is a proactiveoperationofananofiltration(NF)orreverseosmosis(RO)plantwhereanearlyindicationof fouling is acted upon and a good identification of the type of fouling is carried out. Staude [3] AndreaI.Schäfer1,NikolaosAndritsos2,AnastasiosJ. summarisedthepossibleoriginsoffoulingasfollows  Precipitationofsubstancesthathaveexceededtheirsolubilityproduct(scaling) 2 3 4 Karabelas ,EricM.V.Hoek ,RenéSchneider ,Marianne  Depositionofdispersedfinesorcolloidalmatter Nyström5  Chemical reaction of solutes at the membrane boundary layer (e.g. formation of ferrichydroxidesfromsolubleformsofiron)  Chemicalreactionofsoluteswiththemembranepolymer 1EnvironmentalEngineering,UniversityofWollongong,Wollongong,NSW2522,  Adsorptionoflowmolecularmasscompoundsatthemembranepolymer Australia  Irreversiblegelformationofmacromolecularsubstances ph+61242213385,fax+61242214738,[email protected]  Colonisationbybacteria(mostlyhydrophobicinteractions). 2ChemicalProcessEngineeringResearchInstitute,P.O.Box361,57001,Thermi, Thisgivesanindicationofthecomplexityoffoulingandanexampleofsuchcomplexityisillustratedin Greece Figure 1 withelectronmicrographsofamembranefouledwithsurfacewaterwithoutpretreatment. ph++302310498181,fax++302310498189 The pictures show and organic matter embedded in a gel like cake layer on top of the [email protected][email protected] membrane.InFigure 2anothersurfacewaterdepositonaNFmembraneisshown,exceptthatinthis 3Chemical&EnvironmentalEngineering,UniversityofCalifornia,Riverside,CA92521, case the surface water is pretreated with and fouling is dominated by inorganic precipitates. USA,ph:+0119097877345,fax:+0119097875696,email:[email protected] 4DepartamentodeMicrobiologia,InstitutodeCiênciasBiomédicas,Universidadede Figure 1 Complex SãoPaulo,Brazil deposit of surface water ph+551130917745,fax+551130917354,[email protected] on a membrane 5LappeenrantaUniversityofTechnology,LaboratoryofMembraneTechnologyand (adapted from Schäfer TechnicalPolymerChemistry,P.O.Box20,FIN53851Lappeenranta,Finland [4]). ph.+35856212160,fax+35856212199,[email protected]

1 2 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration

Table 1 Fouling - Where does it occur first (adapted from Hydranautics Technical Service Bulletin TSB107 in Huiting et al. [5]) Type of Foulant Most susceptible stage of NF/RO Scaling/silica Lastmembranesinlaststage Metaloxides Firstmembranesoffirststage Colloids Firstmembranesoffirststage Organic Firstmembranesoffirststage Biofouling(rapid) Firstmembranesoffirststage Biofouling(slow) Throughoutthewholeinstallation Inordertoreduceoreliminatefoulingitisnecessarytoidentifythefoulants.Thiscanbeachievedbya characterisationofthefouledmembrane(membraneautopsyinSection2.4)orbyfoulingstudiesinthe laboratory.Oncethefoulantsareidentifiedsuitablecontrolstrategiescanbeadapted.Anoverviewof foulants and appropriate control strategies are summarised in Table 2. The strategies encompass a numberofcategories[6]namely  Feedpretreatment  Membrane selection (nonfouling materials/coatings, suitable surface charge, chlorinecompatibility,porosity,hydrophilicity,surfaceroughnessetc.)  Moduledesign&operationmode  Cleaning. FeedpretreatmentisaddressedinChapter9,MembranematerialsinChapter3,moduledesignand Figure 2 Scanning electron micrographs (SEM) of membranes fouled during the of operationinChapter4andcleaningattheendofthischapter. ultrafiltration pretreated surface water and examined in an autopsy (bar length 200 µm for all pictures; photos courtesy of Paul Buijs, GEBetz, Belgium) Table 2 Foulants and their control strategies in nanofiltration and processes Anumberoffactorscontributetofoulingandarestronglyinterlinked.Themainfoulingcategoriesare (adapted and modified from Fane et al. [6]) organic,inorganic,particulateandbiologicalfouling.Metalcomplexes(forexampleFe,Al,Si)arealso Foulant Fouling Control important.Whileresearchtraditionallyfocusesononecategoryorfoulingmechanismatatime,itis General Hydrodynamics/shear,operationbelowcriticalflux, wellacceptedthatinmostcasesitisnotonesinglecategorythatcanbeidentified.Inmostreallife chemicalcleaning applicationsallfourtypesoffoulinggohandinhand.Thetypesoffoulantsandwheretheyusually Inorganic(Scaling) Operatebelowsolubilitylimit,pretreatment,reducepHto occurinNF/ROsystemsissummarisedinTable1. 46(acidaddition),lowrecovery,additives(antiscalants) Somemetalscanbeoxidisedwithoxygen Scaling and silica fouling originates in general from the concentration of inorganics exceeding the Organics Pretreatmentusingbiologicalprocesses,activatedcarbon,ion solubility limit (see Section 5 Scaling). This most often occurs in the latter membrane stages. Metal exchange(e.g.MIEX),ozone,enhancedcoagulation oxides and colloids deposit early in the process as drag forces are relatively high (see Section 6 Colloids(<0.5m) Pretreatmentusingcoagulation&filtration,, ultrafiltration ParticulateandColloidalFouling).Organicfoulingremainspoorlyunderstoodandveryspecifictothe Biologicalsolids Pretreatmentusingdisinfection(e.g.chlorination/ characteristicsofthefoulantmolecules(seeSection4OrganicFouling).Organicfoulingmayoccurat dechlorination),filtration,coagulation,microfiltration, the beginning as well as the end stages of the modules depending on the dominating mechanism. ultrafiltration Biofouling also can be found throughout all filtration stages (see Section 7 Biofouling). Rapid biofoulingcanberelatedtoparticleattachmentwhichisfoundmostlyinthefirststage,whereasthe Membranefoulingistheworstenemyofmembraneprocessapplicationsandyetfoulinggoeshandin slowbiofoulingcanoccurthroughoutallstages[5].Whileinthepastbacterialdepositionandfouling handwithsuccessfulfiltration.Thesearchtounderstandfoulinghasdominatedmembraneresearchfor have often been studied by using latex particles, the adhesive nature of extracellular polymeric some time, yet models fail to predict and adequately describe this complex process. Fouling often substances(EPS)makesmoreadhesiveandtheirdepositionmechanismmorecomplex[6]. requiresfrequentcleaningofmembranesandconsequentlyreducesthemembranelifespan.Insome cases fouling causes membrane biodegradation and a loss of integrity [7]. Cleaning also requires chemicals, possibly an increased cleaning temperature and hence renders membrane processes less

3 4 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration sustainable. Further, it decreases process efficiency due to the reduced flux, requiring either higher 2.1.2 Variation of Membrane Permeability with Solution Chemistry transmembranepressures(andhencemoreenergy)orlargermembraneareas.Therefore,foulingisa Braghetta et al. [11]have investigated the im pact of variation in solution chemistry, namely pH and criticalparametertobeconsideredinNFprocessdesign. ionic strength on membrane permeability. At low pH and high ionic strength this permeability Thischapterwillofferasummaryofthecomponentsoffouling,mostcommonfoulingmechanisms decreasedwhichwaslinkedtoacompactionofthemembranematrixduetochargeneutralisationand andsomecontrolstrategies. doublelayercompression.TheauthorsusedtheparameterofDebyelengthtoquantifysuchchangesin membranestructureormorepreciselythedoublelayerthickness.AreducedDebyelengtheffectively 2 FOULING CHARACTERISATION increasesthecrosssectionalareaavailableforsolventtransport.

2.1 Flux Measurement and Fouling Protocols 2.1.3 Fouling Study Protocols

Animportantparameterwhenestimatingfoulingistodeterminecleanwaterflux(JO)whichservesas Figure3showsatypicalfoulingstudyprotocolwhereanewmembraneisfirstlycompactedandclean thebasisforcomparisonwiththeunfouledmembrane.JOisdefinedas water flux is measured. Subsequently the feed solution (in the case of this figure a natural organic matter(NOM)solution)andfluxmeasured.Dependingonthefeedwateramoreorlesssignificant η Q J = T 2 ⋅ hmL )/( fluxdeclineisobserved.Thisfluxdeclinehasanumberofcomponents(i)concentrationpolarisationor O η ∆⋅ (1) 200 C PA the loose accumulation of solutes, (ii) fouling that can be reversed chemically, and (iii) irreversible

0 fouling.Concentrationpolarisationorlooseaccumulationcanbereversedbyawaterflush,reversible whereηTistheviscosityofwaterattemperatureTandη200Ctheviscosityofwaterat20 C,Qisthe foulingcanberemovedwithanappropriatechemicalcleaningprotocolandirreversiblefouling,which cleanwaterflowattemperatureT,AthemembranesurfaceareaandPthetransmembranepressure canbeduetotheirreversiblebindingoffoulantstothemembraneoramembranecompactioncannot difference [8]. . This equation is valid for dilute . The relationship between viscosity and be reversed and will ultimately determine the lifetime of a membrane. It should be noted here that temperatureisdescribed,forexample,byRoordaandvanderGraaf[9]andisstrictlyspeakingfeed someresearchersclassifyallfoulingthatcannotbereversedwithawaterflushasirreversible. dependent,althoughdilutefeedscanbedescribedbywater.

AnumberofparametersimpactonthisJOasthefiltrationcommences(seecompactionbelow)andis Figure 3 Typical protocol used in fouling maintained(reversible&irreversiblefluxdecline).Cleaningthenaimstorestoreasmuchaspossibleof studies (adapted from Kilduff et al. [12]). thisinitial(orpostcompaction)JO. Flux reduction (FR) with regards to clean water flux can be determined as a percentage of JO by comparingtheJObeforeandaftermembraneoperationasdescribedbyMänttäriandNyström[10] − JJ = Ob Oa ⋅ FRCWF (%)100 (2) J Ob where the indices a and b reflect before and after filtration of feed, respectively. Alternatively flux reductioncanalsobedescribedasthedifferencebetweenpermeateandcleanwaterfluxesasfollows − JJ FR = Ob ⋅ (%)100 PF J (3) Ob wherePFissubscriptforpermeateflux.Tousethisequationasetpressureforcleanwaterfluxand Forconstantfluxoperationaprotocolwouldmeasurethevariationoftransmembranepressureina permeatefluxhastobeselectedandfiltrationshouldhavereachedsteadystate. similarprotocol,wheretransmembranepressureincreaseswithfouling. 2.1.1 Membrane Compaction DiGianoet al.[13,14]havedevelopedarangeofusefulfiltrationteststhatcorrespondtofluxdecline Itshouldbenotedherethatmembranecompaction,whichiscommonlyobservedwithNFandRO andrecoverypatternsoffullscaleplants.Suchtestsarebenchscalecrossflowfiltrationteststhatcanbe membranesisnotclassifiedasfouling.Compactioniscausedbytheappliedpressureandcanbeboth usedforfoulingevaluation.Astheauthorsemphasisesuchtestsshouldnotbeusedtoreplacepilot reversibleandirreversible.Thecompactionmaychangeboththeactivelayerandthesupport[3].To testing. overcometheimpactofcompactioninfoulingstudies,membranesareoftencompactedatahigher pressurethantheoperationpressuretoensurefluxstabilityduringexperiments(seeFigure3)before purewaterfluxisdetermined.

5 6 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration

2.2 Normalisation of Membrane Performance where UVA254 nm is the UV absorbance of a water sample at 254 nm. SUVA describes the relative AccordingtoHuitinget al.[5]variablesystemparametersneedtobenormalisedinordertocompare aromaticcontentoforganiccarbonandisusedpredominantlyinwaterandwastewatertreatment. systemperformanceandcorrectlyevaluatefouling.Thosevaryingparametersarepressure,temperature Nutrients such as nitrogen and phosphate are also an important measure for fouling potential. The andfeedwaterquality.Thenormalisedparametersare presence of bacterial cells indicates biofouling potential in combination withsuchnutrients[16].To  NormalizedWaterFloworproductivity(expressedasMassTransferCoefficient(MTC); linkwatercharacteristicsandbiologicalgrowthpotentialEscobarandRandall[17]havecomparedtwo commonly used indicators of bacterial regrowth potential: assimilable organic carbon (AOC) and  NormalizedPressureDrop(NPD) biodegradableorganiccarbon(BDOC).ItwasfoundthatmeasuringAOC,althoughonlyrepresenting  NormalizedSaltPassage(NSP)[5]. 0.19% of influent DOC in NF underestimated regrowth potential, while BDOC which represents Changesinthosenormalizedparametersmayindicateaproblem.Foulingrelatedchangesareinthe about1030%ofDOCoverestimatesit.AOCwasfoundtobecomposedofcompoundslikeactetate orderofmagnitudeof1015%decreaseinMTC,1015%increaseinNPD,anda“significant”increase that are poorly retained by NF and hence can act as a nutrient on the feed and permeate side. In ofNSPovertime[5].Tousethismethodologyadditionalmonitoringmeasuresarerequired.Thoseare, consequence,EscobarandRandallsuggestedmeasuringbothparametersforamorerealisticindication forexample,conductivity,flowandpressureindicatorsinthedifferentmembranestages. offoulingpotential.Intermsofmethodology,AOCdeterminestheavailabilityoforganicmatterto 2.3 Feed Water Fouling Potential increase biomass concentration using a bioassay, counting colonies in water samples to monitor bacterialgrowth,whichisrelativelytimeconsumingandcomplex.BDOCmeasuresthedegradationof Feedwateranalysiscangivesomeindicationoflikelihoodoffouling.Whilechemicalanalysisgivesvery organiccarbonbysuspendedorfixedbacteriaoveracertainamountoftime. detailedinformationthatthenneedstobeanalysed,indiceshavealsobeenwidelyusedtodetermine foulingpotentialoffeedwaters.AsdescribedbyHuitinget al.[5]foulingindicesgiveanindicationof InresponsetotheneedtbeabletopredictfoulingpotentialShaalan[18]hasattemptedtodevelopa particulatefouling.Themostcommonlyusedindices(especiallyinindustry)arethesiltdensityindex foulingandretentionpredictionmodelbasedonfeedwateranalysisforsurfacewaterapplications.The (SDI)andthemodifiedfoulingindex(MFI)andthesearedescribedbelow. modelinempiricalandbasedontheperformanceofanumberoftreatmentplants,butasexpectedfor suchcomplexphenomenathedeviationbetweenmodelandtestdataissignificant.Thetemptationto

2.3.1 Feed Water Analysis develop such models is large and advanced in fouling research may help in the development of Feed water analysis plays an important role in the determination of fouling potential. For example, adequaterelationships. turbidityisacommonlyusedparameterforthedeterminationoffoulingpotentialinRO[3].However, 2.3.2 Silt Density Index (SDI) asthepretreatmentwithmembraneprocessessuchasMFandUFbecomesmorecommon,thisvalue will not be very meaningful due to the very high removal of turbidity and hence very low turbidity Thesiltdensityindex(SDI)isalsoreferredtoasindexorfoulingindex.Themotivationofthis values.Themethodisnotnecessarilysensitiveenoughtodetermineproblemsrelatedtosmallcolloids index is to describe a linear relationship between feed particle content and flux decline. The linear suchassilica. relationship however is usually not achievable. The SDI is determined by the repeated filtering ofa certainvolumeoffeedthrougha0.45mfilterindeadendandconstantpressuremode[3,19]. Membrane design software usually requires entering a feed analysis to predict fouling potential, − although this is usually limited to scaling. Sparingly soluble salts that are prone to precipitation and /1 tt 21 − SDI = 1 )(min (5) scale formation are important to be quantified. The section on scaling in this book gives a detailed T overviewofcommonscalants.Metalssuchasmagnesiumandironarealsoveryimportant.Magnesium wheret1isthetimerequiredtofiltervolumeVattimezero,t2isthetimerequiredtofiltervolumeVat hasbeenreportedtoplayanimportantroleintheprecipitationofsilica[15]. timeT(inmin).TheSDIiscommonlyusedtoestimatetheintervallengthbetweenmembranecleaning Organics are known to play a substantial part in NF fouling. Dissolved organic carbon (DOC) andifthemodulecanbeusedwithoutadditionalpretreatment[3].However,theuseofSDIhasbeen contributes to fouling by adsorption, gel formations, pore plugging and as a nutrient for criticizedanditsuseasanimportantmonitoringparameterdescribedasa‘dangerousmistake’[15]. microorganisms.ResearchinvestigatingthefoulingofNFbyDOC,itsfractionsnaturalorganicmatter 2.3.3 Modified fouling index (MFI0.45) (NOM), humic acids (HA), fulvic acids (FA), and hydrophilic acids is very active and will be Themodifiedfoulingindex(MFI)canachievethelinearrelationshipbetweenconcentrationandflux summarised in the organic fouling section of this chapter. NOM, as most of the above fractions, decline,butstillcannotaccuratelypredictfluxdecline[3,8].Boerlageet al.[8]confirmedthatthisisdue consists of biodegradable and refractory organics with varying characteristics such as aromaticity, tothefactthatinROfoulingiscausedbysmallercolloidsthatarenotretainedbythemicrofiltration molecularmass,charge,functionalgroupsandaffinitytowardsmembranematerials.Asaparameterto membranes used in the MFI. Seeing the above complexities of fouling mechanisms, this is not investigatethecharacteristicsofsuchbulkorganicsandtheirfractionsasameanstopredictfoulingthe unexpected.TodeterminetheMFI,thesameequipmentasfortheSDIisused.Theprotocolsuggests specificUVabsorbance(SUVA)hasbeenintroduced. themeasurementofthefiltratevolumeatapressureof210kPaevery20minsforadurationof20s. UVA SUVA = 254 nm (4) Thedataispresentedast/VoverVandthetanαisdeterminedfromtheslope[3].MFIcanthenbe DOC calculatedas

7 8 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration

η 0 ∆P  Determination of the concentration of assimilable organic carbon (AOC) using MFI = 20 C α Ls 2 )/(tan η (6) growthmeasurements T 210

0  Quantification of the biodegradable dissolved organic carbon (BDOC) using where ηT is the viscosity of water at temperature T and η200C the viscosity of water at 20 C. The suspendedorimmobilisedbacteria equationisbasedontheKarmanKozenyrelationshipandtheassumptionofanincompressiblecake

[19].ThisvalueisalsoreferredtoasMFI0.45seeingthatthesamemembraneisusedasfortheSDI.  Measurementofbacterialgrowthcurvesusingturbidityasanindicator[22]

SomeapplicationsalsodescribetheuseofaMFI0.05,henceusingamembranewitha0.05mporesize.  Biofilm formation rate (BFR) measurement by exposing a surface to the water in BothMFIandSDIunderestimatethefoulingobservedinpractice[19]. question. 2.3.4 Modified fouling index UF (MFI-UF) The biofilm formation rate is the most direct measure of biofilm formation as it accounts for all chemicalscontributingtothebiofilmformationandalsoaccountsforconcentrationfluctuations[21]. AstheSDIandtheMFIdonotincludesmallercolloidsizes,anewindexusinganultrafiltration(UF) BFR can be measured using an online operated biofilm monitor where the accumulation of active membranehasbeendeveloped[5].Boerlageet al.[8]testedthisMFIUFasafunctionofmolecular biomass(bymeansofATPmeasurement)isdeterminedasafunctionoftimeonglassrings[21].The weightcutoff(MWCO,1100kDa)oftheUFmembranesandobtainedvaluesrangingfrom2000 BFRvalueallowsthepredictionofcleaningintervalsandavalueof<1pgATP/cm2.dallowslong 13000s/L2(ascomparedtoMFIvaluesof15s/L2).Highervalueswerelinkedtotheretentionof termstableoperation,butsuchvaluesgenerallyrequireextensivepretreatment[16].TemporaryBFR smaller colloids as well as cake filtration of the retained particles, although a correlation with the 2 MWCOwasnotapparent.Whileothermembranecharacteristicsmaybepartlyresponsibleforthose valuesof>120pgATP/cm .dindicateseverebiofoulingpotential[23],whileforvaluesinbetween variedresults,itisalsoimportanttonotethatfoulingatsuchMWCOsiscomplexandcannotbesolely those extremes biofouling is dependent on many other parameters as well and to date not well understood.ItisinterestingtonotethatvanderKooijet al.[21]foundthatthematerialtype(intheir attributedtoparticulates.A13kDamembranewasestablishedtobethebestmembraneforsuchtests. investigation glass & Teflon) had only minor effects on biofilm formation. This is an important Boerlageet al.[19]useda13kDaUFmembrane(estimatedporedimension9nm)tomeasurefouling investigation to be repeated for different membrane materials. BFR was enhanced by low potential and effectiveness of pretreatment and compare the results with the SDI and the MFI0.45. concentrationsofeasilydegradablesubstrateswhichconfirmsthatthemeasurementofthechemical MFIUFcanbeoperatedinconstantfloworpressuremode.TheMFIUFvalueswereinfact4001400 composition of feed waters, including low concentration organic compounds, is important. Sadr timeshigherthantheMFI0.45duetothesmallerparticlescaptured.TheMFIUFcanalsobeusedto Ghayeni et al. [24] in fact investigated the adhesion of bacteria to RO membranes as a function of determinetheeffectivenessofpretreatmentwithregardtoreductionoffoulingpotential.Roordaand solutionchemistryandobtaineddifferencesinattachmentwithvaryingmembranetypes,ionicstrength van der Graaf [9] used the MFIUF to determine the fouling potential of UF membranes and (increasedattachmentathigherionicstrength)butnotpH.Theimportantissueofconditioningfilms confirmedthedependenceonmembranetype. wasalsoinvestigatedandattachmentmayvaryduetosuchfilms.Conditioningfilmsaremostlikely AsageneralevaluationReissandTaylor[20]comparedthreeparametersusedtoinvestigatefouling– formed by adsorption of organic compounds as covered in Sections 3.3 and 4.3. This sorption thesiltdensityindex(SDI),themodifiedfoulingindex(MFI),andthelinearcorrelationofthewater continues with sorption of organic compounds into biofilms as studied by Carlson and Silverstein, mass transfer coefficient (MTC). Three different NF pilot systems were used with different wherethesorptiondependsstronglyonthecharacteristicsoftheorganicmolecules[25]. pretreatments including activated carbon and MF. No correlation between the different parameters wasobtained,indicatingthatthefiltrationlawsonwhichthemodelsarebasedmightnotbevalidfor 2.4 Membrane Autopsy NF.Hence,theseparametersneedtobeusedwithcaution. Membraneautopsyisthedestructivemethodtocharacterisethenatureandlocationoffoulantsusing Itisclearthatthepossibilityofarapidfoulingpreventionistempting.Howwellsuchindicesworkin predominantly surface characterisation techniques. To perform membrane autopsy, the membranes determiningfoulinginaholisticsenseisnotclearitwouldcertainlybeusefultoestablishamethod needtobesealedbycoveringtheendcapsaftertheelementsareremovedfromtheinstallation,stored thatcancombineparticulatefoulingwithothertypessuchasorganic,inorganicandbiofouling.Todo and transported in a cool environment and preferably all analysis performed within 24 hours [23]. thisonewouldrequirethemembranetobeusedandanoptiontoperformsuchtestsarestirredcell Gwonet al.[26]usedmembraneautopsytoinvestigatethedifferenceoffoulingalongthelengthofa experiments combined with BFR under filtration conditions. A suitable test protocol is yet to be membranebydividingthemoduleintofivelengthsections. developedandmaydependontheforeseenoperatingconditionsasingeneralitisdifficulttosimulate Asanexample,VrouwenvelderandvanderKooij[16]usedmembraneautopsyfortheinvestigationof realisticfoulingunderlaboratoryconditions. biofouling.Theautopsycomprisedthefollowingsteps 2.3.5 Biofilm Formation Rate (BFR)  Visual inspection of the elements (colour, odour, particle deposits, faults, etc) & Biofilm formation depends on favourable conditions for microorganisms in the system. Details on lengthwaysopeningofelements Biofouling are presented in Section 7. A number of methods to assess such growth have been  Selectionofsamples(adequatespecialdistribution) summarisedbyvanderKooijet al.[21]asfollows  Analysis (adenosinetriphosphate (ATP) concentration to determine active biomass, totaldirectcellcount(TDC),heterotropicplatecounts(HPC)todeterminecolony

9 10 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration

forming units (CFU), inductively coupled mass spectrometry (ICPMS) for AttenuatedtotalreflectanceFouriertransforminfrared(ATRFTIR)spectroscopycanbeusedtoshow quantificationofinorganiccompounds. thefunctionalgroupsoffoulantsandthemodificationofmembranefunctionalgroupsduetofouling Foulantdepositscanberemovedfromthesurfaceifthefoulinglayerissufficientlythick.Suchdeposits [36]. Jarusutthiraket al.[40]usedFTIRtoidentifyfractionsofeffluentorganicmatter(EfOM)with can then be analysed and their composition determined as mass fractions using various analytical depositsfoundonmembranesbycomparingFTIRspectraofcleanandfouledmembranes.Infrared techniques.Forexample,SayedRazaviet al.[27]scrapedmembranedepositscomposedofproteins, internal reflection spectroscopy (IRIRS) is a similar technique that can be used to characterise the lipidsandcarbohydratesoffforrheologicalmeasurementstodeterminewhichcompoundsdeposited natureofthedepositedlayeronthemembrane[41]. preferentially.Thedepositscanalsoberemovedbychemicalmeans,forexampleChoandFane[28] dissolvedEPSdepositsusingaphenolsolutionforfurtheranalysisandLeeet al.[29]usedNaOHto remove NOM deposits for further fractionation onto hydrophobic, transphilic, and hydrophilic fractions.LuoandWang[15]usedFTIRGC/MSfollowingdesorptionwithNaOHandfractionation withXADresinstocharacterisetheorganicdeposits.Organicsoriginatingfromadesalinationsystem wereidentifiedtobefattyacids,carbonylesters,aswellasaromaticspeciesandsilicates.Nghiemand Schäfer[30]usedacetonetodesorborganictracecontaminantsforsubsequentquantification.Belferet al. [31] used nitric acid (HNO3) assisted with sonication to dissolve depositsthatweresubsequently analysedforinorganicconstituentsandidentifiedascalciumphosphatescaleduetotheabundanceof substantialamountsofcalciumandphosphate,besidessilica.Suchanalysisisusuallycombinedwith surfacecharacterisationtechniques. Surface characterisation techniques used for membrane autopsies are energy dispersion of XRay a b spectroscopy(EDX)mappingorscanningelectronmicroscopy(SEM)[6].UsingEDX,Farooqueet al. [32] have determined that the main foulants on a NF pretreatment membrane used in seawater desalination by RO were O, Fe, Cl, Na, S and Cr. SEM also revealed the presence of diatoms (confirmed by the presence of an SI peak). Buttet al.[33]usedalsoXraydiffractometry(XRD)to determine the type of species or phases in which scales are present. This method also allows to establish relative amounts.Thisstudydeterminedthatmostscaleswereofamorphousnaturewhich wasattributedtothepresenceofantiscalantsandthatthebulkofthedepositswasbiomass.Kimet al. [34,35]havedevelopedwelladaptedprotocolsforSEMandtransmissionelectronmicroscopy(TEM) for membranes. A drawback of such methods is the requirement of high vacuums and hence the limitationtodrysampleswhichmaynotalwaysgiveatruepictureofthefoulinglayer.EDXandSEM areusedtodeterminetheatomiccompositionofamembranedeposit[36]andanexampleofatypical resultisshowninFigure4foraTFCmembraneusedinthetreatmentoftertiarymunicipaleffluent. c d The fouling in this case was established to be a combination of biofouling and calcium phosphate precipitate as described above [31]. The problem of restrictions to dry samples has recently been Figure 4 SEM and EDX scans of a NF270 membrane fouled by tertiary municipal effluent a) overcome by new techniques such as atomic force microscopy (AFM) where wet samples can be SEM micrograph, b) calcium, c) phosphorous, and d) sulphur element scans (pictures analysedorsamplescanevenbeimmersedinwater.Theresolutionofthistechniqueisextremelyhigh reprinted from Belfer et al. [31]). withthepossibilityofindividualNFporesbeingidentified(seecoverpageofthisBook)andsurface roughness calculations or force measurements including the interactive forces between foulants and membranes allowing conclusions about mechanisms [3739]. Such characterisation techniques are 3 FOULING MECHANISMS describedinmoredetailinChapter5. Nanofiltrationmembraneshaveindividualfoulingcharacteristicsandingeneraltightermembranesare knowntofoultoalesserextent[42].Ifafoulantisabletopermeatethroughamembranethefouling potential is higher as the penetration into pores is possible [42]. Hence, membrane and foulant characteristicsplayanimportantroleinfouling(seeChapter3and5).Forexample,membranesurface chargeplaysanimportantroleinfouling.Itisdesirablethatthesoluteandthemembranesurfaceareof identical charge to enhance repulsion, and hence, reduce the likelihood of deposition. However,

11 12 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration hydrophobicinteractionsbetweenfoulantsandmembranesmayovercomeelectrostaticrepulsion[43]. toformrapidlyatthebeginningoffiltration[10].CPinNFcausesareductioninfluxpredominantly Besidesmembranematerialproperties,theoperationmodeandmoduledesignareimportant,modules duetotheincreasedosmoticpressureofretainedionsandtheformationofgelsbyretainedorganic aredescribedinChapter4. molecules.ColloidaldepositscanfurtherincreaseCPbyforminganunstirredlayerthatincreasesthe Fouling has been described in literature using the osmotic pressure and resistance in series models. boundarylayerconcentration. Whiletheequationsaregivenhere,thequantitativedescriptionofthecontributingmechanismsisgiven Atthemembrane,alaminarboundarylayerexists(Nernsttypelayer),withmassconservationthrough inthesubsequentsections.Purewaterfluxunderlaminarconditionsthroughatortuousporousbarrier thislayerdescribedbytheFilmTheoryModelinequation (10) [3]. maybedescribed,accordingtoCarman[44]andBowenandJenner[45],byequation(7). dc DcJcJ BL =++− 0 (10) ∆P SFP dx J = (7) η RM where cF is the feed concentration, DS the solute diffusivity, cBL the solute concentration in the boundarylayerandxthedistancefromthemembrane. wherePisthetransmembranepressuredifference,ηthedynamicsolventviscosity,andRMtheclean membraneresistance(i.e.theporousbarrier). . TheResistanceinSeriesModel describesthefluxofafouledmembrane.Thisisgiveninequation(8). feed flow membrane The resistances RCP, RA, RG, RP and RC denote the additional resistances which result from the Figure 5 Concentration J exposureofthemembranetoasolutioncontainingfoulants.RCPistheresistanceduetoconcentration s polarisation (adapted polarisation,RAtheresistanceduetoadsorption,RGtheresistanceduetogelformation,RPtheinternal from Sablani et al. [49]). cw Jv porefoulingresistance,andRCtheresistanceduetoexternaldepositionorcakeformation.Itshouldbe notedherethattheselectionofresistancesvariesinliteratureandissomewhatambiguous. cb cp ∆P J = cBL η +++++ (8) ( RRRRRR CPGACPM )

TheOsmoticPressureModel,asshowninEqn(9),isanequivalentdescriptionformacromolecules convective flow according to Wijmans et al. [46]. This equation includes reversible fouling also. Π is the osmotic pressuredifferenceacrossthemembrane.Theosmoticpressuredifferencecanusuallybeneglectedin back diffusion MF and UF, since the rejected solutes are large and their osmotic pressure small. However, even polymeric solutes (macromolecules) can develop a significant osmotic pressure at boundary layer solute concentrations[47].TheosmoticpressurecanalsobeincorporatedintoRCP. boundary layer ∆ −∆Π = P J (9) Afterintegratingwiththeboundaryconditionsc=cWforx=0andc=cbforx=δ(whereδisthe η R M boundary layer thickness) for similar solute and solvent densities, constant diffusioncoefficient,and

Reversible flux decline can be reversed by a change in operation conditions, and is referred to as constantconcentrationalongthemembrane,equation(10)canbederived.cWisthewallconcentration concentration polarisation. Irreversible fouling can only be removed by cleaning, or not at all. whichdeterminesadsorption,gelformationorprecipitation,andkSthesolutemasstransfercoefficient. Irreversiblefoulingiscausedbychemicalorphysicaladsorption,poreplugging,orsolutegelationon − = ()cWP c = DS themembrane. J kS ln − with kS δ . (11) ()cBP c 3.1 Concentration Polarisation (CP) Concentration polarisation can be minimised with turbulence promoters on the feed side of the Concentration polarisation (CP) istheprocessofaccumulationofretainedsolutesinthemembrane membrane,suchasspacersorintroductionofcrossflow. boundarylayerandwasfirstdocumentedbySherwood[48].Concentrationpolarisationcreatesahigh soluteconcentrationatthemembranesurfacecomparedtothebulksolution.Theretainedsolutesare AtypicalfluxversustimediagramforacyclicoperationofaUFsystemisshowninFigure6,where broughtintotheboundarylayerbyconvectionandremovedbyagenerallyslowerbackdiffusion.This cyclicoperationmeansthealternatingcycleoffiltrationorpermeateproductionfollowedbycleaning. back diffusion of solute from the membrane is assumed to be in equilibrium with the convective The diagram shows flux for cycles i=1 to i=n and a very rapid flux decline due to concentration transport.Theconcentrationintheboundarylayeriscriticalforboth,foulingandretention[49].The polarisationfollowedbyoperationataveragefluxuntilcleaning.Fromcycletocyclethepurewater schematicofCPisshowninFigure5andwithregardtoscalinginFigure19.CPisnormallyassumed

13 14 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration permeability as well as the average steady state flux decrease indicating a loss in productivity that whereJisthewaterflux.Henceanincreasedconcentrationpolarisationatconstantintrinsicmembrane cannot be recovered by cleaning until the membrane lifetime is reached. Nikolova and Islam [50] retentionwillleadtoanincreasedpermeateconcentration,andhence,adecreasedobservedretention. considerconcentrationpolarisationasamoregradualprocess. CP is generally considered as a reversible process that can be controlled by increasing crossflow velocity,permeatepulsing,ultrasound,oranelectricfield[49].Allthoseprocessesaimatthereduction J ofthesoluteconcentrationatthemembranewall(cW),whichcanonlybecalculatedifthemasstransfer Figure 6 Illustration coefficient is known. Despite the reversible nature of CP, it contributes to the more problematic Jo(t)-decrease in pure water of flux decline over foulingmechanismslistedbelow[49]. permeability due to fouling time due to fouling  Adsorptionofsolute J(tp)-flux decline due to concentration polarization and concentration  Precipitationofsolute polarisation (adapted Jo  Gellayerformation from Sablani et al. [49]). ToreduceCPandfouling,operationbelowasocalledcriticalflux[49]isimportant,whichisdiscussed i = 1 conceptuallyinsection3.6. i = 2 3.2 Osmotic Pressure Ja1 i = n-1 Ja2 i = n Osmoticpressureiscloselylinkedtoconcentrationpolarisation.Increasedconcentrationofinorganic ororganicsolutescausesanincreaseinosmoticpressure.Thisosmoticpressurereducestheeffective

Solvent flux acrossacrossacrossflux flux flux SolventSolventSolvent membrane membrane membrane transmembrane pressure and the solvent flux. The osmotic pressure of an inorganic solute can be tp tc calculatedas permeation cleaning membrane life-time -τ =∆Π ni Time INORG ∑ ji TR (15) Vi Theeffectofconcentrationpolarisationintroducescomplexityandconfusionintothecoremembrane wherejisthefactorformoleincreaseduetodissociationforsolutei,nthenumberofmoles,Rthe performanceparameterretention.Itshouldbedistinguishedherebetweenthetermsobserved(ROBS) ideal gas constant and T the absolute temperature. For high salt concentrations this equation is and real retention (R0). The observed retention is usually measured in membrane applications and inadequateandthePfitzerequationcanbeapplied.Thisapproachhasbeenusedforananofiltration calculatedas applicationbyvanderBruggenet al.[52].   Theosmoticpressureofanorganicsolutecanbecalculatedas  −= cP  ⋅ ROBS   %1001 (12)  cb  ⋅TR 2 ++=∆Π cAcAcA 3 with A = (16) ORG 21 3 1 M wherecpandcbarethepermeateandbulksoluteconcentrationasillustratedinFigure5,respectively. Thebulkconcentrationisoftenapproximatedwitheitherthefeedconcentrationortheaverageoffeed whereAiaretheviralcoefficientswithA2andA3consideredasnegligibleforconcentrationsupto100 andretentateconcentration.Consideringconcentrationpolarisation,thisobservedretentiondoesnot g/L.Ristheuniversalgasconstant,Mtheaveragemolecularmassoftheorganic/polymerandTthe reflectmembranecharacteristics,astheretentionbythemembraneishigherduetotheincreasedwall absolutetemperatureofthesolution[50]. concentrationcwatthemembranesurface.Hencetherealretentionis 3.3 Adsorption  c   −= p  ⋅ Adsorptioncanbedefinedasthespecificinteractionbetweenthemembraneandasoluteeveninthe R0   %1001 . (13)  cw  absenceofaconvectiveflowthroughthemembrane[50].Thestaticadsorption(intheabsenceofflux) To determine the real retention requires knowledge of the solute concentration at the membrane isgenerallylowerthanindynamicadsorptionduetotheincreasedhydraulicresistance[30]. surface which cannot be directly measured. To estimate this wall concentration one requires the Adsorptionmayoccuronthemembranesurfaceorinpores,essentiallyatanypointofcontactbetween velocitydependentmasstransfercoefficientwhichcanbedeterminedusingmasstransfercorrelations thesoluteandthemembrane.ThisisshowninsimplifiedtermsinFigure7. [51].TherelationshipbetweenrealandobservedretentionwaspublishedbyKoyuncuandTopacik[51] asfollows  −   −  1 ROBS  = 1 R0  + J ln  ln  (14)  ROBS   R0  k

15 16 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration

Solute<Poresize: Pore penetration is possible and adsorption of a solute c J = k ln G lim S (20) occurs on the membrane surface, in the pores and the back of the membrane cB Solute>Poresize:Pore penetration is not possible and adsorption sites are Themodeldoesnotincludemembranecharacteristics,andtendstopredictalowerfluxthanobserved. only available on the membrane surface AnimprovementcanbeachievedinusingDSforthegellayerratherthanthebulksolution[45]. Figure 7 Simplified diagram of adsorption for different solute to pore size proportions. Solute<Poresize: Pore penetration is possible and gel formation of a solute Adsorption can be measured using the partitioning coefficient between membrane and bulk phase occurs on the membrane surface and in the pores whichisdefinedinEq(17). Solute>Poresize:Pore penetration is not possible and gel formation occurs Γ only on the membrane surface K = 2 ⋅ CM [Lm ] (17) Figure 8 Simplified diagram of gel layer formation following adsorption. where Γ: adsorbedquantityoforganic(gm2)

M: molarmassoftheadsorbingcompound(g/mol) 3.5 Cake Formation and Pore Blocking 1 C: equilibriumconcentrationofthesoluteinthesolution(mmolL ) Belfort et al. [55] proposed five stages of fouling in microfiltration of macromolecules that are Van der Bruggen et al. [2] observed flux declines of up to 59% with organics in solutions with somewhatapplicabletoNF.Theseare, concentrations of about 1 g/L. Combe et al.[53]alsodeterminedfoulant–membranepartitioning (1) fastinternalsorptionofmacromolecules, coefficientsandthoseresearchersalsoconsideredthesolutionvolume. (2) buildupofafirstsublayer, Van der Bruggen and Vandecasteele [54] have used an adapted Freundlich equation for the direct (3) buildupofmultisublayers, descriptionofadsorptionfromfluxdeclinemeasurements. (4) densificationofsublayers,and ⋅= CKJ n (18) f (5) increaseinbulkviscosity. where J: waterflux(Lm2h1) Thefifthstagecanbeneglectedfordilutesuspensionslikesurfacewater.Thedependenceonparticle Kf;n: parameters sizecanbedescribedas

Infiltrationtheadsorbedamountcandeterminedbymassbalanceusingthefollowingequation dsolute<dpore: depositonporewalls,restrictingporesize

n +Γ= + dsolute≈dpore: porepluggingorblockage FF P ∑ pi VCCVAVC cc (19) 1 dsolute>dpore: cakedeposition,compactionovertime. whereAisthemembranearea(cm2);Гistheamountofsoluteadsorbedpersurfacearea(ngcm2)and ThoseprinciplesareillustratedinFigure9.Forsolutesmuchsmallerthanthemembranepores,internal nisthenumberofpermeatesamples;CF,CP,CCandVF,VP,VCareconcentrationandvolumeoffeed, depositioneventuallyleadstothelossofpores.Solutesofsimilarsizetothemembraneporewillcause permeate and concentrate respectively. Using this equation for the determination of adsorption immediate pore blockage. Particles larger than the pores will deposit as a cake, with the porosity assumesthatallsoluteisadsorbed.Forhigherconcentrationsthisismorecorrectlyexpressedasthe depending on a variety of factors including particle size distribution, aggregate structure and amountofdeposit. compaction effects. The process of small particles adsorbing in the pores may be a slow process compared to pore plugging,whereasingleparticlecancompletelyblockaporeandthereforeflux 3.4 Gel Layer Formation declineshouldbemoresevereforthelattercase.Ifthemembraneisnonporousthenthedepositionof Gel formation is considered as the precipitation of organic solutes on the membrane surface. This solutes takes place on the membrane surface with smaller solutes generally forming less permeable process usually occurs when the wall concentration due to concentration polarisation exceeds the deposits. solubilityoftheorganic.Gelformationdoesnotnecessarilymeanirreversiblefluxdecline. TheGelPolarisationModelisbasedonthefactthatatsteadystatefluxreachesalimitingvalue,where anincreaseinpressurenolongerincreasestheflux.AccordingtotheGelPolarisationmodel,atthis limitingvalue,thesolubilitylimitofthesoluteintheboundarylayerisreachedandagelformed.For

100% retention, the expression for this limiting flux (Jlim) is described by Eq (20). cG is the gel concentration,beyondwhichtheconcentrationintheboundarylayercannotincrease.

17 18 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration

Figure 9 Colloid – organic fouling mechanisms A PoreversusSurfaceFouling ChangandBenjamin[56]pointedoutthatthemechanismsoforganiccolloiddepositionandgellayer

Pore Adsorption (dsolute<

PorePlugging(dsolute≈dpore): Colloid or solutes of a similar size to pore diameter simplifytheissue.Thedifferentiationisnotalwayssimple,especiallywhenconsideringthataggregation block pores completely, reduction in membrane porosity and severe flux decline ofthegelcompositesmayinfactformamoreparticulateorcolloidaldeposit.

Cake Formation (dsolute>>dpore): Colloid or solutes larger than the pores are 3.6 Critical Flux and Operating Conditions retained due to sieving effects and form a cake on the membrane surface, depending on pore to particle size ratio flux decline occurs (permeability of the cake Criticalfluxstemsfromtheconceptthatthehigherthefluxthestrongeristhedragforcetowardsthe layer as well as the cake thickness are important) membrane(andhencedepositionofcolloids),thestrongerconcentrationpolarisation(andhencethe boundarylayerthicknessandsoluteconcentration)andthehigherthecompactionofadeposit.The strongerthefluxthelessdispersiblethedepositwillbe. B ImpactofColloidorSoluteStability Criticalfluxisdefinedasthelimitingfluxvaluebelowwhichafluxdeclineovertimedoesnotoccur StableColloids smaller than the pore size are not retained by membrane, unless [57].Traditionallycriticalfluxderivesfromthefiltrationofparticulatematterusingporousmembranes. adsorbed by the membrane material MänttäriandNyström[10]describeastrongandweakformofcriticalfluxwherethestrongform describesthefluxwheretheactualfluxstartsdeviatingfromthecleanwaterflux,whereastheweak TightAggregates are formed by slow coagulation, are retained and form a cake on criticalfluxisthepointwherefluxincreasewithpressureisnolongerlinear.ThisisillustratedinFigure the membrane. The aggregate structure may collapse depending on forces on the 10wherethesolidlineisthelineardependenceofCWFofpressure,whilethedashedlinetheliner aggregate and the aggregate stability. Flux through the tight aggregates is usually dependenceofpermeatefluxofpressure.Thehollowandsolidcirclesshowthepermeatefluxaftera low unless the aggregates deposit as a porous cake of large particles. stepwiseincreaseanddecreaseofpressure,respectively.Thesquaresarefluxvaluesafterfiltrationat thehighestpressure(andhencewithsignificantirreversiblefouling). Loose Aggregates are formed by rapid coagulation and are also retained. Such aggregates form a cake on the membrane. The aggregate structure may collapse depending on forces on the aggregate and the stability of the aggregate. Flux Figure 10 Critical flux in through the open aggregates is high if the structure is maintained during filtration. nanofiltration (reproduced from Mänttäri and Nyström [10]). Note that lines represent different experiments. C SoluteSoluteInteraction Colloids<poresandstabilisedwithorganics(forexample)are not retained by the membrane, unless adsorbed by the membrane material or destabilised with high salt concentrations. Aggregates with organics adsorbed after aggregation (for example) are fully retained by the membrane, but may penetrate into the upper layer of the membrane. This could also be organics destabilised with multivalent cations. Colloids whicharepartiallyaggregatedanddestabilised such as a variety of solutes that interact with each other in heterogeneous ways in the presence of salts, colloids and dissolved organics, form small and diverse aggregates which may block Anumberofparametersinfluencethiscriticalflux.Crossflowvelocityincreasesthecriticalfluxwhile pores. soluteconcentrationdecreasesit.Repulsionbetweensoluteandmembranealsoincreasecriticalfluxin the case of high molar mass polysaccharides, whilein paper industry effluents only weak forms of critical flux were found [10]. Some authors have noted that the thickness of the fouling layer is primarilydependentontheinitialflux[27].Gwonet al.[26]comparedNFandROfoulingandfound thatthefoulinglayerinNFwasmostlyorganicandcouldbefullyrecoveredwhileinROthefouling wasinorganicandorganicandcouldnotberecovered.ThefoulingattheendoftheROmoduleswas

19 20 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration most severe which indicates the importance of reduced crossflow and increased concentration. Howeverthefluxattheendofmoduleswouldnormallybelowerthanatthemoduleentrance. * δ 3.7 Additional Fouling Mechanisms H U0 Hc = Hc – c

Innanofiltrationprocesses,theretentionofionicspeciesresultsinaconcentratedlayerofionsatthe c membranesurface(knownassalt concentration polarisation),whichcreatesanosmoticpressuredropacross themembrane.SubmicrometercolloidsarehighlyBrownian,whichmeansthattheyareinfluencedby δ diffusive, as well as convective transport mechanisms. Also, aggregation and deposition of small du du d c γ /dy = f ( /dt) colloidsarestronglyinfluencedbycolloidalforces[58].Thepolarizedlayerofrejectedionicsolutes D∞ v(t) /dy = 0 = 6U0/Hc * v(t) D < D∞ exacerbatescolloidalfoulingofNFmembranesbygreatlyreducingrepulsiveelectrostaticinteractions. δ Moreover,aggregationoforganicmacromoleculesandprecipitatedsaltsmayoccurinthebulksolution c nearthemembranesurfacewhererejectedionicsoluteconcentrationishigherthaninthebulk.These aggregatesmayactaslikeverysmallcolloids(typ.<500nm)andcauseseverefoulingbecausetheyare not removed in dissolved form by pretreatment. Therefore, the feed solution chemistry and Figure 12 Conceptual illustration of hindered mass transfer in crossflow membrane filtration. membraneionretentionarecriticaltotheformationofcolloidalcakelayers. The tangential flow velocity, U 0 and the salt ion diffusion coefficient are critical parameters in Accumulation of rejected dissolved and (organic, inorganic, or biological) colloidal matter at the determining mass transfer in the salt concentration polarisation layer. Tangential flow and salt membrane surface presents the opportunity for additional fouling mechanisms. These mechanisms ion back-diffusion may be locally hindered in the presence of a colloid deposit layer, thus arise from interactions between rejected ions and colloids passing through the concentration enhancing the membrane surface salt concentration and the resulting trans-membrane osmotic polarisationlayerandatthemembranesurface.Theclassicpictureofthissituationispresentedin pressure. Figure11whereitisassumedthatastagnantcakelayerdevelopswithasaltandcolloidpolarisation Itwasrecentlyproposedthatthemutualdiffusioncoefficientofrejectedsaltionsmaybehindered layerflowingabovethecakelayer.Inaddition,analysisofthefactorsaffectingdissolvedsolutemass withinthecolloiddepositlayers[5961].Ahinderedsaltdiffusioncoefficientwasrecentlyusedto transfer reveals one potential interaction between a colloidal cake layer and the salt CP layer. describe colloid cakeCP layer interactions in crossflow RO/NF membrane filtration [6062]. The Increasingthebulkflowrateincreasestheshearrate,whichenhancesmasstransfer.However,the resultwaselucidationofasinglemechanism–“cakeenhancedconcentrationpolarisation”–capableof ∝ 2/3 mostinfluentialvariableonmasstransferisthesolutediffusivity(ks D ). describingthemajorityofobservedfluxdecline,aswellastheobserveddeclineinsaltretentiondueto colloidalfoulingofNF(andRO)membranes.Theoverallmasstransfercoefficientwasconsideredthe sumoftwomasstransfercoefficients,onedescribingsaltbackdiffusionfromthemembranesurface throughthecakelayer,andonethroughtheremainderofthesaltCPlayer. IncorporatingthehinderedmasstransfercoefficientintoEq(11)andsolvingforthetransmembrane osmoticpressureyields

 J  − ε 2 1)ln(1  π * =∆ RCf exp + vδ  −  , (21) obosm c  ε  k s  s DD s 

* Figure 11 A schematic of a crossflow nanofiltration process showing the development of the where∆πm istermedthe“cakeenhancedosmoticpressure.”TheterminbracketsinEq(21)comes cake and concentration polarisation layers, and the corresponding permeate flux decline along fromconsideringathincakelayer,inwhichthetangentialflowfieldisassumedunchangedbythe the axial direction. presenceofthecake,andhindereddiffusionalonereducesmasstransfer[59,61].Thereducedsalt

diffusivity in the cake layer is expressed as εD∞/τ, with the tortuosity, τ, being approximated as − ε 2 )ln(1 [5961,63].TheonlytermontherighthandsideofEq(21)thatisnotaknownconstantor experimentallymeasurableparameterisε,thecakelayerporosity.

21 22 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration

* Cm observeddeclineinsaltretentionassociatedwithNFmembranefouling.Theentrapmentofsaltions withinthecakelayerenhancesthemembranesurfacesaltconcentration,andtherefore,thechemical Cm potentialgradientresponsibleforsolutetransportthroughnanofiltrationmembranes.Itispossiblethat * ∆πm > ∆πm foulingbymacromoleculeswithhighchargedensity(e.g.,proteins,humicandfulvicacids,etc.)may Cb Cb ∆πm actuallyrejectsaltionsandotherdissolvedspeciesiftheyformdenselypackedcakeorgellayer.In ∆p suchcasesenhancedconcentrationpolarisationphenomenamaybesuppressed.Theseinteractionsare c C * > C p p discussedinmoredetailinthefollowingsections. Cp Applied Pressure, ∆P 4 ORGANIC FOULING Organics interact with membranes in a number of ways. It is difficult to single out individual ∆π * interactionmechanisms.Themechanismisstronglydependentontheorganictypeandthechemical ∆ m (t) pm(t) characteristicsofthemoleculesaswellastheiraffinitytowardsthemembranematerial.Someofthose ∆ pc(t) solutemembraneinteractionmechanismsaredescribedinChapter20. P Pure Salt Particles Water Added Added 4.1 Introduction and Definition of Organic Fouling (a) (b) (c) Organic fouling is the irreversible flux decline due to the adsorption or deposition of dissolved or ∆pc(t) colloidal organic material. This can be the adsorption at a molecular level or as a monolayer, the ∆π * m (t) formationofagelonthemembranesurface,thedepositionorcakeformationbyorganiccolloidsor ∆πm theporerestrictionandblockingbymoleculesthatcanpenetrateintothemembrane.Suchorganic Time fouling can be severe and persistent, for example Roudman and DiGiano [65] reported that even rigorouschemicalcleaningfailedtoremoveNOMfromnanofiltrationmembranes. 4.2 Common Organic Foulants Figure 13 Conceptual illustration of the effect of cake-enhanced concentration polarisation on flux when operating at constant pressure based on laboratory experiments of Hoek et al. [61, Organicsplayanimportantroleinfoulingandactinanumberofways.Firstly,organicsmayadsorbto 64]. Initially, the applied pressure and membrane (hydraulic) resistance control pure water or deposit on membranes resulting in a variation of the surface characteristics and hencefluxand fouling behaviour. Secondly, organics may act as a nutrient source for microorganisms and hence flux (a). For a simple electrolyte feed solution (b), an osmotic pressure drop ( ∆πππm) across the facilitatebiofouling.Thirdly,organicsmayadsorbontocolloids,stabilisesmallcolloidsandhencemake membrane develops nearly instantaneously due to the accumulation of rejected salt ions at the itmoredifficultforthosecolloidstoberemovedinpretreatment.Infact,inthenaturalenvironment membrane surface. Trans-membrane pressure is the difference between applied pressure and colloidscommonlyhaveanegativesurfacechargeduetoanadsorbedlayerofNOM,whichcanleadto the trans-membrane osmotic pressure. Immediately after colloidal particles are added to the stabilisation of the colloids [66, 67]. The degree of stability depends on the amount of organics feed (c) they begin to accumulate on the surface of the membrane and form a “cake” layer. A adsorbed. Lastly, some also describe the organics themselves as “colloids” and hence organic and hydraulic pressure drop forms across the stationary colloid cake layer, which increases as the colloidalfoulingoverlap. cake layer thickness increases. More importantly, the concentration of rejected salt ions builds up within in the cake layer because mass transfer (back-transport of salt ions) through the cake In the water and wastewater industry, natural and effluent organic matter arewellknownandwell * studiedfoulants.Thenaturalorganicmatter(NOM)ispredominantlycomposedofsocalledhumic layer is hindered. The resulting “cake-enhanced osmotic pressure” ( ∆πππm ) can be an order of substances[4].Effluentorganicmatter(EfOM)isthewastewaterequivalentofNOMandcontributes magnitude greater than the trans-cake hydraulic pressure when membrane salt retention is to membrane fouling by adsorption, surface accumulation or pore blocking, mostly by the humic high. fractionsandpolysaccharides[68].Wiesneret al.[69]identifiedfourNOMcategorieswhicharestrong Thegreaterimplicationofthisfindingisthatanyaccumulatedmassonthesurfaceofasaltrejecting foulantsproteins,aminosugars,polysaccharides,andpolyhydroxyaromatics.Polysaccharideswerealso (NF/RO) membrane may entrap ions, enhancing the transmembrane osmotic pressure. Therefore, confirmedcompoundsofrelevancetofoulinginthefieldofwastewatertreatment[43].Jarusutthiraket cakeenhancedosmoticpressuremayplayaroleinfoulingduetothemostubiquitousandrecalcitrant al.[40]furtherfractionatedandcharacterisedEfOM.Thefollowingfractionswereseparated foulantsinNFprocesses,namelybiofilms,scale,andorganicmatter,butthishasyettobeproven.  ColloidalEfOMwithhydrophiliccharactercomposedofpolysaccharides,proteins, Further,themechanismofsaltentrapmentwithinfoulantdepositlayershelpstoexplainthecommonly aminosugars

23 24 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration

 Hydrophobic EfOM with humic substance characteristics (high aromaticity and possiblefeedwaterfoulingindexforwastewaterapplications.TheimportanceofEPSinMBRfouling carboxylicfunctionalgroups) was confirmed by Cho and Fane who determined that fouling occurred in two stages; a gradual  TransphilicEfOMalsowithhumicsubstancecharacteristics depositionofEPSonthe(MF)membranesfollowedbyarapidandsuddenstageofbiomassgrowth that required membrane cleaning [28]. Amy and Cho [73] identified polysaccharides as dominant  HydrophilicEfOMcontaininglowmolecularmassacids. foulantsinUFandNFofsurfacewater,althoughpolysaccharideconcentrationinsurfacewaterswould Lee et al. [29] determined that both the hydrophilic as well as the hydrophobic fractions adsorbed becomparativelylow. significantly to UF membranes, whereas transphilic NOM, mostly composed of hydrophilic acids, ThebehaviouroffoulantsinmixturesisafurtherissueMackey[74]forexamplestudiedthefouling adsorbedverylittle. of UF and NF membranes (cellulose ester and TFCSR) by various model compounds, such as ThehumificationdiagramforanumberofNOMsamplesfromsurfacewatersispresentedinFigure polysaccharides, polyhydroxyaromatics, and proteins. The larger compounds (polysaccharides and 14. The relationship to effluent organic matter is visible in the bottom left corner where the proteins)causedmorefouling,andinmixturesthefoulingincreased. approximate location of fulvic acids from sewage treatment plants is indicated. The different characteristicsofEfOMandNOMaswellastheirfractionsreflectindifferentfoulingcharacteristics. 4.3 Adsorption Nyström et al. [42] have investigated a number of organic molecules towards their fouling AdsorptionplaysanimportantroleinthefoulingofNFmembranesbyorganiccompounds.Infact, characteristics.Atypeofstarchthathadahigherproteincontentfouledthemembranesverystrongly. adsorptionisoftenregardedasthefirststepinmembranefouling.Adsorptionoforganiccompounds Foulingofpolysaccharidesandhumicsubstancesshowedthatwhentheorganicswerechargedfouling canbeconsideredastheformationofaconditioningfilmwhichallowstheattachmentofbacteriaand waspHdependentwiththehighestamountoffoulingoccurringwhenthechargerepulsionwaslowest hence biofouling, as an example. Adsorption can also cause pore narrowing and may hence be a [43].Further,solutesoluteinteractionsalsoinfluencefouling[43].However,thoseinteractionsareto precursortoporeplugging.Adsorptionofhumicshas,forexample,beenshowntooccurinporesand dateverypoorlyunderstood. onthemembranesurface[53].Adsorptionoforganicmoleculesintothemembranematrixchangesthe free volume in the membrane. Depending on the molecule the interaction can either increase or decrease this free volume and hence flux [42]. Nyström et al. [42] showed for example that small 12 vanillinmoleculescausedanincreaseinflux,ifcharged.Longerchainedmoleculeswithachargedid

] Organics commonly

-1 used in research

m IHSSHA notcausefoulingduetothelackofinteractionwiththemembraneduetochargerepulsion,while -1 10 pedogenic IHSSFA proteinscauseverystrongfouling.TheadsorptionofNOMrendersmembranesmorehydrophilicand humics Aldrich 100 kDa NOM NOMHA hencefacilitateswaterpermeation[65]. 8 NOMFA NOMHyd pedogenic NikolovaandIslam[50]showedthatinUFofdextrantheadsorbedlayeriscausingmostoftheflux fulvics 6 Organics from rivers declineasopposedtoosmoticpressureeffects,althoughtheadsorptionwas,inthiscase,reversible. Seine Main Humification Rhine Adsorption is an equilibrium process between the wall concentration determined by concentration aquagenic Aromaticity Pathway Karst 4 fulvics Kleine Kinzig polarisationandtheadsorbedorganics.AccordingtoNikolovaandIslam[50]thisrelationshipbetween fulvics from IHSSFAStd plants IHSSHAStd adsorptionandconcentrationislinear.Otherauthorsdescribetheadhesionmoremechanisticallyin 2 thatadhesionoccursduetodoublelayerinteractionsorhydrationforceswhenadsorbingmolecules HS-Hydrolysates andthemembranereachcloseenoughcontacttointeract[27]. 0 Specific Absorption (SAC/OC) [Lmg(SAC/OC) Specific Absorption 250 500 750 1000 1250 1500 1750 -1 Carlssonet al.[41]performedastudyusingpulpmilleffluentandUFandfoundthathydratedlignin Number Molecular Weight [gmol ] Molecularity sulfonatesadsorbedtothemembranesurfacefollowedbylaterdepositsofcellulosicoligomers. Champlin [75] investigated the impact of NOM adsorption on NF membranes in the presence of particulatematter.NOMadsorptionwasashighas12.6%oftheavailableNOM,butinterestinglythis adsorptionisreducedinthepresenceofparticulatematter.Thepostulatedmechanismswereparticles Figure 14 Humification diagram showing the molecular mass and aromaticity for a number of actingasabrasivescouringoranadsorbentthatcompeteswiththemembranesurfaceforNOM. surface waters as reported by Huber [70] and organic compounds used in water research (adapted from Schäfer et al. [71]. Adsorptionitselfcaneitherbetheprecursortoamoreseverefoulinglayerorcausesignificantfouling by itself [2]. Adsorption of organic compounds can also alter the membrane surface characteristics Extracellularpolymericsubstances(EPS)whichsurroundmicroorganismsandmaybeproducedbya (suchasincreasinghydrophobicityormembranecharge)andhenceleadtofluxvariations.Theeffect biofilmtendtoattachwelltosurfacesandmayalsocauseporeblockagewhenremovedfromthe ofhumicacidonmembranesurfacechargehasbeeninvestigatedbyanumberofresearchers[7678] bacterialcellsasisdescribedinthebiofoulingsectionofthischapter.ChangandLee[72]havelinked andshowedthathumicsubstancesinfluencethesurfacecharge(ingeneralamorenegativecharge)is foulingandEPScontentinamembranebioreactor(MBR)applicationandsuggestedEPScontentasa

25 26 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration observed)andtheadsorbedorganicsinfactdominatethesurfacechargewiththeirfunctionalgroups. NOMtohaveathicknessofabout1.6nm,whichislargerthanthetypicalNFporedimensions.Hence, The uptake of organics by hydrophobic membranes is stronger [53]. The deposition of the more ifporesexist,suchadsorptionleadstoporerestrictionorblockage. aromaticcompoundsappearsstrongerandcanalsobefacilitatedbythepresenceofcalcium[79].The 4.4 Gel Layer Formation multivalentionsactinvariousways[80].Firstlythechargerepulsioncanbereducedinthepresenceof the electrolyte, secondly the cations may form bridges between identically charged foulants and Gelformationoccurswhenthesolubilityofanoncrystallinesoluteisexceeded.Thisisoftenthecase membranes and thirdly it may vary the configuration of the foulant molecules. The adsorption of whenorganicmoleculesflocculateinthepresenceofsaltsandatneutralchargeconditions[42]suchas humicsubstanceshasalsobeenshowntoalterthehydrophobicityofthemembrane[81].Theauthors when the surface concentration increases due to concentration polarisation [84]. More details on anticipatedthatfoulingismoreseverewhennonpolarbondsareformedbetweenthefoulantandthe coagulationaregivenbelow(Section4.7).Depositsformedonthemembranesurfacebymaterialsthat membranesasopposedtopolarbonds. are too large to penetrate into or through the membrane eventually reach asteadystatethickness. Giventheimportanceofconcentrationpolarisation,crossflowvelocitycanbeexpectedtoreducesuch Anumberofcompoundandmembranecharacteristicsareimportantinadsorption;thosearewater phenomena[84].ChangandBenjamin[56]estimatedthatsuchafilmcouldgrowatarateofabout0.3 solubility, dipole moment, octanol water partitioning coefficient, surface charge, hydrophobicity, madayinfullscalesystemsthatremoveNOMinwatertreatment.Thoseauthorsassumedadensity molecularsize/massandmembranecutofforporesize[2].Methodstocharacterisemembraneswere ofaNOMgellayertobe1g/cm3,awatercontentof50%andNOMof50%carbonbymassto describedindetailinChapter5.Adsorptivefoulingoforganicsnotalwaysdecreasesasthenegative calculatesucha0.3mthicklayertorequire75mgofDOCperm2,whichwasestimatedtobeabout charge and hydrophilicity of a membrane increases. In fact, oxidation of the membrane increases 1%oftheorganiccarbonatypicalwatertreatmentsystemwouldbeexposedto. negativecharge,hydrophilicityandhumicacidadsorption[53].JarusutthirakandAmy[68]foundthat negativelychargedmembranesadsorbedthehydrophobicfractionofEfOM. Gel formation was observed by Jarusutthirak et al.[40]inthefiltrationofEfOMduetothelarge molecularmassofthecolloidalEfOMfractionandthesmallMWCOofNF.Thehydrophobicand FreundlichisothermswereinfactconfirmedbyotherauthorsfortheadsorptionofNOM[75]. transphilicfractionswereassumedtocauseagellayeralso,initiatedbyhydrophobicinteractions,while NghiemandSchäfer[30]havedeterminedabreakthroughphenomenonforsomeNFmembranesthat chargerepulsionreducedfoulingbychargedmolecules. canbeattributedtotheadsorptionofcontaminantsatverylow(ng/L)concentrations.Theamount adsorbed was dependent if a penetration into the active layer by the contaminants was possible. 4.5 Cake Formation Adsorption was dependent on the pKa of the contaminants with higher adsorption when the SeidelandElimelech[84]describedfoulingofNOMasacombinationofpermeationdragandcalcium compounds are undissociated. Similar trends were observed by Jones and O’Melia [82] when binding,henceacoupledprocessbetweenhydrodynamicsandchemicalinteractions.Veryimportantly hydrophobicinteractionofbovineserumalbumin(BSA)withmembranesdecreasedastheisolelectric thoseauthorshavepointedoutthatpermeationdragcanovercomerepulsiveforcesofdoublelayers point (IEP) was exceeded. A summary of adsorbed quantities of trace contaminants in membrane and cause foulant depositionattypicaloperatingconditions.Thisobservationstronglysupportsthe modulesisgiveninChapter20. criticalfluxphenomenafromSection3.6.Atlowflux,belowsuchacriticalflux,therepulsionbetween The actual interaction mechanisms that govern adsorption are not well understood. Roudman and foulantandmembranemaybestrongenoughtopreventdeposition.Calciumcanadverselyaffectsome DiGiano [65] suggested the predominance of acidbase interactions and hydrogen bond formation fouling prevention strategies such as crossflow velocity. Hong and Elimelech [80] related solution between NOM and membranes. Hydrogen bond formation was also suggested as a predominant chemistrywiththeformationofamembranedepositwithvaryingcharacteristics(seeFigure15).This mechanism in the adsorption of trace organic contaminants by thin film composite membranes in illustratesalsothechangeinfoulantconformationduetosolutionchemistry.Whenthechargeofthe Chapter 20. To date it is not easily possible to distinguish between hydrogen bond formation and foulantsislow,whichforNOMisathighionicstrength,lowpHandinthepresenceofmultivalent hydrophobicinteractions. ions, the NOM is coiled and deposits as a firm cake. If the repulsive forces between the NOM The stronger a compound adsorbs to the membrane, the higher the flux decline [2]. Partitioning functionalgroupsareenhancedthenthecakelayerislessstickyandmoreporous.Itshouldbenoted coefficient appears to increase with dipole moment indicating a possible charge interaction. The herethatthe‘solutionchemistry’refersnotonlytothefeedcharacteristics,butalsototheconditionsin theboundarylayer. partitioningcoefficientalsoincreaseswiththeoctanolwaterpartitioningcoefficient(Kow;LogP)and hence hydrophobicity. In other words hydrophobic interactions between membranes and organics causefluxdecline.Watersolubilitydescribesthepolarcharacterofamolecule,butwasnotidentifiedto have a correlation with adsorption. Seeing the importance of hydrophobic interactions it is not surprisingthatitisrepeatedlyreportedthathydrophobicmembranesfoulmore[41]. Adsorptioncanoccuronthemembranesurfaceandinthepores[53].Thisdependsontheporesize, the molecularsizeandshapeaswellasthesolutionchemistrywhichcanchangethestructureand shapeoforganics[83].ChangandBenjaminhaveestimatedthethicknessofanadsorbedmonolayerof

27 28 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration

complexeswithspecificinteractionsandaffecttheretentionandscalingofinorganics.Thisisshownat theexampleofhumicacidandcalcium(calcitescale)inFigure16.

Figure 15 Effect of solution chemistry on the deposit of NOM on a membrane surface (reprinted from Hong and Elimelech [80]). Figure 16 Interaction of calcium and humic substances in fouling A: Calcium Carbonate (pH Suchcakedepositswillformwherespaceisavailableifporesarelargeenoughthenthisprocessis 10), B: Calcium Carbonate and NOM (pH 10), C: Calcium and NOM (pH 8) (adapted from accompaniedbyporepenetration,restrictionandplugging. Schäfer [4]).

4.6 Pore Blocking/Plugging Calciumandothermultivalentcationsarewellknowntoincreaseorganicfouling.LiandElimelech Pore blocking is determined mostly by the size of the organic molecules and the pore size of the [87] confirmed the previously suggested mechanism of intermolecular bridge formation of calcium membranes.Adsorptioncanplayanimportantroleinporeblocking,whereporesareinitiallyrestricted between organic foulants and membrane functional group using atomic force microscopy (AFM). due to adsorption of molecules which penetrate into the pores. This is also referred to as pore SeidelandElimelech[84]statedthatNOMcalciumcomplexationandaggregationalsocausesfouling. narrowing[85].Naturally,porepluggingmayoccurwhentheretentionofsolutesisincomplete[50]. Saltsalsoinfluencesolutesoluteinteractionsandmayenhancecoagulationoraggregationoforganics. ChangandBenjamin[56]stipulatedthatporeconstrictionbytrappedmoleculesisthepredominant WallandChoppin[88]carriedoutacomprehensivestudyofhumicacidscoagulationduetoCa2+and mechanism with nanofiltration and tight ultrafiltration membranes, while surface gel is a more Mg2+ and established that the DerjaguinLandauVerweyOverbeek (DLVO) theory applies to such important process for looser membranes. This was confirmed by Cho et al. [86] who described a organics,infacteventheirsizedistributionchangeswithtimefollowingfractionation.Suchahumic processofquickfluxdeclineduetoporeblockagefollowedbyagradualnarrowingandclosingofthe colloidalsystemdestabiliseswhendoublelayerofindividualcolloidsinteractandhenceprecipitationor remainingporesinUF.HongandElimelech[80]observedstrongadsorptionandporeblockingatlow coagulationoccurs.Thecriticalcoagulationconcentration(CCC)forHAwas0.11M(NaCl),15mM pHforNOM. (Ca2+), 1050 mM (Mg2+) which is a realistic range for the boundary layer conditions of some Jarusutthirak et al. [40] found that the colloidal EfOM fraction was primarily responsible for pore membranes.Atveryhighionicstrength(NaCl)themolecularcolloidsarerestabilisedandcoagulationis blockingandthismechanismdominatedfouling. prevented. CoagulationalsodecreasedwithpHintherange48renderingtheCCCpHdependent Poreblockingwouldbeexpectedtooccurforcompoundswhicharesmallenoughtopenetrateinto (pH2.5,4,7resultinginCCCsof1mM,100mMand3M,respectively.Mg2+wassignificantlyless themembranestructureandyetlargeenoughtoexperiencehindrancewithinthisstructure[2].This efficient in coagulating HA than Ca2+. Such studies on solutesolute interactions shed light on the effectcanbeachievedduetothesizeofthemoleculeitselforduetosolutesoluteinteractions. possiblemechanismsobservedinnanofiltration.HongandElimelech[80]confirmedthisforNOM foulinginthepresenceofcalciumwheretheinteractionofthosecompoundscausedtheformationof 4.7 Impact of Solute-Solute Interactions and Salts smallandcoiledmacromoleculesthatdepositedatahigherrate. Saltsinfeedsolutionsorcationsinparticularcanhavevariouseffectsonfouling.Firstly,suchcations Forexample,inthefiltrationofdye,KoyuncuandTopacik[51]havefoundthatanincreaseinionic maycauseintermolecularbridgingbetweentheorganicfoulantsandthemembranes[84].Secondly,the strength(NaCl)theaggregationofdyereducedfluxdecline.SimilarresultswerereportedbySchäferet cationsmayformcomplexeswiththeorganicsandathighersaltconcentrationscausecoagulationor al.[89]whouseferricchloride(FeCl3)asdirectpretreatmenttoNFandfoulingofcalciumandHA precipitationandgelformation.Suchinteractionsarecomplexandaretodatenotwellunderstood. was reduced. This was attributed to the binding of the foulant HA to FeCl3 flocs as well as iron Organics can also act as ligands for multivalent cations (for more details see Chapter 7), form

29 30 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration hydroxidesandhencetheformationofmoreporousdeposits,unavailabilityoftheHAtoformagel Membranefoulingcanmodifymembranecharacteristicsandsubsequentlyvaryretentionbehaviourin layerandtheremovaloflargerparticulatesduetoshearforces. both directions. For example, Jarusutthirak and Amy [68] observed an increase in retention in consequenceofadsorptionofEfOMtomembranes. 4.8 Impact of Fouling on Retention Foulingcanaffecttheretentionofamembrane.Forexample,Nyströmet al.[42]havedemonstrated 5 SCALING that the retention of humic acid decreased in the presence of FeCl3. This was explained with the depositionofagellayeronthemembrane.SeidelandElimelech[84]confirmedadecreasedretention 5.1 Introduction and Definition of Scaling ofTDSduetofouling,inparticularatincreasedcalciumconcentrations.Thiswasexplainedwitha AseriousprobleminNF(andRO)systemsandalimitingfactorforitsproperoperationismembrane reduced Donnan charge exclusion. The Donnan effect was described in detail in Chapter 6. The scaling,resultingfromtheincreasedconcentrationofoneormorespeciesbeyondtheirsolubilitylimits apparentporepluggingofNFmembranesbyNOMatlowpHwasreportedtocauseadecreasein and their precipitation onto the membranes [69]. Thus, it is essential to operate NF systems at retention [80]. Schäfer et al.[89]establishedastrongimpactofferricchlorideflocsontheretention recoverieslowerthana“criticalvalue”inordertoavoidscaling,unlessthewaterchemistryisadjusted behaviourofNFmembranes.Thevariationswereattributedtothechargeofthedeposits. topreventprecipitation.Atpresent,itisnotpossibletopredictwithsufficientreliabilitythelimiting KoyuncuandTopacik[51]studiedtheeffectofreactiveblackdye(991g/mol)ontheretentionof concentrationlevelatwhichthereisariskofscaleformationwithagivenmembranesystemanda inorganicionsbyNF.Therethedyedepositwasalsoregardedasaporousgellayerthatincreasedthe specificantiscalanttreatment[90]. concentration polarisation effect and actedlikeadynamicmembrane.Saltretentiondecreasedwith Scaling, also scale formation or precipitation fouling, occurs in a membrane process whenever the ionic increasing dye concentration, reaching negative retention in some cases. This effect of gel layeron productofasparinglysolublesaltintheconcentratestreamexceedsitsequilibriumsolubilityproduct. retentioncanpotentiallybeexplainedviatheenhancedconcentrationpolarisationmodeldescribedin Theterm“membranescaling”iscommonlyusedwhentheprecipitateformedisahardscale.Scaling section3.7above,especiallybecausetheseauthorsreportedrealratherthanobservedretentionvalues. usuallyreferstotheformationofdepositsofinversesolubilitysalts(CaCO3,CaSO4·xH2O,calcium phosphateetc.),althoughthistermingeneraldenoteshard,adherentdepositsofinorganicconstituents Figure 17 Schematic of the formation of an idealised fouling ofwaterthatformedin situ [91].Aswiththeothertypesoffouling,precipitationfoulingreducesthe layer which increased retention of compounds smaller than the qualityandthefluxofNFpermeateandshortensthelifeofthemembranesystem.Theproblemis membrane pore (above) and that decreases retention (below). usuallyaggravatedinattemptstoincreasethewater(permeate)recovery;thentheincreasingretentate saltconcentrationleadstosupersaturation,inparticularveryclosetothemembranesurface.Inorganic scaleformationonthemembranemayalsoleadtophysicaldamageofthemembranesduetothe

difficultyofscaleremovalandtoirreversiblemembraneporeplugging. InorganicfoulantsfoundinNFapplicationsincludecarbonate,sulphateandphosphatesaltsofdivalent ions,metalhydroxides,sulphidesandsilica.Morespecifically,themostcommonconstituentsofscale

areCaCO3,CaSO4—2H2O,andsilica,whileotherpotentialscalingspeciesareBaSO4,SrSO4,Ca3(PO4)2 andferricandaluminiumhydroxides[69,92,93].Reliablepredictionofthescalingpropensityofafeed is essential in NFsystemsinordertomaximiserecoveryandtodeterminethemostefficientscale 100 control method. The main parameters affecting scaling are salt concentration in the concentrate, Figure 18 Reduction of the effective temperature,fluidvelocity,pHandtime.Theseparametersmayalsoincludethetypeandthematerial pore diameter of membranes and 80 ofthemembrane. retention of organic compounds due The precipitation or crystallization of a salt onto a membrane surface involves the nucleation and 60 to a fouling layer (calcium and humic DOC growth from a supersaturated solution. Supersaturation is the thermodynamic driving force for substances) [4]. UV precipitation(ormorespecificallyforthetwobasicstagesofprecipitation,nucleationandgrowth)and 40 Unfouled itissubsequentlydiscussedinmoredetail.However,forthesparinglysolublesaltsprecipitationseems

Rejection [%] DOC to be controlled by the kinetics of the process. It is widely accepted that precipitation kinetics is 20 UV comprisedoftwomainsteps[94]eitherofwhichmaycontroltheprocess: (1)Nucleation stage:nuclei(ortinyparticlesorembryos)areformedatspecificsitesinporesandatthe 0 0.1 1 10 100 surfaceofthemembrane.Thistypeofnucleationcanbecharacterisedasheterogeneousnucleation,as Pore Diameter [nm] opposedtohomogeneousnucleation,whichoccursintheabsenceofasolidinterface.Athirdformof nucleationisthesecondaryorsurfacenucleation,resultingfromthepresenceofacrystallisationphase

31 32 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration insolution(e.g.introductionofseedcrystals).Thecriticalvalueofthesupersaturationratioforthe Pressure different nucleation processes can be expressed as Sc,homog.>Sc,heterog.>Sc,surface>1 [95] In general, nucleationisthemostpoorlyunderstoodstep.Therateofnucleationplaysanimportantroleinthe C finalscaleformationandantiscalantsareusuallyemployedtosuppressit. Feed Concentration bulk Concentrate profile (2) Crystal growth: in the case of surface nucleation, the initial nuclei grow in time to form a thin, Concentration polarization factor sometimesporous,layer.Inasimplisticway,“growthunits”orscaleformingionsdiffusetothecrystal surface and attach themselves to that surface. Often, a delay or induction period exists before Cw Scale Cwall PF= > 1 detectabledepositsareformed.Thecrystalgrowthprocessproceedsalsoinvarioussteps,anyofwhich Cb Membrane maycontrolthewholegrowthprocess.Inthecasewherenucleationinthebulkdominates,crystal growth takes place in the bulk and the crystalline particles can be deposited onto the membrane surfaces. Permeate InanNFprocess,thehighestriskofscalingexistsintheconcentratestreamatthelastsectionofthe membranesystem.Thewithdrawalofthepermeateresultsinanincreaseoftheconcentrationlevelof Figure 19 Schematic of concentration polarisation layer at the membrane surface. alldissolvedspeciesintheconcentratestreamandintheestablishmentofsupersaturationofoneor moresparinglysolublesalts,whichsubsequentlymayprecipitate.Therefore,itisnecessarytoestimate Theratioofconcentrationattheboundarylayertothatinthebulkoftheconcentrateiscalledthe the saturation conditions of the concentrate stream throughout a membrane element. These concentration polarisation factor, PF. Typically, PF is estimated as an exponential function of the calculationsarebasedontheknowledgeofthefeedwatercompositionandoftheconcentration(or recovery recovery)factororratio,CF.Foreachspeciesi,thelatterisdefinedas PF=exp(K—y) (23) −− )R1(1 CFi= i (22) where K is a semiempirical constant, which depends upon permeate flux and ion diffusivity. − y1 Discussion on the subject can be found in a following chapter, while a simple technique for whereyisthepermeaterecoveryfractionandRitheionretentionfactor.Formostdivalentspeciesin determiningtheconcentrationpolarisationlevelinamembranesystemisdescribedbySutzkoveret al.

NFsystemsRirangesbetween0.9and1.0,butformonovalentspeciesasignificantfractionpassesthe [96].Becauseofthepivotalimportanceofthesupersaturationconcept,amoredetaileddescriptionis membrane. Theconcentrationofmostions(Ca2+,Sr2+,SO42,Cletc.)maybeestimatedastheCF presented. timesthefeedwaterconcentration.Thiscannotbeappliedtoallspeciespresentinwater(e.g.HCO3, 5.2 Solubility and supersaturation of salts CO2),whileforSiO2acorrectionforthepHchangeisrequired. The phase change associated with precipitation processes can be explained by thermodynamic Infact,Eq(22)underestimatestheconcentrationsnexttothemembrane,sinceitdoesnotaccountfor principles.Whenasubstanceistransformedfromonephasetoanother,thechangeoftheGibbsfree theconcentration polarisation effect [93,96].Aswaterpermeatesthroughthemembrane,therejectedions energyofthetransformationisgivenby accumulateinaboundarylayernearthemembraneatconcentrationshigherthatthoseprevailinginthe G=(21) (24) bulk, as illustrated schematically in Figure 19. This means that the supersaturation ratio, and consequently the scaling risk, is higher at the membrane boundary layer. This effect increases with where 1 and 2 are the chemical potentials of phase 1 and phase 2, respectively. For G<0, the higherpermeatefluxesandishigheratlowflowvelocities. transitionisspontaneous.ThemolarGibbsfreeenergycanbealsoexpressedintermsofactivityas G=RTln(α/αo) (25)

whereRisthegasconstant,Tistheabsolutetemperature,αistheactivityofthesoluteandα oisthe activityofthesoluteinequilibriumwithamacroscopiccrystal.Morespecifically,foranionicsubstance

MnXm,whichcrystallizesaccordingtothereaction

nΜa++mXb↔MnXm(solid), (26) thethermodynamicdrivingforceforthecrystallizationeitherinthebulkoratthemembranesurfaceis definedasthechangeoftheGibbsfreeenergyoftransferfromthesupersaturatedstatetoequilibrium: + + −+ m)1/(n m)1/(n  )X()M( mbna  IAP G=RTln   =RTln   (27)  K sp  Ksp 

33 34 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration

Intheaboveequation,Kspisthethermodynamicsolubilityproductofthephaseformingcompound Thereis,however,athresholdintheextentofdeviationfromequilibriummarkedbythedashedlinein and(IAP)istheionactivityproduct.Quantitiesinparenthesesdenoteactivitiesofthecorresponding Figure 21, which if reached, wall crystallization (scaling) usually occurs first. Spontaneous bulk ions.Thequantity precipitation may also occur with or without a preceding induction period. This range of + + −+ m)1/(n m)1/(n supersaturationsdefinesthelabileregionandthedashedlineisknownasthesupersolubilitycurve.It  )X()M( mbna  IAP S=   =   (28) shouldbenotedthatthesupersolubilitycurveisnotwelldefinedanddependsonseveralfactorssuch  K  K   sp   sp  asconcentrationlevelofthescaleformingions,presenceofotherionsandionicstrength,presenceof isdefinedasthesupersaturationratioofthecrystallineprecipitate.OftenintheliteratureSiswritten suspendedmatter,wallmaterialandroughness,temperature,pHetc.Theformationandsubsequent withouttheexponent.Theactivitycoefficientscanbeestimatedusingvariousequationsapplicableto depositionofsolidsoccursonlyifthesolutionconditionscorrespondtothemetastableortothelabile loworhighionicstrength.Thedevelopmentofsupersaturationisthedrivingforceforbothnucleation region.Belowthesolubilitycurvescalingcannottakeplace. and crystal growth. Provided that there is sufficient contact time with a foreign substrate, scale MostmembranesuppliersandliteraturesourcessetS>1ascriterionfortheonsetofscaling.Oftenthis formation may take place. Supersaturation in a membrane system is mainly caused by permeate criterionismodified,alittlebeloworalittleaboveunity.TheargumentthatforS>1precipitationis withdrawalandconcentrationpolarisationand,toalesserextent,bytemperatureandpHchanges. expectedistrueforthereadilysolublesalts,whereevenasmalldeviationfromequilibriumcaninduce Nowadays,thesolutionspeciationandthesupersaturationratiosofvarioussaltsinwaterarereadily crystallization.However,formostofthesparinglysolublesaltsresponsibleforthescalingproblemsin computedbyvariouscomputercodestakingintoaccountallpossibleionpairsandthemostreliable the NF/RO systems, a significantly higher value of supersaturation ratio (“critical” supersaturation values for the solubility products and the dissociation constants. This is covered in more detail in ratio)inthebulkmustbeexceededtoresultinscaling.Thiseffectisobservedinmembraneaswellas Chapter7onsolutespeciation. innonmembranescalingsystems.Forexample,ithasbeenreportedthatanROsystemexceeded14 InFigure20atypicalsolubilitydiagramforasparinglysolublesaltofinversesolubility(suchascalcium timestheBaSO4equilibriumconditionswithoutscalingproblems[97].Amajorconcernaboutthis carbonate,sulphateandphosphate)isshown.Thesolidlinecorrespondstotheequilibrium.Atapoint “critical”supersaturationratioisthatitisnotthesameforallscaleformingcompoundsandthatit Athesoluteisinequilibriumwiththecorrespondingsolidphase.Anydeviationfromthisequilibrium increasesasthesolubilityofthesaltsdecreases.Consequently,onemayexpectthatthisvalueishigher positionmayoccurwiththeincreaseofsoluteconcentration(isothermally,lineAB),withtheincrease fortheCaCO3andBaSO4scalingsystemsthanfortheCaSO4system. ofsolutiontemperatureduetosolubilityreduction(atconstantsoluteconcentration,lineAC),orwith varyingbothconcentrationandtemperature(lineAD).Asolutiondepartingfromequilibriumisbound toreturntothisstatethroughprecipitationoftheexcesssolute.Formostofthescaleformingsparingly solublesalts,supersaturatedsolutionsmaybestableforpracticallyinfinitetimeperiods.Thesesolutions arereferredtoasmetastable.

Labile B C (precipitation)

D

A (S=1) Metastable Concentration

Stable region

Temperature

Figure 20 Solubility-supersaturation diagram of a sparingly soluble salt of inverse solubility.

35 36 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration

5.3 Common Scalants Thefollowingisabriefdiscussionofthecommontypesofscalefoundinmembraneprocesses.Itis 1.0 stressed,however,thatdepositsforminginmembranemodules,aswellasinotherscalingsystems,are rarelyhomogeneous,andinmostcases,asseenalsoinmembraneautopsystudies,theyconsistofa 0.8 mixtureofvarioussparinglysolublesaltsandofotherfoulants(e.g.organics,colloids,biofoulants).In

Pict. b Pict. c brackishandhardwaters,CaCO3andgypsumarethemostcommonscalantsforwhichpretreatment 0.6 isrequired.

Calcium Sulphate (CaSO4) Scale 0.4 P=10.2 atm (a) pH=8,1 The most common form of calcium sulphate scales and the polymorph that precipitates at room LSI=0.9 0.2 temperatureisgypsum(CaSO4·2H2O).Gypsumisapproximately50timesmoresolublethanCaCO3at THC-S

Normalized permeate flux permeate Normalized Pict. d 30ºC. Calcium sulphate also exists in two other crystalline forms: hemihydrate (CaSO4·½H2O) and

0.0 anhydrite(CaSO4).Theeffectoftemperature(intherangeof1040ºC)andofpHongypsumsolubility 0 1 2 3 4 5 6 7 8 9 101112131415 ismarginal. Time, h Onesourceofsulphateionsinsometreatedwatersistheadditionofsulphuricacidtothefeedinorder to control CaCO3 precipitation. This method of scale control can lead to calcium (or barium and strontium)sulphatedeposition,ifexcessiveamountsofsulphuricacidareusedforpHcontrol.Forthis 5 µµµm 5 µµµm reason, calculations for assessing the potential for sulphate scaling must be carried out using the analysisoffeedwaterafteracidadditionorotherpretreatmentmethods.

Calcium Carbonate (CaCO3) Scale (b) Almost all naturally occurring waters contain bicarbonatealkalinityandarerichincalcium,making Pict b: 1 h thempronetoscalingproblems.ThepotentialforCaCO3scalingexistsforalmostallwell,surfaceand brackishwaters.Calciumcarbonateformsadense,extremelyadherentdepositanditsprecipitationin anNFplantmustbeavoided.Itisbyfarthemostcommonscaleprobleminseveralscalingsystems, µµµ µµµ 20 m 10 m includingcoolingwaterandoilorgasproductionsystems. Calciumcarbonatecanexistinthreedifferentpolymorphs,namelycalcite,aragoniteandvaterite,in orderofincreasingsolubility.Allthreepolymorphshavebeenidentifiedinscales,althoughvateriteis (c) ratherrare.Thermodynamicspredictsthatcalcite,theleastsolubleandmorestablepolymorph,should Pict c: 4 h bethephasefavouredintheprecipitationprocess.Aragoniteisalsoencounteredincertainsystems.It has been shown that formation of a particular polymorph depends upon water temperature and chemistry(e.g.pH,ionicstrength,presenceofotherions/impurities/inhibitors).Itisalsowellknown 20 µµµm 20 µµµm thatthepresenceofmagnesiumions,insolutionssupersaturatedwithrespecttoCaCO3,favoursthe precipitation of aragonite and appears to hinder the formation of vaterite. The tendency to form calcium carbonate can be predicted qualitatively by a plethora of indices derived theoretically or (d) empirically over the past 70 years. The most common indices are the Langelier Index, the Ryznar

Pict d: 15 h Index,andtheStiffandDavisIndex. Barium Sulphate (BaSO4) and Strontium Sulphate (SrSO4) Scale 10 2 2 Figure 21 Flux decline curve (a) and SEM images at various times of scaled TCF-S membranes ThesolubilityofBaSO4ismuchsmallerthanthatofgypsum(Ksp=1.05×10 mol /L at25ºC[98]and at pH=8.1. cancauseapotentialscalingprobleminthebackendoftheNF/ROsystems.Itssolubilitydecreases with decreasing temperature. BaSO4 scale can only be dissolvedbycrownethersandconcentrated sulphuricacid,whichindicatestheseverityoftheproblem.Bariumionsareseldomreportedinanalyses

ofnaturalwaters,andiffound,theirconcentrationdoesnotexceed200ppb.BaSO4scaleformationis

37 38 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration veryrareinmembranescalingsystems.Outof150elementsforwhichautopsywasperformed,no notsimpleandnotstandardized.Unfortunately,theinteriorofmembraneelementsisnotaccessiblefor instancesofbariumsulphatewerefound[99]. examinationbynakedeyeorevenbyanopticalmicroprobe.Directscalecharacterisationcanonlybe Thepresenceofstrontiuminmanynaturalwatersismorecommonthanthatofbariumions.Aslittle accomplishedbymembranedestructionandhenceex-situ.Depositcharacterizationisanimportantstep as1015mg/LofstrontiumionsintheconcentratemayinduceSrSO4scaleformation.Bariumand intheautopsystudyofadegradedmembranemodule.Themembranescalescanbecharacterisedbya strontiumsulphatesareingeneralmorecommonlyencounteredinsurfacewaters. varietyoftechniques,themostcommonofwhicharebrieflymentionedhere.Visualandmicroscopic Silica Scale inspection (SEM) of the scaled surface may comprise the first step of characterisation. Energy dispersivespectroscopy(EDS)isusuallyemployedinconjunctionwiththeSEMsystemtodetermine Amorphous silicaisoneofthemajorfoulingproblemsinNF/ROsystemsandinmostprocesses elemental composition, while nuclear magnetic resonancespectroscopymaydeterminethechemical involvingwater[100].Thesilicacontentinmostnaturalwaterscanreach100mg/L,sincesilicaisone structureofthescales.ThespectroscopictechniquesofFTIR,FTRamanandXRDcanbeusedto of the primary components of the earth crust. Much has been written about the solubility of yieldquantitativeandqualitativeresultsofthescalecompositionandthedominantcrystallinephases. amorphoussilicainwater.Itssolubilityatroomconditionsis100150mg/LinthepHrange58and Finally, Xray photoelectron spectroscopy (XPS) analysis can be used in order to determine the increases significantly with pH at values higher than 9.5. Furthermore, silica solubility increases propertiesofthesurfacelayersofscales.SomeofthosetechniquesweredescribedinChapter5and significantlywithtemperature.Thus,inusualwatertreatmentoperationssilicaconcentrationislimited indeedsomecharacterisationtechniquesforcleanandfouledmembranesareidentical. to approx. 120150 mg/L, the excess precipitates as amorphous silica and silicates. In membrane An experimental membrane system can also be used to determine how the scales form and the systemssilicascalinghasseriousconsequences:thecleaningoffouledmembranesiscostlyandnot effectivenessofthevariousantiscalants;severalsuchsetupshavebeenemployedinrecentyears(e.g. withoutproblems. [103105]. Thesolubilityofsilicamineralsgenerallydecreaseswithincreasingionicstrength,incontrasttothe solubility of CaCO3 and sulphate salts. It has been shown [101] that at 25ºC and pH 5.07.5 the 5.5 Mechanisms of Scale Formation solubilityofamorphoussilicadecreaseswiththeadditionofseveralsaltsduetothe“saltingout”effect Thegreatcomplexityofthescaleformationprocessisadirectconsequenceofthelargenumberof ofinorganicelectrolytesonaqueoussilica.Thiseffectisessentiallycationdependentanddisappears(or speciesusuallypresentinarealsystemandoftheplethoraofpossiblephysicalmechanisms.Thelatter betteritisreversed)athighertemperatures.Silicascalewasfoundin66%ofabout100membrane may include mass, momentum and heat transfer, as well as chemical reactions at the equipment elementsinvestigatedrecentlywithmembraneautopsy[99].Ironandaluminiumwerepresentin88% surfaces.Furthermore,thediversityoffluidcompositionofthevariouswaterstreatedinmembrane and75%ofthemembranesscaledwithsilica,respectively. systemsandthevariationofprocessestakingplacealongtheflowpathmakedifficultthegeneralization Calcium Phosphate Scale ofboththemechanismsresponsibleforthescaleformationandthepreventivemeasures. Inrecentyearscalciumphosphatescalehasbecomemorecommoninmembranesystemsasautopsies Therearetwomainmechanismstoexplainfluxdeclineinamembranesystemduetotheformationof on membrane elements have shown [99, 102]. This can be attributed to the tendency to treat crystallinematterarefiltercakeformationandsurfaceblockage(e.g.[104,106]).Theformerinvolves wastewaters, which are rich in phosphates, and to the use of phosphorous containing antiscalants, crystallineparticlesformedinthebulkofthesolutionthataredepositedontothemembranetocreate injectedintheformofphosphonatesandotherorganicphosphorouscompounds. usuallyaporous,notverycoherent,softlayer.Accordingtothecakeformationmodel,thedeposit Theconcentratemaybecomesupersaturatedwithrespecttoatleastfourcalciumphosphatephases(as layerhasaconstantporosity,itsthicknessincreaseswithtimeandfluxdeclineisduetogrowthofthe incalciumphosphatescaleformationinothersystems),althoughnosinglephasehasbeenidentifiedin layer. autopsy studies. It is often assumed that these phases are amorphous calcium phosphate (ACP, Inthemechanismofsurfaceblockage,isolated“islands”ofcrystalsordepositsareinitiallyformedon stoichiometry corresponding to Ca3(PO4)2·xH2O), dicalcium phosphate dihydrate (DCPD, theexposedmembranesurface,whichfurthergrowwithtime,laterallyandnormallytothesurface,to

CaHPO4·2H2O), octacalcium phosphate OCP, (Ca8H2(PO4)6·5H2O), and hydroxyapatite (HAP, formacontinuousandcoherentlayer.Consequently,thefluxwouldsteadilydeclineasthesections

Ca5(PO4)3OH),theleastsolublephase.ItisgenerallyagreedthattheformationofHAPfromahighly coveredbythese“islands”wouldbeinaccessibleforwaterpermeation.Thetwomainmechanismsof supersaturatedsolutionatneutralpHisusuallyprecededbyACPorotherprecursorphases,whilethe flux decline stem from the different forms of nucleation occurring in the membrane system. As presenceofionsmayaffectthepolymorphprecipitated.Duetothepresenceofotherionsinthefeed discussedinsection5.2,wallorsurfacenucleationtakesplace(formostprecipitatingspecies)atlower water,defectapatitecanbeformedalso.Thesolubilityofcalciumphosphatesstronglydependson supersaturation ratios than those needed for nucleation in the bulk (homogeneous, secondary). solutionpHand,consequently,acidadditionalleviatesthecalciumphosphatescalingproblem.Other Consequently,atrelativelyhighsupersaturationwithrespecttoacertainsalt,bulknucleationwould parameters affecting the scaling tendency of calcium phosphates include the supersaturation ratio, dominate,resultingincakeformation.Ontheotherhand,atlowersupersaturationratios,membrane temperatureandionicstrength. foulingwouldproceedviathegrowthofcrystallineislands.Inbothmechanisms,aninductionperiod mayprecedethescaleformationprocess. 5.4 Characterisation of Scales Therateofscaleformationisdeterminedbyseveralfactors,suchasthelevelofsupersaturation,the Thetechniquesforanalysisofthecrystallinedeposits(asinthecasewithothertypesofdeposits)are water temperature, the flow conditions and the surface roughness and material of the substrate. A

39 40 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration criticalfactorinthewholeprocessistheadherenceofthedepositstothesurface.Iftheadherenceis oxides), organic (aggregated natural and synthetic organics), and biological (bacteria and other poor,thedepositsmightberemovedbythefluidflow.Iftheadherenceisstrong,theinitialcrystals microorganisms,viruses,lipopolysaccharides,andproteins)matter.Areviewofcolloidalandparticulate growlaterallyandperpendicularlytoformacoherentscalelayer[107].Sometimesathirdstep,thestage foulingstudiesrevealsthefoulantsofgreatestconcernfornanofiltration(NF)separationsarecolloidal of recrystallization or aging, is recognized in the scaling process. Gilron and Hasson [106] and sized substances consisting of silica, organics, metal oxides (specifically iron and manganese), and Brusilovskyet al.[103]demonstratedthatthefluxdeclineinanROunitwasduetoblockageofthe microorganisms[113122]. membrane surface by lateral growth of the deposit (surface or heterogeneous crystallization) when Champlin [75] recommended toremoveparticlesdownto1minsize,althoughthismaynotbe investigating the CaSO4 scaling system. The CaSO4 scale crystals rested at the edges against the sufficienttoavoidfouling.ConventionalprocessesusedtopretreatNFfeedwatersfailtoremovesub membrane,theyweretightlypackedwithatendencytogrowoutwards(“radiate”)fromvariousgrowth microncolloids,andevenMF/UFprocessessometimesfailtoremoveallcolloidsbelowafewhundred sites. The morphology of these scales strongly supports the assumption of a surface crystallization nmindiameter.Further,theelevatedconcentrationofrejectedionicconstituentsinthevicinityofthe mechanism.Inaddition,Hassonandcoworkersdevelopedafluxdeclinemodelbasedonthesurface membranescreenselectrostaticinteractions,whichmayencourageaggregationofdissolved(organic) blockageandinvolvingthelateralspreadofasinglecrystallayer. matter into colloidal sized particles. The importance of particlemembrane and particleparticle LeeandLee[104]examinedtheeffectofoperatingconditionsonscaleformationinaNFunit.These interactionsduringcolloidalfoulingarerealizedwhenconsideringtheinfluenceofsaltretentionand investigatorsfoundthatbothmechanismsareoperativeandthattheoperatingconditions(i.e.pressure concentration polarisation on the solution chemistry in the vicinity of the membrane surface. andcrossflowrate)playanimportantrole.Surfacecrystallizationisfavouredatalowcrossflowvelocity ElectrokineticpropertiesofcolloidsandmembranesarestronglydependentonpH,ionicstrength,and and a high operating pressure. Recently, Le Gouellec and Elimelech [105, 108] investigated the the presence of multivalent ions [58]. Therefore, distinguishing the fundamental physicochemical presence of several species and of antiscalants to combat gypsum scale formation in a small propertiesofcolloidsandmembranesiscriticaltounderstandingcolloidalfouling.Thesummarythat recirculatingunit.Nodefiniteconclusionscouldbedrawnonthescalingmechanisms,butthepresence followsprovidesbriefdescriptionsofkeycolloidandmembraneproperties,transportanddeposition, ofbicarbonate,magnesiumionsandhumicacidshowedatendencytoretardtheformationofgypsum formationofcolloiddepositlayers,andmechanismsofcolloidalfoulinginnanofiltration. nuclei. Moreover, a model was developed for predicting the required antiscalant dosage to control 6.2 Colloid Properties gypsumscaleinNFsystems.

AsimilarmechanismasthatdescribedfortheCaSO4byHassonandcoworkershasalsobeenfound Colloid Properties.Colloidalmatteristypicallychargedinaqueouselectrolytesolutions.Thesurface fortheCaCO3systeminaoncethroughlaboratoryNF/ROunit[109].Figure21apresentsatypical chargeoncolloidsarisesfromavarietyofmechanismsincluding:differentialionsolubility(e.g.,silver fluxdeclinecurveduetocalciumcarbonatescaleformationonaNFmembrane.Inthesamefigure, salts),directionizationofsurfacegroups(typ.,COOH,NH3,orSO3H),isomorphoussubstitutionof SEMimagesofscaledmembranesarepresented(Figure21cbd),atdifferentruntimes,depictingthe surface ions from solution (e.g., clays, minerals, oxides), anisotropic crystal lattice structures (esp. in growthofthescalelayerwithtime.Inthisparticularrun(andalmostinallruns)thepermeatefluxwas clays),andspecificionadsorption[111,112,123,124].Thesurfacechargescontributetoelectrostatic ratherconstantforaninitialperiodof4to8hoursbeforedecliningmainlyduetoscaling.Intherather double layer (EDL) interactions, which typically determine colloid aggregation and deposition limitednumberofthesetests(ofmaximumduration15h),membranescalingwasobservedtooccurat phenomena[58,125,126].Thespecificpropertyofcolloidsusedtoquantifytherelativemagnitudeof Sc>3(subscriptcreferstocalcite)oratLSI>0.9.Comparingtheseresultswithscalingexperimentsin EDLinteractionsisthesurface(zeta)potential,ζ,whichiscommonlydeterminedbymeasuringthe tubes[110]itmaybeobservedthatscalingonmembranesoccursatlowersupersaturation,obviously electrophoreticmobilityofcolloidsinasuspensionandcomputingζfromanappropriatetheory[127]. duetotheconcentrationpolarisationeffect.SEMmicrographsatvariousruntimesrevealthateven It is well known that solution pH and ionicstrengthdirectlyinfluencethezetapotential,andthus whentheCaCO3crystalsapparentlycoverabout40%ofthemembrane(Figure21c),nodetectableflux greatlyinfluencecolloidalinteractions.Ithasbeenshownthatthesurfacechargepropertiesofcolloids decline is recorded. This observation somehow contradicts the notion that surface blockage is candramaticallyinfluencecolloidcakelayerstructure(porosity)andhydraulicresistance[128134]. eventuallythemainmechanismofmembranefluxdecline. Colloid size and shape also contribute to thehydraulicresistancetopermeationtheyimposewhen accumulatedinacakelayer[131,132,135].Whilecolloidsareoftenmodeledasspherical,theymaybe spheroidal(microbes),crystalline(metalsaltprecipitates),platelike(clays),ormacromolecular(organic OLLOIDAL AND ARTICULATE OULING 6 C P F aggregates,proteins).Inmanynaturalwaterstherangeofpolydispersityincolloidandparticlesize, 6.1 Introduction and Definition of Colloidal and Particulate Fouling shape, and electrokinetic character make it quite difficult to accurately describe with any tractable modelling approach. Therefore, an average, “spherical” hydrodynamic diameter is determined from Theterm,colloidal and particulate foulingreferstolossofbothfluxandsaltretentionduetoaccumulation dynamiclightscatteringorpotentiometricmethodsandusedinconjunctionwithameasuredaverage of retained colloidal and particulate matter on the membrane surface. Colloids aredefinedasfine particle zeta potential to predict the influence of colloidal interactions. A unique size fractionation suspendedparticlesinthesizerangeofafewnanometersuptoafewmicrometers[111].Colloidal waterqualityanalysisforarealagriculturaldrainagewatersampledfromtheAlamoRiverinImperial matter is ubiquitous in natural waters, as well as many industrial, process, and waste waters [112]. Valley, California is provided in Table 3. Agricultural drainage water is a valuable alternative water Examplesofcommoncolloidalsizedfoulantsincludeinorganic(clays,silica,saltprecipitates,andmetal

41 42 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration sourcebeingconsideredforreuseifmanypartsoftheworld;however,desalinationistypicallyrequired sinceitmaybebrackish[136138].Dependingontheintendedreuseapplicationreverseosmosisor nanofiltrationarebeingconsideredforperformingthedesalinationprocess.

Table 3 Size fractionation water quality determination for agricultural drainage water. Data provided by E.M.V. Hoek, University of California, Riverside are unpublished.

Filter pH EC TDS Turb TOC Solids Size ZP Size - mS/cm mg/L NTU mg/L mg/L µµµm mV

Raw 8.17 3.322 2256 108.0 21.0 2750 9.89 -11.6 8.48 3.232 2198 7.540 18.4 2326 2.01 -14.4 8.0 µµµm 1.0 µµµm 8.51 3.303 2254 1.380 13.4 2268 1.74 -14.5

0.4 µµµm 8.51 3.158 2148 0.321 12.3 2151 0.29 -11.5 Figure 22 Field-emission scanning electron microscopy (FESEM) images of two commercially available nanofiltration membranes with RMS roughness values of (HL) 12.8 and (NF70) 56.5 0.1 µµµm 8.59 3.140 2106 0.175 9.11 2107 0.00 -7.47 Notes: nm (taken from [60]). Additional (HL) and (NF70) membrane properties include zeta DOC (after 0.22µm filter) = 11.04 ppm potentials of -18 and -25 mV (at 10 mM and pH 7), contact angles of 51.9 and 51.7, hydraulic Bacteria Count = 160 to 420; Enterococcus = 0 to 30 cfu/ml resistances of 3.26 ×1010 and 3.13 ×1010 Pa.s/m, and salt retentions of 35 and 83% (at 50 L/m 2.h and 10 mM NaCl), respectively. The data shown in Table3wasobtainedfollowingstandardmethodsforallanalyses.Inthetable columnheadingsareEC=electricalconductivity,TDS=totaldissolvedsolids,Turb=turbidity,TOC Analysesofnumerousadditionalpolyamidethinfilmcompositemembranesrevealsaconsistentsetof =totalorganiccarbon,Solids=totalsolidsbygravimetricanalysis,Size=hydrodynamicdiameter,and physicalandchemicalproperties.Table4presentsatomicforcemicroscoperoughnessanalysesofnine ZP=zetapotential.Therawwaterwasallowedtosettlefor24hoursinacoldroom(5ºC)andthen different membranes, along withexperimentallydeterminedsurface(zeta)potentialsandpurewater sequentially filtered under vacuum through 8.0, 1.0, 0.4, and 0.1 µm polycarbonate, tracketched contact angles. The zeta potential was determined from a streaming potential analyzer (EKA, membranes. The size was determined by dynamic light scattering and confirmed with a Coulter BrookhavenInstruments)followingmethodsdescribedelsewhere[149].Thedataindicatearangeof surfaceroughnessthatvaries(onaverage)betweenafewnanometersto50nmandwithsomefeatures Counter(onlyforraw,8µm,and1µmfractions).Measuredelectrophoreticmobilitieswereconverted ontheorderofhalfamicron.Surfaceareadifference(SAD)isanindicationoftheincreaseinsurface to zeta potential via the Smoluchoski equation [124]. The results shown are unpublished and are area(overaflatplaneofequalprojectedarea)duetotheroughnessofthesurface.SADisastandard intendedonlytoqualitativelyillustratethephysicalandchemicalpropertiesofnaturalcolloidalmatter. AFMroughnessanalysisstatisticandisalsoknownasWenzel’sroughnessratio[150]. Inaddition,ananalysissuchasthiscouldbeusedtojustifytheselectionofapretreatmentprocessto removecolloidalfoulantspriortodesalinationbynanofiltration(orreverseosmosis). Membranesurface(zeta)potentialsrangebetween20and35mVatneutralpHina10mMNaCl electrolyte. One membrane has a significantly lower zeta potential (LFC1), ostensibly to lower the 6.3 NF Membrane Properties fouling potential of the membrane as it is often referred to as a “low fouling composite” by the PhysicalandchemicalpropertiesofNFmembranes(i.e.,permeability,saltretention,“pore”size,etc.) manufacturer (Hydranautics, San Diego, CA). The nine membranes samples exhibit a range of alsocontributetotherateandextentofcolloidalfouling[6062,139].Thehighhydraulicresistanceof “wettabilities”asdepictedbythepurewatercontactangles.Thesecontactanglesweredeterminedby NFmembranesenablessubstantialcolloidcakelayerstoformbeforefoulingisdetected,andretention thesessiledroptechniqueatroomtemperaturewithlowrelativehumidity. ofionicsolutesexacerbatescolloidalfoulingbyscreeningelectrostaticinteractions.Ithasrecentlybeen demonstrated that nanofiltration membrane surface properties (i.e., zeta potential, roughness, Table 4 Surface properties of typical polyamide thin-film composite membranes. Data hydrophobicity) are strongly correlated to the initial rate of colloidal fouling [139148]. Figure 22 provided by E.M.V. Hoek, University of California, Riverside are unpublished. illustrates the range of surface morphologies that may exist for commercially available thinfilm compositeNFmembranes.NanofiltrationmembranepropertiesarediscussedinChapter3,whiletheir individualcontributionstoNFcolloidalfoulingaredescribedbelow.

43 44 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration

1 Membrane Ra Rq Rm SAD ZP θθθw demonstratedthattheinitialrateofparticledepositionwasmainlycontrolledbytheinterplaybetween (name) (nm) (nm) (nm) (%) (mv) ( º ) permeation drag and EDL repulsion. Subsequent experimental studies have confirmed the role of NF270 5.2 6.0 63 0.3 -29 69 SG 9.1 13.1 161 2.3 -21 63 permeationdragandEDLrepulsionontheinitialrateofcolloiddeposition[131,132]. HL 10.5 15.9 200 5.3 -10 40 Whiletheaboveformulationisfundamentallycorrect,directsolutionofsuchequationsisimpractical ESPA 31.8 40.0 469 58 -34 41 forallbutacademicpurposes.CohenandProbstein[153]providedafacile,butapproximate,approach AK 33.3 42.2 403 40 -23 66 CPA3 33.5 45.8 482 31 -22 69 towardsquantifyingtheimpactofthephysicochemicalpropertiesofstablecolloids(describedviathe LFC1 34.7 44.9 368 27 -7 60 DLVOapproach)oncolloidcakelayerformation.Inthisclassicpaper,theauthorsstudiedtherateof NF90 37.9 48.7 415 17 -32 38 XLE 43.4 56.7 560 30 -25 58 fluxdeclineofreverseosmosismembranesduetoironoxidenanoparticles.Theyassumedthatat leastamonolayerofcoveragebythepositivelychargedcolloidalfoulantswouldcoatthenegatively 1 at pH 7, 10 mM NaCl chargedmembranesurface,butthesimilarchargeofsubsequentlydepositingfoulantsandthefoulant Ra = average roughness, Rq = RMS roughness, Rm = max roughness, SAD = surface area θ coatedmembranesurfacewouldresultinrepulsive(electrostatic)interactions.Theauthorsprovided difference, ZP = surface (zeta) potential, w = pure water contact angle “orderofmagnitude” approximations for the particle fluxes resulting from permeate convection, Browniandiffusion,lateral(inertial)lift,shearinduceddiffusivity,andrepulsiveinterfacialforces.The 6.4 Colloid Transport and Deposition conclusion was that the net deposition rate must be determined by a balance between permeate convection and the interfacial flux due to repulsive electrostatic interactions, all other diffusive or Thekeytounderstandingcolloidalfoulingistounderstandthefundamentaltransportprocessesby convectivefluxesbeingnegligible. whichparticlesarebroughttothesurfaceofthemembrane,howtheydepositorattach,andwhythey Goren[154]performedadetailedtheoreticalanalysisofhydrodynamicinteractionsbetweencolloidal accumulateintheformofacake.Particletransportanddepositioninfluidscanbedescribedbythe particles and membrane surfacesoccurringasparticlesareconvectedtowardsthemembraneunder convectivediffusionequation[151],whichinitsgeneralformisgivenby forceofpermeationdrag.Theneteffectofthesehydrodynamicinteractionsistoincreasetheeffective ∂c J =⋅∇+ Q (29) drag force on a particle as it approaches the membrane surface over that predicted by the Stokes ∂t equation.Goren’sanalysisyieldsacorrectionfactorthatincreasesdramaticallyasaparticleapproaches wherecistheparticleconcentration,tisthetime,Jistheparticlefluxvector,andQisasourceorsink a membrane surface and is a complex function of the particle size, membrane resistance, and term.TheparticlefluxvectorJisgivenby separations distance. So, in addition to bulk convective and diffusive interactions and interfacial physicochemicalinteractions,itis(theoretically)importanttoconsidertheimpactofinterfacialmicro ⋅ FD uDJ cc ++∇⋅−= c (30) hydrodynamicinteractionsoncolloidalfouling.FollowingtheapproachofCohenandProbstein[153] kT described above an order of magnitude analysis can be performed employing the following where D is the particle diffusion tensor, u is the particle velocity induced by the fluid flow, k is representative operating conditions and membrane surface properties and water quality data from Boltzmann'sconstant,Tisabsolutetemperature,andFistheexternalforcevector.Thetermsonthe Table XX: flux of 11 gfd (~5×106 m/s), crossflow velocity of 0.5 m/s (Re = 1000), membrane righthandsideofEquation(30)describethetransportofparticlesinducedbydiffusion,convection, resistanceof3×1013m1,membranesurfacezetapotentialof20mV,foulantzetapotentialsandsizes andexternalforces,respectively. fromTable3. Incolloidalfoulingofmembranes,therelevantexternalforcesarecolloidalandgravitational,thatis Figure23plotsthetheoreticalfoulantfluxesduetopermeateconvection(bulkvalue–dashedlinewith += FFF colG (31) openbluediamonds,andGorencorrectedvalue–solidlinewithsolidbluediamonds)andthevarious backtransport mechanisms of shear induced diffusion, lateral (inertial) lift, Brownian diffusion,and where FG is the gravitational force and Fcol represents the colloidal forces acting between the interfacial(DLVO)forces.Theconclusionisthatwithoutaccountingforthecorrectiontopermeation suspendedparticlesandthecollectorsurface.Thegravitationalforceisusuallynegligibleforthesub drag, the backtransport of colloidal sized foulants by both shear induced diffusion and interfacial microncolloidalsystemsencounteredinNFoperations.Thecolloidalforcecanbederivedfromthe forcesisestimatedtobeordersofmagnitudelargerthanthefluxduetopermeationandnofoulant gradientofthetotalinteractionpotential,φ ,asfollows: T deposition would be anticipated. By applying the hydrodynamic correction provided by Goren the φ−∇= FCol T (32) permeate convection flux is increased by several orders of magnitude and prevails over the back Within the framework of the traditional DerjaguinLandauVerweyOverbeek (DLVO) theory [125, transportfluxes.Analysesofthisnatureareatbestorderofmagnitudeapproximationsandhavenot beensystematicallytestedatanyscale,butbyconsideringallknowntransportmechanismsabetter 126],φTisthesumofvanderWaalsandelectricaldoublelayer(EDL)interactions.Atheoreticalstudy by Song and Elimelech [152] utilized the general form of the confectiondiffusion equation to understandingofcolloidalfoulingmaybeaccessible. investigate colloidal deposition onto permeable (membrane) surfaces. Numerical simulations

45 46 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration

0 long been recognized, but it has only recently been demonstrated experimentally that nonDLVO Perm-Goren interactionssignificantlycolloidalfoulingofpolymericmembranes[147]. -1 Shear Brownian Otherexperimentalstudiessuggestthatsurfaceroughness[130,133,148,159]influencestheinitial -2 Interfacial rate of colloid deposition onto membrane surfaces. Figure 24 shows AFM images of the NF Inertial Lift -3 Perm-Bulk membranes from Figure 22 after filtering a colloidal suspension under the same physicochemical -4 conditions.Themembraneontherighthadsignificantlymoreparticlesdepositonthesurfaceandthe colloidsappeartohavedepositedpreferentiallyinthevalleysoftheroughsurface.Additional,model ),m/s -5 J calculationssupportedthepreferentialdepositionofcolloidsinthevalleysofroughmembranes[60].

log log ( -6

-7

-8

-9

-10 -7 -6 -5 -4 log (ap ), m

Figure 23 Plot of various colloidal foulant fluxes assuming representative NF membrane properties, operating conditions, and foulant properties (size and zeta potential take from Table 3). The data labels “Perm-Bulk” and “Perm-Goren” indicate fluxes of foulant particles towards the membrane surface due to permeate convection – using Stokes’ drag (bulk) and Goren’s drag (described above), respectively. Back transport mechanisms of Brownian diffusion (“Brownian”), shear induced diffusion (“Shear”), lateral inertial lift (“Inertial Lift”), and DLVO (“Interfacial”) are plotted for comparison. Figure 24 Atomic force microscope images of nanofiltration membranes challenged with a 0.0002% (v/v) suspension of 100 nm spherical silica colloids at 10 mM NaCl, 1x10 -5 m/s (20 The extent to which membrane surface properties influence long term fouling (i.e., through cake gfd) flux, 19.2 cm/s crossflow velocity, 25°C, and pH 7. The filtration experiment lasted only formation)isunknownbecauseitisunclearhowmembranepropertiesmightaffectsubsequentparticle 30 seconds. After filtration, the membranes were removed, rinsed in a particle free electrolyte depositiononcethemembraneiscoveredwithathinlayerofparticles.Wiesneretal.[155]provided and allowed to dry before Tapping Mode™ AFM imaging in air with a silicone nitride oneoftheearliestknownstudiesonmembranefiltrationofcoagulatedcolloidalsuspensions.They cantilever tip [60]. The circled area indicates a large cluster of colloids deposited in the valley comparedtheeffectofcolloidstabilityoncakelayerstructure(porosity)andpermeatefluxdeclinefor of the rough NF membrane. bothstableandunstablecolloidsexperimentallyandtheoretically.Subsequentstudies,boththeoretical andexperimentalhaveconfirmedtheimportanceofcolloidstability,colloidandmembranesurface properties, and colloidal hydrodynamics on cake formation and permeate flux decline in various 7 BIOFOULING membranefiltrationprocesses[55,130,132,133,156,157]. AlthoughDLVOinteractionsenablealargeamountofexperimentalaggregationanddepositiondatato 7.1 Introduction and Definition of Biofouling beexplained,additionalshortrangecolloidalinteractionsmustalsobeconsidered.SuchnonDLVO Biofoulingisatermusedtodescribeallinstancesoffoulingwherebiologicallyactiveorganismsare forces include repulsive hydration interactions (due to oriented water molecules adsorbed at each involved[160].Membranebiofoulingiscausedbybacteriaand,toalesserdegree,fungi[161].The interface),attractivehydrophobicinteractions(becauseoftherelativelystrongaffinityofwatertoitself fundamentaldifferencebetweenbiofoulingandothertypesoffoulingdiscussedinthischapteristhe compared to that between water and most solid matter), and repulsive steric interactions (from dynamicnatureofthebiofoulingprocess.Whilstthedifferentformsofchemicalfoulingreflectlargely deformationorpenetrationofadsorbedpolymers)[158].TheexistenceofthesenonDLVOforceshas passivedepositionoforganicorinorganicmaterialsonmembranesurfaces,biofoulingisadynamic processofmicrobialcolonizationandgrowth,whichresultsintheformationofmicrobialbiofilms.

47 48 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration

Biofilms are microbial communities that grow attached to surfaces. Biofilm formation invariably precedes biofouling, which becomes an issue only when biofilms reach thicknesses and surface coveragesthatreducepermeability.Inseriouscases,biofilmsmaycausetotalblockageoffeedwater channelsandmechanicalcollapseofmodulesbytelescoping[162,163].Biodegradationofcellulose acetateNFmembraneshasalsobeenreported[7].

7.2 Biofilms Microorganisms accumulate on membrane surfaces by two processes, attachment and growth. Attachment is preceded by the transport of microbes to the membrane surface either by passive diffusion,gravitationalsettlingoractivemovement(motility).Therateofmicrobialdepositiondepends on the rheological properties of fluid flow. Biofilm formation is initiated by adhesion of primary colonizingorganismstoamembranesurface.Thismembranesurfaceisusuallyaconditionedsurface, e.g.asurfacephysicochemicallymodifiedbyadsorptionoforganicandinorganicmolecularorionic componentsofthefeedwater[164,165].Microbialadhesionisaphysicochemicalprocesscontrolled initiallybylongrangeforces(attractivevanderWaalsforcesandrepulsiveelectrostaticforces,[166, 167].Oncethecellapproachesthesubstratumsurfacetoadistanceof35nm,theadhesionprocess becomes dependent on shortrange interaction forces. Adhesion itself ends with the formation of strongadhesivebondsbetweentheadheringcellandtheconditionedmembranesurface. Oncecellsarefirmlyattachedtoamembrane,theymaybegintogrowbyconversionoforganicmatter andothernutrientssuppliedintheliquidphase(e.g.thefeedwaterorthepermeate)intocellmassand extracellularmaterials.Microorganismsutilizeawiderangeofstrategiestogrowonsurfaces,including Figure 25 Membrane biofouling. A: relatively clean membrane (opened spiral wound module). theproductionandreleaseofdaughtercells[168],themovementofdaughtercellsawayfromeach B: heavily fouled membrane. C: macroscopically visible fouling layers on heavily fouled other [169] and, most relevant for biofilm buildup, the formation of microcolonies where membrane. D: clean permeate side appears white, whilst fouled feedwater side has a brownish microrganismsareheldtogetherbyacohesivelayerofglycocalyx.Eventuallythemembranesurface colour. becomes covered with a large number of microcolonies. These microcolonies will grow further, Biofilmbacteriaobtaincarbonandenergyforgrowthfromdissolvedfeedwaterorganics.Thegrowth incorporatingnewtypesofbacteria,whichcolonizenewlyformedecologicalnichesinsidethebiofilm, rateofmicrobesinbiofilmsdependsontherateofsupplyofessentialnutrientsandorganicsubstrates including anaerobic pockets at the base of the microcosm. Microcolonies, each one initially a pure (foodsourcesformicrobeswithinthebiofilm).Partoftheorganiccarbonmetabolisedbythecellsis culture of a primary colonizer, coalesce and form columns and other types of biofilm structures convertedintoextracellularmatrixpolymers,growthyieldsthereforetendtobelowerinsidebiofilms composed of different microbial species, which may incorporate algae, fungi and protozoa. The thanintheplanktonic(suspended)phase.Growthratesofmicrobeswithinbiofilmsarenowherenear coalescence of individual microcolonies or columns does usually not result in the coverage of the themaximumgrowthratesachievableinwellmixedmediawithbalancednutrientcomposition,except substratum surface by a compact gellike biofilm, since even mature biofilms are crisscrossed by a forgrowthofinitialcolonizersdirectlyexposedtoliquid.Microbialgrowthinsidethebiofilmoccurs networkofchannels,whichallowaccessofnutrientsandremovalofwasteproductsfromwithinthe underdiffusionlimitedconditions.Theporesoftheglycocalyxlimittheaccessoflargemoleculesto slime layer [170, 171]. Biofilms therefore produce a selfreplicating fouling layer. Biofilms in water cellsinsidethebiofilmandcreateatortuousdiffusionpathforsmallmoleculesbetweenthebiofilm channelswillgrowtoathicknesswheretheshearforceofthemovingwatertearsawaytheupperparts liquidinterfaceandthecellsembeddedinthebiofilmmatrix[172,173]. ofthebiofilmstructure.Biofilmswillblockwaterchannelsifshearforcesarenotstrongenoughto Biofilmsestablishedonthesurfacesofporoussupportssuchasmembranes,however,maygrowfaster disruptthem.AnexampleofafouledspiralwoundmembranemoduleisshowninFigure25andthe thanbiofilmsestablishedonnonporoussupportssuchaspiping,because,inamembranemodule,a foulingofspacersisdepictedinFigure26.Moredetailsonmodules,spacersandtheirconfigurations significantproportionoffluid(upto15%inthecaseofROorNFspiralwoundelements)flowsacross weregiveninChapter4. thebiofilmthuscarryingnutrientsintothebiofilmandwashingwastemetabolicbyproductsoutofthe structure. This positive effect of higher waterfluxesacrossbiofilmsis,however,counteractedbya greater compression of biofilms on membrane surfaces, which operate under high pressure differentials. This compression may result in denser, less porous biofilms and hence greater flux decline.

49 50 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration

mayrevealtheexistenceofbiofilmsifonedetectsclustersofmicroorganismssloughedfrombiofilms intheoutletandnotintheinletstream. Membrane autopsies permit the direct detection of microbial biofilms by analysis of membrane or spacersurfacesusingfluorescencemicroscopyorscanningelectronmicroscopy(SEM).Anexampleof such a SEM picture is shown in Figure 26. Confocal laser scanning microscopy allows the non destructiveanalysisofbiofilmsonmembranesurfacesbyproducingopticalslicesthroughthebiofilm structure,whicharereconstructeddigitallytoobtainathreedimensionalimageofthebiofilm[174]. Bacteriamayberemovedfrommembranesurfacesandanalysedeitherbysimpledirectcountmethods using dyes that stain DNA (DAPI, acridine orange, [175]), or by more sophisticated gene probing techniquessuchasfluorescentin situhybridisation[176].Microbialcommunitystructureofmembrane surfacesmaybeanalysedafterextractionofDNA[177]orphospholipidfattyacids(PLFA,[178]).The physiologicalactivityofcellswithinbiofilmscanbeassessedwithfluorescentdyessuchasCTC[179].

7.4 Microbial Composition of Membrane Biofilms Alargediversityoffungiandbacteriahavebeenisolatedfrommembranebiofilms[162].Fungalgenera recovered from fouled cellulose acetate membranes include Acremonium, Candida, Cladosporium, Rhodotorula, Trichoderma, Penicillium, Phialophora, Fusarium, Geotrichum, Mucorales, and others. Bacterial genera isolated from membrane biofilms include Acinetobacter, Arthrobacter, Pseudomonas, Bacillus, Flavobacterium, Micrococcus, Micromonospora, Staphylococcus, Chromobacterium, Moraxella, Alcaligenes, Figure 26 Biofouling on feedwater spacers. A: lightly fouled spacer. Most bacteria appear as Mycobacterium, Lactobacillus, etc. It is not known whether these organisms colonize membranes in a individual organisms, no indication of extracellular matrix. B: macroscopic view of heavily randomsequence,orwhetherparticularmicrobialspeciesarealwaysinvolvedinprimarycolonization. fouled spacer. C: fouling layer on heavily fouled spacer. D: transition zone between relatively Ridgway [180] reported that Mycobacterium sp. were the initial colonizers of TFC RO membranes clean spacer surface, colonized by a few clusters of microbes, and biofilm embedded in thick installedatWaterFactory21inOrangeCounty.Therangeoforganismsidentifiedinbiofoulingstudies glycolalyx on fouled spacer surface. of RO and NF membranes differs between studies, suggesting that the species composition on membranebiofilmsvariesbetweensites. Microbialpopulationsinsidebiofilmsareoftenstratified.Aerobescolonizethesurfacesofbiofilmsand Thereareveryfewstudiesabouttheoriginoftheorganismsthatformbiofilmsonmembranes.These ofchannelsinsidethemicrocosms,buthighoxygenconsumptionanddiffusionlimitedsupplyofthis cellsarriveattheirlocationbytransportinthefeedwater.Mostnanofiltrationandreverseosmosis µ electronacceptorusuallylimitsthedepthtowhichaerobescangrowtoabout100200 mfromthe systemsrequiresomeformofpretreatmentofthefeedwater.Incorrectlyoperatingorplannedpre biofilmsurface[173].Deeperlayersinsidebiofilmsarecolonizedbyanaerobicorganisms,including treatment stages may represent a significant source of biofilm bacteria in membrane installations. denitrifiers, sulfatereducers and methanogens [173]. The glycocalyx acts asanimmobilisationagent Surfaces in pretreatment systems such as ion exchangers, sand filters, granulated activated carbon and assures that neighbouring organisms remain locked in their positions for prolonged periods of filters,degasifiers,cartridgefilters,holdingtanksandpipingareallexcellentsourcesofbiofilmforming time.Thisfacilitatestheestablishmentofconsortiathatdegradecomplexorganicmatterbymetabolic organisms on the feed side of membranes in RO or NF systems. Biofilms on permeate spacers complementation, whereby each member of the community catalyses one or several steps in the originatefrombacteriaintroducedintothoselocationsduringmanufacturingorfrommicrobeswhich biodegradationpathwayofastructurallycomplexcompound.Theglycocalyxmayfunctionasasponge reachthepermeatethroughholesinthemembrane. andadsorbnutrientspresentinverysmallconcentrationsintheaquaticphase.Microbialbiofilmswill thereforegrowinverylownutrientenvironmentssuchasultrapurewatersystems.

7.3 Detection of Biofilms in Membrane Systems Detectingbiofilmsinanondestructivemannerinsidemembranemodulesispossibleonlybyindirect methodssuchascomparisonofcellcountsatinletsandoutletstodetectwhethermicrobialgrowth occurredinsidethemodule.Directmicroscopiccomparisonofsamplesoffeedwaterandofretentate

51 52 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration

biofouledmembranes.Leslieet al[181]andHodgsonet al.[182]demonstratedthattreatmentswhich enhance glycocalix permeability result in increased fluxes and passages of macromolecules, whilst treatmentssuchasEDTA,whichremovetheglycocalixfromcellsurfaces,resultinporeblockageby extracellular polymeric substances (EPS) of the glycocalyx. Flemming et al. [183] demonstrated that chemicalmodificationsoftheEPSstructurecanincreaseitswaterandsolutepermeability. Biofilmsformonallsurfaceswithinamembranesystemincontactwiththewaterphase,includingthe surfaces of spacers and tubing. The establishment of a biofilm reduces turbulent mixing on the membranesurface,thusincreasingconcentrationpolarisation.Theassociationofhighconcentrations of rejected salts with a large diversity of biological organic molecules may lead to enhanced precipitation of salts within the biofilmglycocalix.Theincreaseoffluidfrictionalresistancedueto biofilmdevelopmentinfeedchannelsmayincreasemoduledifferentialpressuretothepointwhere adjacentmembraneleaveswithinthemodulemayshiftandcauseatelescopicfailureofthemodule. Biofilms in permeate channels or spacers are a potential source of bacterial contamination of the filtrate,anissueofseriousconcerninindustrieswhichrequirehighpuritywater,suchastheelectronic industryandthepharmaceuticalindustry.FilamentousfungibelongingtothegeneraPenicilliumand Aspergillus often degrade glue lines that separatefeedfrompermeatechannelsandthusdisruptthe integrity of membrane modules. Microbial products produced by biofilm bacteria may deteriorate membrane polymers either by direct attack of biodegradative enzymes (cellulose esters) or indirect attackviametabolicbyproducts.

Figure 27 Electron microscope analysis of fouled membrane surfaces. A: lightly fouled 7.5 Biofilm Matrix and Biofilm Control membrane, covered with a few microbes (individual particles) and an aggregate consisting of Acharacteristicfeaturewhichdistinguishesmicrobialbiofilmsfromplanktonicorganisms(organisms microbes mixed with predominantly colloidal matter. B: amplified view of colloidal matter in suspendedassinglecellsinthewatercolumn)isthecapabilityofselfimmobilisationofbiofilmcellson A. C: heavily fouled membrane with inclusion body consisting primarily of sulfur. D: Bacteria surfaces by production of a thick extracellular slime or glycocalyx [184]. This glycocalyx contains embedded in the biofilm covering the heavily fouled membrane (arrows). Note very thick layer between 50% to 90% of the organic carbon of biofilms and is composed primarily of of slime and other organic material covering heavily fouled membrane. exopolysaccharides,butitincludesothermaterialsofbiologicaloriginsuchasproteins,DNA,RNA, lipids, etc. The glycocalyx that surrounds the cells in biofilms has important implications for the Consequences of biofilm formation in membrane systems treatmentofbiofouling.Theglycolcalyxisaporousstructure,whichdoesnotsignificantlyrestrictthe accessofsmall,unchargedmoleculessuchasoxygen,nitrates,sulfates,etc.,tothecells.Theglycocalyx, Biofilmformationonmembranesurfacesleadstothetypicalsymptomsoffouling,fluxdecline.Flux however,retainsveryeffectivelymoleculeswithaffinityforitsconstituents,whichbecomeadsorbed decline caused by biofouling usually occurs in two stages. Colonization and growth of a microbial and thus immobilized within the structure and it does exclude any compound whose molecular biofilmonacleanmembranecausesaninitialstrongfluxdeclinewhichisfollowedbyasecondslower dimensionsarelargerthantheaverageporesize.Thepolysaccharideswithintheglycocalyxarevery phase, where flux declines in an almost asymptotic manner, probably because of the equilibrium hygroscopic,e.g.theyremainhydratedeveninlowwateractivityenvironments. between biofilm growth and removal. The molecular basis of flux decline caused by biofouling is poorly understood. Biofilm growth on a membrane surface leads to the establishment of a second Theglycocalixremainsamajorchallengeforbiofilmcontrol.Effectivecontrolofbiofilmsrequires filtrationlayer.Inbiofilmsestablishedonthesurfaceoffiltrationmediasuchasmembranes,waterflux disruptionoftheglycocalyxtoallowaccessofbiocidestocellsinsidethebiofilm.Oxidizingagents occursinadirectiontransversaltothesubstratumsurface,asopposedtobiofilmsestablishedonsolid havealowefficiencyinbiofilmcontrol,sincethesesubstancesarelargelyconsumedintheoxidationof surfaces,wherewatermaypenetrateonlyinatangentialdirectionrelativetothesubstratumsurface. glycocalyxcompoundsanddonotreachthecells.Biocideshavetobeusedtogetherwithcompounds Althoughmaturebiofilmsexhibitchannelstructureswhichlinkthebiofilmsurfacetothesubstratum such as detergents, chaotropic agents and chelating agents, which effectively disrupt the glycocalix surface,thesechannelsareprobablynotsufficientlylargeandnumeroustoabsorbthebulkofpermeate structureandallowthebiocidestoactuponthecellsdirectly[185].Anincreaseintransmembraneflux flow.Waterthatentersthechannelsleavesthebiofilmacrossthemembranes.Anydebrisorparticles afterchemicalcleaningmaynotnecessarilyreflectgoodremovalofbiofilmbacteriafrommembrane carriedbythiswaterstreamwillthereforeberetainedonthemembranesurfaceandprobablyblockthe surfaces,itmaybeduesolelytoadisruptionofbiofilmstructure[186].Repeateduseofthesame channelsovertime.Mostpermeateprobablyoriginatesfromwaterthatcrossesthebiofilmthroughthe cleaningsolutionagainstaparticularbiofilmmayresultintheselectionofresistantstrainsandthus matrix and matrix porosity is therefore the major controlling element for membrane flux across decreasethebiofilm´ssusceptibilitytothecleaningagent.Effectivebiofilmcontrolthereforedepends

53 54 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration on the periodic change of the cleaning and sanitizing solutions. Care must also be applied in the contrast, Combe et al. [53] determined that anionic surfactants reduced adsorption of humic acids selection of antiscalants used for chemical fouling control. Some organic antiscalants are good considerably. substratesformicrobialgrowth,andworsenconsiderablybiofoulingproblems[187]. AnattempttomakemodificationsofNFmembranes(NF270)hasbeenperformedbyBelferand Membrane systems should be designed and operated in ways to minimize biofilm buildup on Gilron [194], see Table 5. The membranes have been modified in situ (also spiral elements) with membranes. The most effective means for pretreatment are filtration systems such as ultra and acrylates or other similar monomers. The crosslinking agent was Ethylene Glycol Dimethacrylate microfiltration which remove bacteria effectively from feedwaters. An outline of pretreatment (EGDMA)andthereactiontime1560minutes.Itcanbeseenthatthefluxhasdecreasedsomewhat technologies for nanofiltration was given inChapter9.Theseadvancedpretreatmenttechnologies, duetothemodification,butalsothefoulinghasdecreased(measuredasthedifferenceofthepure however,donotremoveordestroyorganiccarbonsourcesformicrobialgrowth.Pretreatmentsystems waterfluxbefore(PWFb)andaftertheexperiment)especiallywiththeHEMAmodifiedmembranes.A which combine filtration with bioreactors designed for removal of bioavailable organic carbon in similarprocedureforROmembraneshasbeenreportedbyGilronet al.[195].Coatingmembraneswith feedwaterstominimallevelsareprobablythemosteffectivecombinationforbiofoulingcontrolsince alayerofpreadsorbedpolymermaystericallypreventthefoulantsfromenteringintothemembrane lownumbersoforganismsandlowconcentrationsoforganicswilllimitthegrowthofbiofilmson matrix.Theeffectivenessofsuchatreatmentdependsonthemembranecharacteristics.Hydrophobic membrane surfaces [188, 189]. Continuous dosing of oxidizing biocides such as chlorine at low membranes generally are more susceptible to adsorption and fouling and hence making such a concentrationshasproveneffectiveinmanymembraneoperations,butitisimportanttostressthat membranemorehydrophilicislikelytoimproveperformance[85]. such measuresneedtobeadoptedfromtheverystartofmembraneoperation,beforeabiofilmis Kilduff et al. [12] have developed a technique to modify the surface of NF membranes using UV formed.Biofilmformationmayalsobeminimizedbyappropriatechoiceofmembranepolymers.In irradiationandUVassistedgraftpolymerisation.Suchtreatmentresultedinincreasedhydrophilicityof recentyearsmanufacturershaveintroducedseveraltypesoflowfoulingpolymersonthemembrane themembranespossiblyduetotheformationofsurfacehydroxylgroups.Lessfoulinghowever,came market [190, 191]. Once formed, only periodic cleaning with chemical cocktails containing a atthecostofdecreasedretention. combination of detergents, chaotropic agents, chelating agents and biocides will be capable of effectivelycontrollingbiofilmgrowth.Furtherdetailsoncleaningoptionswillbegiveninthefollowing Table 5 NF270 membranes modified in situ by redox-initiated graft polymerisation with section. potassium persulfate/potassium metabisulfate as the initiator (0.005-0.03 M). Retention (R) of UV-absorbing compounds (UV) and of Total Organic Carbon (TOC) and fouling in NF of paper machine clear filtrate. Modification agents used: Acrylic acid (AA), Methacrylic Acid 8 FOULING PREVENTION & CLEANING (MA), Polyethylene Glycol ester of Methacrylic Acid (PEGMA), Hydroxymethyl ester of Methacrylic Acid (HEMA), (Belfer and Gilron [194]). 8.1 Pretreatment as Fouling Prevention InNFnormallyfrequentcleaningisavoidedbyusingdifferenttypesofpretreatment.Forexample, Modification PureWaterFlux Permeateflux R,UV R,TOC Fouling particulatematterisaggregatedandsettleduntilanalmostparticlefreefeedisachieved.Asdescribedin (L/m2h) (L/m2h)(03h) (%) (%) (%) the previous sections, MF and UF may be more effective in removing such particulates than Original 205 132 51 80 21.6 conventionaltreatment,butsmallcolloidalmattermaystillpermeate.Suchpretreatmentresultsina MA1M30%PEGMA 65 40 92.7 80 verylow(lessthan3)siltdensityindex(SDI).AsuccessstorywasreportedbyGwonetal.[26]who AA1M 226 130 97 83 13 attributed the absence of biofouling to pretreatment with UF. In pretreatment also biocides and 183 chlorinepretreatmentcanbeusedtoavoidbiofouling.MoredetailsonpretreatmentinNFcanbe MA0.5MPEGMA0.002M 232 148 90.2 69 22.5 foundinChapter9andinanarticleofpretreatmentforROincludedbyShahalam[192]. HEMA1M 156 123 98 80 4.9 8.2 Membrane Modification for Fouling Prevention HEMA0.5M 173 120 96.8 72 1.4 Another option to avoid fouling and subsequent cleaning, beside pretreatment, is to modify the HEMA0.2M 204 118 96.6 72 1.4 membraneorthemembranesurfaceinparticular.Normallythemodificationaimstoproduceamore 74 hydrophilicmembrane[193],amoreresistantmembraneorsometimestoamorechargedmembrane. HEMA0.2M(circulatedcell) 175 125 97.7 82 0.6 The problem with modification is that the modification material takes up space in the membrane polymer,andthusthefluxdecreases.Themodificationis,therefore,acompromisebetweenfouling andpurewaterflux.Leeet al.[29]havestudiedtheeffectsofanionicandcationicsurfactantsonUF membranes used for NOM filtration. While anionic surfactants had no effect on flux or retention, cationic surfactants decreased flux which was accompanied by an increase in NOM retention. In

55 56 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration

8.3 Cleaning Methods couldberemovedbythechemicalcleaningagent.TheauthorsusedSDSandEDTAforthosestudies 8.3.1 Physical Cleaning Methods withorganicfoulantsandmultivalentions. Alkaline Cleaning: Thealkalinecleaningisoftenthemostimportantasmanyfoulants,especiallyin Whilethemainfocusinthissectionisonchemicalcleaning,someformofphysicalcleaningisgenerally naturalwatersorwastewatersareoforganicnatureorinorganiccolloidsmaybecoatedbyorganics. partofacleaningprotocolandhenceabriefoverviewisprovided.Physicalcleaninggenerallyuses Thealkalinecleaningisaimingtoremoveorganicfoulantsfromthesurfaceofthemembraneandfrom mechanicalforcestoremovefoulants[196]andsuchmethodsinclude theporesofthemembrane.ThehighpHisusuallyaresultofusingsodiumhydroxideandsodium  Backflush/Forward Flush/Reverse Flush carbonatecontainingcleaningsolution.Inmostcasesthenasurfactantisincludedintheformulated  Scrubbing (e.g. using foam balls for tubular modules) cleaning agent. This surfactant emulsifies fat containing particles and prevents the foulant from adheringbackonthesurface.Thesurfactantismostlyanionicornonionicandactstogetherwiththe  Air Sparge alkalineagent(caustic)toremovethefoulant.InmanycasessomesequesteringagentlikeEDTAis  CO2 Back Permeation added to the formulation to remove multivalent ions like calcium and magnesium. It appears that  Vibrations alkalinecleaningisoftenthemosteffectivecleaningstep[26]. Acid Cleaning: Theacidcleaningaimsatremovingprecipitatedsalts(scaling)fromthesurfaceofthe  Sonication membraneandfromthe“pores”.TheacidprocedurecanbethemostimportantcleaningstepinRO WhileanumberofresearchershaveusedpermeatebackwashforTFCmembranes,thisissomewhat asthescalingproblemoccursinconnectionwithsaltretention.Oftentheacidusedisnitricacidata surprising as the risk of damage to the thin active layer in backwash operation is considerable. pH of 12. In many cleaner formulations citric acid has been used as well as phosphonic and However,Chenet al.[196]havereportedbeneficialeffectsofsuchbackflushespresumablyduetothe phosphoricacid.Thelargeuseofnitricaciddependsonitsfairlymildoxidisingability.Intheacid disruptionofthefoulantlayerwhichwassubsequentlyremovedbyaforwardflush. cleanerformulationsalsodetergents,cationicornonionic,aswellassomesequesteringagentscanbe Sonicationisarelativelynovelmethodformembranecleaning,althoughultrasoundiscommonlyused present. inmembraneautopsiestoremovethefoulingdepositsfromthemembranesforchemicalanalysis.Lim Enzymatic cleaning: Enzymesareusedonalargerscaletodaythanearlier.Thereareenzymesthat and Bai [197] have used sonication in microfiltration (MF) and found that the technique was very can take very high temperatures (7090oC) even though in most cases their optimal temperature is efficientinremovingcakedeposits,butnoteffectiveinremovingporeblockages.Thisresultedina muchlower.EnzymescanoftenbeusedwhenamoreneutralpHforcleaningisconsidered,when decreaseofcleaningefficiencyovertimeasmechanismslikeporepluggingbecamemorepredominant. biofoulingisexpectedorwhenpolysaccharidesarethetypicalfoulants.Because,oftentheextracellular Henceitwasrequiredtocombinesonicationwithbackwashingaswellasachemicalcleaningprotocol. substance secreted by the biofouling microbes is polysaccharide in nature enzymatic cleaning is 8.3.2 Chemical Cleaning Agents and Processes important.Theenzymesaremostlyveryspecificintheiractionandare,therefore,selectedforspecific Chemical cleaning relies on chemical reactions to break bonds and cohesion forces between foulantsorwhenothercleaningagentsdonothelp.Specialcautionhastobetakensothattheenzyme membranesandfoulants[196].Suchchemicalreactionsinclude cannotattackthemembraneitself[204]. Biocides for control of microorganisms and biofouling  Hydrolysis :ZeiherandYu[205]describethreeterms ofimportanceinthecontrolofbiologicalfouling,namelysanitizationwhichdescribesacleaningprocess  Saponification withantimicrobialcharacteristics.Ina“3log”or1,000foldreductioninmicrobialcountsinachieved.  Solubilisation Disinfectingistheprocessinwhichmicroorganismsaredestroyed,inactivatedorremovedintheorderof magnitudeofa“6log”or1,000,000foldreductionincounts.Lastly,Sterilizingmeansmakingasystem  Dispersion freeofalllivingcells,viablespores,virusesandsubviralagentscapableofreplication.Accordingto  Chelation ZeiherandYu[205]itissterilizingthatisdesiredinmembranesystems.Theuseofbiozidesandtheir  Peptization [198]. commonconcentrationsaresummarisedinTable6.ItshouldbenotedherethatmanyNFmembranes arenotchlorineresistantandapplicationofbiocidesshouldbeinconsultationwiththemembrane InmanycasesNFmembranemanufacturersarecooperatingwithacleaningagentmanufacturerto manufacturertoavoidmembranedamage.Forexample,Staudeindicatesthatozonedestroyssome establish the most suitable cleaning process for the membranes produced by the membrane polymericmembranes,whiletheresistancetovariousdisinfectantsismembranedependent[3].Some manufacturer.However,asdescribedabove,thecleaningprotocolnotonlyismembranespecific,but ofthosebiocideshavebeenreportedtocausemembraneswellingwhichloosensfoulantsattachedto alsofoulantdependent.SometypicalproducersofformulatedcleaningagentsareDiverseyLeverA/S, themembranesandhenceincreasescleaningefficiency[196]. HenkelEcolabGmbH&CO,OndeoNalcoLtd.andNovadanA/S.[199,200]andseveralauthors have listed cleaning mixtures or protocols [15, 26, 27, 196, 201, 202]. Li and Elimelech [203] establishedinaveryfundamentalstudythatcleaningcanonlybeeffectivewhencalciumionbridging

57 58 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration

Table 6 Typical Biocide Concentrations for RO Sanitizing (adapted from Zeiher and Yu [205]) Figure 28 Impact of cleaning procedure Biocide Dosage Comments optimisation on flux Chlorine 0.11.0ppm CAmembranesandother (reprinted from Chen chlorineresistantonly et al. [196]). Peraceticacid 0.021.0% pHofneatproductis34 Formaldehyde 0.53.0% carcinogen Glutaraldehyde 0.5–5% notrecommended Isothiazolone 0.010.15% slow Quaternary 0.01–1% notrecommended amines DBNPA upto200ppm fast,easydisposal Bisulfite 1.5 % (preservative) or as preservative,biostatic, neededforCl2removal Cl2scavenger 8.3.3 Choice of Cleaning Method Thecleaningprocesstobeadapteddependsonthetypeoffoulant,thetoleranceofthemembrane AccordingtoChenet al.[196]theselectionofappropriatecleaningprotocolsisusuallybasedonatrial towardsthesuggestedcleaningagentandtheregulationsapplyingtocleaningagentsforaparticular anderrorapproach.Thismeanstestingvariouscleaningprotocolsthathavebeenselectedbyruleof application.Forinstancedirectivesexistdealingwithissuessuchaswhatformulationsareacceptable thumbandexperienceforpresumedfoulants.Iffoulantshavenotbeenidentified,assumptionsbased andthosecertainlydifferfromcountrytocountry(e.g.EUandtheUSAhavedifferentnorms). onfeedwatercharacteristicsneedtobemade.Thedifferentcategoriesoffoulantshavebeendescribed Cleaning is in most cases performed using caustic, acid or enzymes solutions, mixtures of those, in detail in previous sections. In terms of their contributions to fouling, van Hoof et al. [99] have combinations of additives or proprietary commercial cocktails. For sanitation often chlorine gas is concludedfromextensivemembranesautopsysurveysthatworldwideabout50%ofthefoulantsareof requiredinsomeofthetreatmentsteps,althoughformaldehydehasalsobeenreported. organicnature.ThisorganicfoulantfractionishigherinEuropethanitisintheUSA.Ferricoxideand Theeffectivenessofsuchcleanersisusuallyoffsetbythedamagecausedtothemembranematerials silicaarethenextmostcommonfoulantsfollowedbyalumina,calciumphosphate,calciumcarbonate and hence membrane durability is an important consideration in order not to adversely affect andcalciumsulphate.SilicaisapparentlymoreabundantintheUSAandcalciumphosphateintheUK. membranelifetime. Theeffectiveselectionofacleaningagentisusuallyprecededbyadeterminationofthefoulantusing 8.3.4 Determination of Cleaning Requirement and Frequency feedanalysisormembraneautopsy.However,thisprocedurehaslimitationsinthatifseveralfoulants are identified cleaning protocols may become extensive. For this reason Luo and Wang [15] have Generallyinindustrythecleaningintervalisdesignedinsuchawaythatthecleaningistakingplace optimisedaCIPmethodandestablishedthatitissufficienttoremoveselectedessentialfoulantsas whenacertainamountoffluxislost,althoughthereisevidencethatcleaningatanearlyfoulingstageis subsidiaryfoulantsmayberemovedsimultaneously.Nodoubtthenatureandcomplexityoffouling moreefficientthanwhenthefoulingiswellestablishedandthefoulinglayercompacted[207].Aflux can make it very difficult to find the ideal cleaning agent. For this reason Chen et al. [196] have lossof1030%isusuallythehighestallowabledecreaseinflux.Anotheroptionistocleanonaregular developedamethodologythatappliesastatisticallydesignedapproach(factorialdesign)tocleaning basisforinstanceonceaweekorlessfrequentlydependingonthefoulingsituationoftheprocess.In optimisation.TheimpactofthisoptimisationattheexampleofaUFmembraneisshowninFigure28 somecasesNFcanbeusedalmostwithoutcleaningiftheoperatingconditionsaresuchthatonlysub withasignificantlyincreasedproductivity.Weisetal.[206]havetrialledvariouscleaningprotocolsasa criticalfluxesareused.AnexampleofthatisNFinhumicwatertreatmentinNorwayatlowfluxand function of membrane characteristics and established that the choice of cleaning agent was lowtemperature[208]. instrumentalinachievingasteadystatefluxvalue. InmostcasesNFprocessesneedlesscleaningthanUFandMFprocesses.Thereasonforthisisthat thecommonandusuallydetrimentalporeplugginginUFandMFislessimportantinNF.However, ontheotherhand,cleaningisneededmoreoftenthaninROduetothemoreopenstructureofNF membranes. DuetothesimilaritiesofROandNFoftenthesametypesofcleaningagentsandcleaningprocesses areused.InmostcasesthecleaningprotocolsaredependentonthefluidstobeprocessedbyusingNF (foulanttypes).

59 60 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration

Thecleaningintervaldependsbothonthefoulantamountsonthemembranes(mostlymeasuredas associateddepositsuchasaconcentrationpolarisationoraloosegellayerorcake.Theresistancesare; increasedpressuretokeepupconstantflux)oronthefactthatthemembranesneedtobecleanedand the intrinsic hydraulic membrane resistance (RM),residualresistanceaftercleaning(RRES), resistance disinfectedatregulartimes(dailyinthedairyindustry).VeryfewpapersoncleaningofNFmembranes after filtration (in this case UF; RUF),reversiblefoulingresistant(RRF),irreversiblefoulingresistance havebeenpublisheduptodate.InthedairyindustryfoulingandcleaningofMFandUFmembranes (RIF),thetotalfoulingresistance(RF),hydraulicresistanceofthecleanedmembrane(RCW).Cleaning andvisualisationoffoulingandcleaningefficiencyhavebeenreported.Mostoftheprinciplesarethus canbeassumedtobecompletewhenRCW≈RMallowingforexperimentalerror[202]. reviewed. Figure 30 Resistances 8.4 Determination of Cleaning Effectiveness in filtration, rinsing 8.4.1 Water Productivity and Membrane Resistance and cleaning (adapted Therearedifferentwaystoestablishhoweffectiveaparticularcleaningprotocolis.Firstly,theclean from Argüllo et al. water flux can be measured and compared to the CWF before and immediately after filtration to [202]). determineiffluxhasrecoveredduetocleaning.Thiscanbedoneinsituintheprocess.Therecovery oftheoriginalsteadystateprocessfluxis,ofcourse,themostnaturalwaytoseethatcleaninghasbeen successful[201].Fluxrecoverycanbecalculatedas J = C FR (33) J 0 whereJCisthefluxaftercleaningandJ0thefluxofthevirgin,unfouledmembrane[201].Alternatively theeffectivenesscanalsoberepresentedbycleanwaterfluxrecovery[196]as J covRe eryJ = O (34) J C ThevariationoffluxhasbeenillustratedinFigure3showingtheimpactoffoulingandcleaningonflux andtheimpactofseveralsuccessivecleaningstepstofillrecoveryisshowninFigure29attheexample Inthiscaseofpresentationasresistances,cleaningefficiencycanbedeterminedas − of an UF membrane fouled with proteins, lipids and carbohydrates and cleaned with a rinse wash = RR RESIF ⋅ ERW 100 (35) (water),analkalineclean(NaOH0.5w%),followedbyaproteasedetergent(0.75w%),followedby RIF sodiumhypochlorite(150mg/L).Thesodiumhypochloriteisusedasasanitisingagentanditscleaning 8.4.2 Foulant Content of Cleaning Solutions effectivenesswasattributedtoitsabilitytocauseswellingofthemembrane[27]. Secondly,thevariationofthecompositionofthecleaningsolutioncanbeinvestigated.Oftenchanges arevisible,suchasprecipitateswhenscalingisremovedoradarkyelloworbrowncolourwhenNOM Figure 29 Flux recovery in the case of is removed. Chemical analysis of cleaning solutions can quantify such observations. For example successive cleaning steps (figure Liikanen et al. [201] measured pH, turbidity, colour, total solids (TS) and cations in the cleaning reprinted from Sayed Razavi et al. [27]). solutions.Conductingamassbalanceandcomparingtheamountsremovedinthecleaningsolutionto theamountremainingonthemembranesgivesfurtherinformationnotonlyoncleaningefficiencybut on the reversibility of certain foulants. Gwon et al. [26] found that calcium and iron were found predominantlyinacidcleansandsilicainalkalinecleans.Further,ironwasmostresistanttoremoval andadheredstronglytothemembranesthroughoutthecleaningprocess.Thiswasestablishedwitha sonicationtechniqueasdescribedintheautopsysection. 8.4.3 Membrane Surface Investigation Thirdly,themembranesurfacecanbeexaminedaftercleaningtodetermineifallcontaminantshave beenremoved.Ithas,however,beenobservedthatdespitecompletefluxrecovery,notallfoulantsare Inaccordancewiththeresistanceinseriesmodel,thiscanalsobedepictedasavariationofmembrane takenoff.Availablemethodsaresimilartothoseusedformembraneautopsieslikestreamingpotential resistanceasshowninFigure30.Fromthisgraphconclusionscanbedrawnregardingthenatureofthe measurements, contact angle methods, FTIR or SEM. These characterisation methods are mostly foulants and the effectiveness of cleaning. A reduction of resistance by rinsing indicates a loosely

61 62 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration destructivemethds.Acombinationofseveralmethodsisthebestwaytoanalysethecleaningefficiency 8.4.6 Impact of Cleaning on Permeate Quality [209,210]. AccordingtoLiikanen et al.[201]whoperformedpermeateanalysisforTOC,UVabsorbance(254 8.4.4 Membrane Retention nm), pH, alakalinity, hardness and conductivity, the permeate conductivity generally increased after cleaning.Acidiccleaningassistedinrestoringtheionretentionofmembranes. RetentionisaffectedbyfoulingassummarisedinSection4.8.Asaconsequencecleaningresultsin eitherarestorationordecreaseinretention.Forexample,Chenet al.[196]reporteda10%increasein 8.4.7 Impact of Cleaning on Membrane Durability TDSretentionaftercleaning. NFmembranesaregenerallysomewhatlessdurablethanothertypesofmembranesusedtoday.UF Otherimportantparametersinmembranecleaningarethewashwaterusageandlossofproduction. andMFmembranescanbemadeofPVDF,Teflon,polypropylene,polysulphoneandotherverystrong Thewashwaterusagecanberepresentedasthevolumeofwashwaterusedpertotalvolumeofwater and resistant materials. In most cases it has not been possible to make NF membranes of these produced(takingintoaccountthatwashwaterisoftenmembranepermeateandhenceproduct)[196] materials.Suchmaterialshoweverarecommonlyusedassupportsfortheactivelayer.NFmembranes andlossofproductioniscalculatedbymultiplyingthetimeforcleaningwiththeaveragewaterflux are most often made of aromatic amides, e.g. poly(piperazine amide) (See Chapter 3). Generally during operation. For the calculation of environmental impact both water consumption and the membranesusedinNFhavedifferentresistancetochemicals,heatandpH.Hencecleaningprocesses generationofapotentiallyhazardouswastestreamneedtobeconsidered. needtobesubstantiallydifferent[214].Membranedurabilitycanbeexaminedbymeasuringpurewater 8.4.5 Influence of Operating Parameters on Cleaning Efficiency fluxandsaltretention.Acombinedincreaseinfluxanddecreaseinsaltretentionaftercleaningas comparedtothevirginstateofthemembranemostlikelyindicatesareducedmembraneintegrity. Duration: Itappearsfromtheliteraturethatshorterfiltrationcycles(andhencemorefrequentbut Acid/Alkali Resistance: ThealkalineresistanceofnormalNFmembranesgoestoaboutpH11and shortercleaningprocedures)arebeneficialasthefoulinglayerscompactwithtimeandbecomemore theacidresistancetoaroundpH1forthebestmembranes,dependingonthematerial.Inmanycases difficult to remove. Further, the degree of fouling is an important parameter in recovery during the NF membranes can withstand higher or lower pH values for shorter times especially if their cleaningwhichsupportstheargumentformorefrequentcleaning(seealsoFigure28)[196]. temperature limits are not exceeded.Infact,ahighpHcleaningcanoftenincreasethemembrane Temperature:Ingeneralcleaningefficiencyincreasedwithtemperaturebutincreasesarelimitedby capacity because the high pH modifies the membrane to give a higher flux without a decrease in theheattoleranceofthemembranes[201].Itisaruleincleaningprocessestocleanatthesameor retention[215]. higher temperature as the NF process has been operating. If cleaning is undertaken at a lower ManyindustriesuseNFmembranesforfractionationoftheirprocessoreffluentstreams.Theobstacle temperaturethereisariskthatthefoulantswillreadsorbonthemembraneoncenormalprocessingis hasbeenthehighorthelowpHthatthemembranescannottolerate.Forthisreasonthereisalotof continued. EUresearchdirectedtomanufactureNFmembranesthatcanoperateinabroaderpHrange,aimingat Optimalcleaningresultshavebeenobtainedrepeatedlyinliterature(forUF)atatemperatureof50oC an increase in 12 units in each direction [216]. The durability of the membranes is checked by [211213],andalsoinNFthistemperaturehasseemedtobequitegoodtouseifthemembranesare characterisationofretentionofglucose/sucroseandsaltsandbyinspectionofthesurfacesforcracks toleranttosuchelevatedtemperature.Ahighertemperaturecouldgiveevenbettercleaningresults,but byusingSEM. membranesthatcanenduretemperaturesbetween70and90oCremainscarce.Theimportanceofa Temperature Resistance:NFmembranesarenotnormallyverytoleranttoheat–uptoalimit.Most highenoughtemperatureincleaninghastworeasons,firstlytheenhancedremovaloffoulantsand NFmembranescanendurearound40oCandaccordingtosomereportstheirstabilityextendsto50 secondlytheremovalofheatsensitivemicrobes.Anotherpossibilitytocircumventthisproblemisto o o givethemembranesashortheatshock.Inorganicmembranescanendurethistypeofheattreatment, 60 C.Itisofgreatimportancethatthemembranescantolerateatleast5070 Cinprocesses,which buttheirapplicationsaretodatelimited. demandelevatedtemperatures,andalsoincleaningwhichwouldallowthembeingsanitised. SomestudieshavebeencarriedoutontheheatstabilityoftypicalNFmembranes,assummarisedin Pressure and Air/Water Backwashing :Inmostcasesithasbeenshownthatahighpressureisnot beneficialwhencleaning.Especiallywithporousmembranesthepressurepushesthefoulantsdeeper Figure 31 [217]. Generally, with increasing temperature flux increases while retention decreases intothemembrane,whichisalsotruewithopenNFmembranes.Theappliedpressurealsocauses (retentionnotshownintheFigure).Insomecases,decreasingtemperaturecausesthemembranesto o compactionofthefoulinglayer[27]. becometighter(evenafterashortheattreatmentat65 C),hencethefluxofsuchmembranesdecreases andretentionincreases(seee.g.membraneXN40inFigure 31).Alkalinecleaningthenagainincreases Itappearsmostbeneficialtojustletthemembranessoakinthecleaningsolutionandthentransportit flux. outofthemoduleusingaslittlepressureaspossible.However,usuallyacompromisebetweenpressure andflowvelocityhastobemadeinordertogetthebestfoulingremovalefficiency. InUFandMF,cleaningisoftenenhancedbybackpulsation,butthisisnotapossibilityinNFdueto themembraneandmodulestructuresused.Forexample,withTFCmembranestheactivelayerwould bedamagedduringbackwashduetothelackofthesupportlayer,andairbackwashisnotpossibleas aircannotpenetratethroughthesmallporesinNF.

63 64 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration

8.5.2 Water and Wastewater Treatment 120 InmostwaterandwastewaterapplicationscleaningisnotcarriedoutonadailybasisandtheNF XN-40 processisaimingatasfewcleaningsaspossible,whichmeansthattheprocessesarerunatlower 100 Desal-5 DL averagefluxes. 1 80 TS-80 IncaseswherethewaterscontainsomeorganicslikeNOMorhumicacidsusuallyanalkalinecleaning h)

2 is required. For example, Li and Elimelech [87] have investigated a number of cleaning agents to 2 60 3 removedepositsofHAandcalcium.ItwasfoundthatEDTAwasmosteffectiveandrecovered100% ofthefluxwhenappliedatpH11,whileNaOHwasineffective.Sodiumdodecylsulphate(SDS)was Flux, L/(m 40 effectiveindependentofpHwhenappliedaboveitscriticalmicelleconcentration(CMS).Incontrast, Leeet al.[29]foundthatSDSwasineffectiveforNOMfoulantswhereas0.1MNaClwasrelatively 20 effective compared to more common cleaning agents such as surfactants. Caustic solutions were effectiveatremovinghydrophobicfoulants,whilehydrophilicNOMfractionsweremoredifficultto 0 remove.Inanextensivestudydeterminingtheefficiencyof13cleaningschemes,Liikanenet al.[201] 0 10 20 30 40 50 60 70 Temperature, °C determinedthatNa4EDTAwasveryeffective,althoughitwaspointedoutthatthismaybedependent onthemembranetype,whichimpliesthateverymembranemayrequireacleaningoptimisationfora particularfeedwater.HongandElimelech[80]whoconfrmedtheeffectivenessofEDTApostulated Figure 31 Influence of temperature on fluxes during the filtration of 250 ppm glucose solution. that EDTA removes the calcium from a solution and in this way reduces (or in the specific case o o 1: Temperature was increased from 24 to 65 C, 2: Temperature was decreased from 65 to 37 C, reverses)fouling.ThismakesEDTAaneffectiveagentnotonlyforcleaningbutalsoforpretreatment. 3: change in flux after alkaline cleaning (adapted from Mänttäri et al. [217]). Roudman and DiGiano[65]usedacommercialinorganiccausticdetergent(MC3)atpH10.3and ultrapurewaterrinseswhichcouldnotremoveNOMdeposits. 8.5 Examples of Cleaning Applications and Cleaning Process Protocols 8.5.3 Desalination and other Industries Itisbesttodividethecleaningproceduresaccordingtowhatfoulantsaretoberemovedorthetypes of process streams that are filtered. Hence the cleaning protocols used by a number of example Indesalinationtheacidcleaningisthemostimportant.Oftenthealkalineandtheacidcyclesarenot applications is described in the following subsections. In industrial processes cleaning is generally rundirectlyaftereachother,butmaybeonemoreoftenthantheother,thefrequencyusuallydepends performedasacleaninginplace(CIP)procedurewhichcommencesautomaticallyeitheratsettime onpretreatmentandlocaldemands.Thecleaningintervalisatleastoneweekandinsomecasesthe intervals,whentransmembranepressureinconstantfluxapplicationsreachesacriticallimitorwhen processcanberunwithoutcleaningforseveralmonths[201,207,208,222]. fluxhasdecreasedbelowthetolerancelevelinconstantpressurefiltration. 8.6 Regeneration of Cleaning Solutions 8.5.1 Food Industry Regenerationofcleaningsolutionsisanimportantissue,notonlybecauseofeconomicconcerns,but Inthefoodindustry,especiallyinthedairyindustry,thereareregulationsthatmembranesshouldbe alsoforenvironmentalreasons.Unfortunately,Argülloet al.[202]havedeterminedthatindependentof cleanedandsanitiseddaily.Thisrequirementcomesfromthefactthatthesefoodproductsarevery theinitialconcentration,about30%ofactivityislostineachcleaningcycleforenzymecleanersused sensitivetomicrobialgrowth.Duetothiscleaningrequirement,membranesinsuchapplicationsare forwheyfractionationinUF. operatedathigherfluxesasfoulingpreventionisnotapriority.Inthedairyindustrythefoulantsare Infact,NFwastrialledtotreatthecleaningsolutionstorecoverandreusetheacidorcausticfractions mainlyproteins,saltsandsugarortheirdegradationproducts.Forremovalfoulantsanalkalinecleaning intheprocess.Theconcentratewouldcontainthefoulants(whichforexamplecouldberegeneratedin cycleisneededandforsaltremoval(calciumsalts)anacidcleaningstep.Normallythisiscarriedoutin thedairyindustryasanimalfood)andthepermeatewouldcontaine.g.thealkali/acidandtheother threesteps:alkaline,acidandalkaline.Theprotocolvariesfromprocesstoprocessbutitisoftenmore partsoftheformulatedcleaningagent.ThispermeatewouldthenbeconcentratedbyusingRO[223 orlessstandardisedalsoincludingsanitation.Anexampleofsuchacleaningprocedureinthefood 225]. industry(soyflourextract)wasgiveninFigure29[27].Mostmembranesarecleanedaccordingtoa CleaninginPlace(CIP)procedure[218221].Alternativelyenzymaticcleaninghasbeentrialled,butwas 9 CONCLUSIONS describedashavingalowcleaningefficiencyandlongcleaningtimes.Someproteinsarenotremoved This chapter has provided a comprehensive overview of fouling characteristics, common foulants, withenzymes[202]. fouling characterisation and membrane autopsy as well as a review of current models. A detailed description of the main fouling categories, namely organic fouling, scaling, colloidal and particulate fouling,andbiofoulingwasfollowedbyabriefdescriptionofcleaningmethodologies.

65 66 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Nanofiltration - Principles and Applications Chapter 8 – Fouling in Nanofiltration

While fouling has always been a primary part of membrane research and almost always found in F externalforcevector RCW resistanceofthemembraneaftercleaning companyofeffectivemembranefiltration,itisclearlymembranecleaningwheresubstantialprogress IAP ionactivityproduct Re Reynoldsnumber willbemadeinfutureresearch. J waterflux RF totalfoulingresistance 10 ACKNOWLEDGEMENTS JC waterfluxaftercleaning RG resistanceduetogelformation JO initialwaterflux RIF irreversiblefoulingresistance ShyamS.SablanifromtheSultanQaboosUniversityinOmanisacknowledgedforprovidingFigure5 andFigure6.LindaDudleyfromOndeoNalco,UKisthankedforsupplyingextensivematerialson k Boltzmann’sconstant RM intrinsicmembraneresistance membrane fouling, scaling and cleaning. Paul Buijs, GEBetz, Belgium supplied Figure 2 and Jack K partitioning coefficient between RO realretention

Gilron,BenGurionUniversity,IsraelFigure4whichismuchappreciated. membraneandsolutionphase ROBS observedretention

ks masstransfercoefficientofthesolute RP resistanceduetointernalporefouling 11 GLOSSARY & SYMBOLS ksp thermodynamicsolubilityproductofthe RRES residualresistanceaftercleaning phaseformingcompound 11.1 Glossary RRF reversiblefoulingresistance M molecularmassofthesolute CWF CleanWaterFlux DOM DissolvedOrganicMatter S supersaturationratio FR FluxReduction EDS ElectronDispersiveSpectra PF concentrationpolarisationfactor PF PermeateFlux EDTA EthyleneDiamineTetraAceticAcid t timeduration Q volumeflowrate NOM NaturalOrganicMatter FA FulvicAcid u particlevelocityinducedbythefluidflow

CA CelluloseAcetate FESEM FieldEmissionScanningElectron R gasconstant V volume DOC DissolvedOrganicCarbon Microscopy RA resistanceduetoadsorption x distancefromthemembranesurface RC resistanceduetocakeformation 11.2 Greek symbols y permeaterecoveryfraction RCP resistance due to concentration α Γ activityofthesolute quantity of organic adsorbed onto the polarisation α membranesurface Ο activityofthesoluteinitscrystalstage η δ boundarylayerthickness Τ viscosityofwaterattemperatureT * µ chemicalpotentialofthesolute 12 REFERENCES ∆πm cakeenhancedosmoticpressure [1] W.J.Koros,Y.H.Ma,T.Shimizu,Terminologyformembranesandmembraneprocesses ε ν velocity of water (normal to the cakelayerporosity IUPACrecommendations1996,JournalofMembraneScience120(1996),149159. membranesurface) φ Τ totalinteractionpotential [2] B.vanderBruggen,L.Braeken,C.Vandecasteele,Fluxdeclineinnanofiltrationdueto τ membranetortuosity adsorptionoforganiccompounds,SeparationandPurificationTechnology29(2002),2331. [3] E.Staude,MembranenundMembranprozesseGrundlagenundAnwendungenVCH: Weinheim,Germany,1992. 11.3 Alphabetical symbols [4] A.I.Schäfer,NaturalOrganicMatterRemovalusingMembranes:Principles,Performanceand CostCRCPress:BocaRaton,USA,2001. A membranesurfacearea CW solute concentration at the [5] H.Huiting,J.W.N.M.Kappelhof,T.G.J.Bosklopper,OperationofNF/ROplants:from C equilibriumconcentrationofthesolutein membrane/waterinterface reactivetoproactive,Desalination139(2001),183189. thesolution D particlediffusiontensor [6] A.G.Fane,P.Beatson,H.Li,Membranefoulinganditscontrolinenvironmentalapplications, WaterSci.Technol.41(1011)(2000),303308. CB soluteconcentrationinthebulksolution ∆ G Gibbfreeenergy [7] J.H.Choi,S.Dockko,K.Fukushi,K.Yamamoto,Anovelapplicationofasubmerged CBL solute concentration in the boundary ∆Π osmotic pressure difference across the nanofiltrationmembranebioreactor(NFMBR)forwastewatertreatment,Desalination146(2002), 413420. layer membrane [8] S.F.E.Boerlage,M.D.Kennedy,M.Dickson,D.E.Y.ElHodali,J.C.Schippers,Themodified CF soluteconcentrationinthefeed ∆P transmembranepressure foulingindexusingultrafiltrationmembranes(MFIUF):characterisation,filtrationmechanismsand CF concentrationfactororratio * proposedreferencemembrane,JournalofMembraneScience197(2002),121. ∆πm cakeenhanceosmoticpressure CP soluteconcentrationinthepermeate [9] J.H.Roorda,J.H.J.M.vanderGraaf,Newparameterformonitoringfoulingduring Ds solutediffusioncoefficient ultrafiltrationofWWTPeffluent,WaterSci.Technol.43(10)(2001),241248.

67 68 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Introduction Chapter 8 – Fouling in Nanofiltration

[10] M.Mänttäri,M.Nystrom,CriticalfluxinNFofhighmolarmasspolysaccharidesandeffluents [32] A.M.Farooque,A.Hassan,M.,A.AlAmoudi,inIDAWorldCongressonDesalinationand fromthepaperindustry,JournalofMembraneScience170(2)(2000),257273. WaterReuse;7787InternationalDesalinationAssociation,SanDiego,California,1999. [11] A.Braghetta,F.A.Digiano,W.P.Ball,Nanofiltraionofnaturalorganicmatter:pHandionic [33] F.H.Butt,F.Rahman,U.Badhuruthamal,Hollowfinefibrevs.spiralwoundreverseosmosis strengtheffects,JournalofEnvironmentalEngineering123(7)(1997),628641. desalinationmembranesPart2:Membraneautopsy,Desalination109(1997),8394. [12] J.E.Kilduff,S.Mattaraj,J.P.Pieracci,G.Belford,Photochemicalmodificationofpoly(ether [34] K.J.Kim,V.Chen,A.G.Fane,CharacterizationofCleanandFouledMembranesUsingMetal sulfone)andsulfonatedpoly(sulfone)nanofiltrationmembranesforcontroloffoulingbynatural Colloids,J.Membr.Sci.88(1)(1994),93101. organicmatter,Desalination132(2000),133142. [35] K.J.Kim,M.R.Dickson,V.Chen,A.G.Fane,ApplicationsofFieldEmissionScanning [13] F.A.DiGiano,S.Arweiler,A.J.J.Riddick,AlternativetestsforevaluatingNFfouling,Journal ElectronMicroscopytoPolymerMembraneResearch,MicronMicroscopiaActa23(3)(1992),259 AWWA92(2)(2000),103115. 271. [14] F.A.DiGiano,inICRWorkshoponBenchscaleandPilotscaleEvaluations;AWWA, [36] M.RabillerBaudry,M.LeMaux,B.Chaufer,L.Begoin,Characterisationofcleanedandfouled Cincinnati,Ohio,1996. membranebyATRFTIRandEDXanalysiscoupledwithSEM:applicationofUFofskimmedmilk [15] M.Luo,Z.Wang,Complexfoulingandcleaninginplaceofareverseosmosisdesalination withaPESmembrane,Desalination146(2002),123128. system,Desalination141(2001),1522. [37] W.R.Bowen,N.Hilal,R.W.Lovitt,C.J.Wright,Directmeasurementofinteractionsbetween [16] J.S.Vrouwenvelder,D.vanderKooij,DiagnosisoffoulingproblemsofNFandROmembrane adsorbedproteinlayersusinganatomicforcemicroscope,JournalofColloidandInterfaceScience installationsbyaquickscan,Desalination153(2002),121124. 197(2)(1998),348352. [17] I.C.Escobar,A.A.Randall,Assimilableorganiccarbon(AOC)andbiodegradabledissolved [38] W.R.Bowen,T.A.Doneva,Atomicforcemicroscopystudiesofmembranes:Effectofsurface organiccarbon(BDOC):complementarymeasurements,WaterResearch35(18)(2001),44444454. roughnessondoublelayerinteractionsandparticleadhesion,J.ColloidInterfaceSci.229(2000),544 549. [18] H.F.Shaalan,Developmentoffoulingcontrolstrategiespertinenttonanofiltrationmembranes, Desalination153(2002),125131. [39] W.R.Bowen,T.A.Doneva,A.G.Stoton,Theuseofatomicforcemicroscopytoquantify membranesurfaceelectricalproperties,ColloidsSurf.A201(2002),7383. [19] S.F.E.Boerlage,M.D.Kennedy,M.P.Aniye,E.M.Abogrean,D.E.Y.ElHodali,Z.S. Tarawneh,J.C.Schippers,ModifiedfoulingindexUltrafiltrationtocomparepretreatmentprocessesof [40] C.Jarusutthirak,G.Amy,J.P.Croue,Foulingcharacteristicsofwastewatereffluentorganic reverseosmosisfeedwater,Desalination131(2000),201214. matter(EfOM)isolatesonNFandUFmembranes,Desalination145(13)(2002),247255. [20] C.R.Reiss,J.S.Taylor,inMembraneTechnologyConference;ed.AWWA)433448AWWA, [41] D.J.Carlsson,M.M.DalChin,P.Black,C.N.Lick,Asurfacespectroscopicstudyof Reno,Nevada,1995. membranesfouledbypulpmilleffluent,JournalofMembraneScience142(1998),111. [21] D.vanderKooij,H.R.Veenendaal,C.BaarsLorist,D.W.vanderKlift,Y.C.Drost,Biofilm [42] M.Nyström,L.Kaipia,S.Luque,Foulingandretentionofnanofiltrationmembranes,Journalof formationonsurfacesofglassandteflonexposedtotreatedwater,WaterResearch29(7)(1995), MembraneScience98(1995),249262. 16551662. [43] M.Mänttäri,L.Puro,J.NuortilaJokinen,M.Nyström,Foulingeffectsofpolysaccharidesand [22] B.Hambsch,UntersuchungenzumikrobiellenAbbauvorgängenbeiderUferfiltration, humicacidinnanofiltration,JournalofMembraneScience165(2000),117. UniversitätKarsruhe,Karlsruhe,Germany,1992. [44] P.C.Carman,FundamentalprinciplesofindustrialfiltrationAcriticalreviewofpresent [23] J.S.Vrouwenvelder,D.vanderKooij,Diagnosis,predictionandpreventionofbiofoulingofNF knowledge,TransInstChemEng16(1938),168188. andROmembranes,Desalination139(2001),6571. [45] W.R.Bowen,F.Jenner,TheoreticalDescriptionsofMembraneFiltrationofColloidsandFine [24] S.B.SadrGhayeni,P.J.Beatson,S.R.P.,F.A.G.,Adhesionofwastewaterbacteriatoreverse ParticlesAnAssessmentandReview,Adv.ColloidInterf.Sci.56(1995),141200. osmosismembranes,JournalofMembraneScience138(1998),2942. [46] J.G.Wijmans,S.Nakao,F.R.vandenBerg,F.R.Troelstra,C.A.Smolders,Hydrodynamic [25] G.Carlson,J.Silverstein,EffectofMolecularSizeandChargeonBiofilmSorptionofOrganic resistanceofconcentrationpolarizationboundarylayersinultrafiltration,J.MembraneSci.22(1985), Matter,WaterResearch32(5)(1998),15801592. 117134. [26] E.m.Gwon,M.j.Yu,H.k.Oh,Y.h.Ylee,FoulingcharacteristicsofNFandROoperatedfor [47] W.S.W.Ho,K.K.Sirkar,MembraneHandbookChapman&Hall:NewYork,1992. removalofdissolvedmatterfromgroundwater,WaterResearch37(2003),29892997. [48] T.K.Sherwood,P.L.T.Brian,R.E.Fisher,L.Dresner,Saltconcentrationatphaseboundaries [27] S.K.SayedRazavi,J.L.Harris,F.Sherkat,Foulingandcleaningofmembranesinthe indesalinationbyreverseosmosis,4(1965),113118. ultrafiltrationoftheaqueousextractofsoyflour,JournalofMembraneScience114(1)(1996),93 [49] S.S.Sablani,M.F.A.Goosen,R.AlBelushi,M.Wilf,Concentrationpolarizationin 104. ultrafiltrationandreverseosmosis:acriticalreview,Desalination141(2001),269289. [28] B.D.Cho,A.G.Fane,Foulingtransientsinnormallysubcriticalfluxoperationofamembrane [50] J.D.Nikolova,M.A.Islam,Contributionofadsorbedlayerresistancetothefluxdeclineinan bioreactor,JournalofMembraneScience209(2002),391403. ultrafiltrationprocess,JournalofMembraneScience146(1998),105111. [29] H.Lee,G.Amy,J.Cho,Y.Yoon,S.H.Moon,I.S.Kim,Cleaningstrategiesforfluxrecoveryof [51] I.Koyuncu,D.Topacik,Effectoforganicionontheseparationofsaltsbynanofiltration anultrafiltrationmembranefouledbynaturalorganicmatter,WaterResearch35(14)(2001),3301 membranes,JournalofMembraneScience195(2)(2002),247263. 3308. [52] B.VanderBruggen,B.Daems,D.Wilms,C.Vandecasteele,Mechanismsofretentionandflux [30] D.L.Nghiem,A.I.Schäfer,AdsorptionandTransportofTraceContaminantEstronein declineforthenanofiltrationofdyebathsfromthetextileindustry,SeparationandPurification NF/ROMembranes,EnvironmentalEngineeringScience19(6)(2002),441451. Technology2223(2001),519528. [31] S.Belfer,R.Fainshtain,Y.Daltrophe,Y.Gelman,A.Toma,M.Priel,J.Gilron,inIsraeli [53] C.Combe,E.Molis,P.Lucas,R.Riley,M.M.Clark,TheeffectofCAmembranepropertieson DesalinationSocietyConference;ed.IDS)HaifaIsrael,2003. adsorptivefoulingbyhumicacid,JournalofMembraneScience154(1999),7387.

69 70 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Introduction Chapter 8 – Fouling in Nanofiltration

[54] B.vanderBruggen,C.Vandecasteele,Fluxdeclineduringnanofiltrationoforganiccomponents [76] M.Elimelech,W.H.Chen,J.J.Waypa,Measuringthezeta(electrokinetic)potentialofreverse inaqueoussolution,EnvironmentalScienceandTechnology35(17)(2001),35353540. osmosismembranesbyastreamingpotentialanalyzer,Desalination95(1994),269286. [55] G.Belfort,R.H.Davis,A.L.Zydney,Thebehaviorofsuspensionsandmacromolecular [77] A.E.Childress,S.S.Deshmukh,Effectofhumicsubstancesandanionicsurfactantsonthe solutionsincrossflowmicrofiltration:review,J.Membr.Sci.96(1994),158. surfacechargeandperformanceofreverseosmosismembranes,Desalination118(1998),167174. [56] Y.J.Chang,M.M.Benjamin,Modelingformationofnaturalorganicmatterfoulinglayerson [78] A.E.Childress,M.Elimelech,Effectofsolutionchemistryonthesurfacechargeofpolymeric ultrafiltrationmembranes,JournalofEnvironmentalEngineeringJanuary(2003),2532. reverseosmosisandnanofiltrationmembranes,JournalofMembraneScience119(1996),253268. [57] R.W.Field,D.Wu,J.A.Howell,B.B.Gupta,Criticalfluxconceptformicrofiltrationfouling, [79] A.I.Schäfer,A.G.Fane,T.D.Waite,Nanofiltrationofnaturalorganicmatter:removal,fouling JournalofMembraneScience100(1995),259272. andtheinfluenceofmultivalentions,Desalination118(1998),109122. [58] M.Elimelech,J.Gregory,X.Jia,R.Williams,Particledepositionandaggregation:measurement, [80] S.Hong,M.Elimelech,Chemicalandphysicalaspectsofnaturalorganicmatter(NOM)fouling modeling,andsimulationButterworthHeinemannLtd.:JordanHill,Oxford,1995. ofnanofiltrationmembranes,JournalofMembraneScience132(1997),159181. [59] E.M.V.Hoek,A.S.Kim,M.Elimelech,Influenceofchannelheightandcrossflow [81] C.R.Bouchard,J.Jolicoeur,P.Kouadio,M.Britten,Studyofhumicacidadsorptionon hydrodynamicsoncolloidalfoulingofreverseosmosismembranes,EnvironmentalEngineering nanofiltrationmembranesbycontactanglemeasurements,TheCanadianJournalofChemical Science(inpress)(2002), Engineering75(April)(1997),339345. [60] E.M.V.Hoek,ColloidalFoulingMechanismsinReverseOsmosisandNanofiltration,Ph.D., [82] K.L.Jones,C.R.O'Melia,Ultrafiltrationofproteinandhumicsubstances:effectofsolution YaleUniversity,NewHaven,CT,2002. chemistryonfoulingandfluxdecline,JournalofMembraneScience193(2)(2001),163173. [61] E.M.V.Hoek,A.S.Kim,M.Elimelech,InfluenceofCrossflowMembraneFilterGeometryand [83] K.Ghosh,M.Schnitzer,Macromolecularstructuresofhumicsubstances,SoilScience129(5) ShearRateonColloidalFoulinginReverseOsmosisandNanofiltrationSeparations,Environ.Eng.Sci. (1980),266276. 19(6)(2002),357372. [84] A.Seidel,M.Elimelech,Couplingbetweenchemicalandphysicalinteractionsinnaturalorganic [62] E.M.V.Hoek,M.Elimelech,Cakeenhancedconcentrationpolarization:Amajorfouling matter(NOM)foulingofnanofiltrationmembranes:implicationsforfoulingcontrol,Journalof mechanismforsaltrejectingmembranes,Environ.Sci.Technol.(2002),(submitted). MembraneScience203(2002),245255. [63] B.P.Boudreau,Thediffusivetortuosityoffinegrainedunlithifiedsediments,Geochim. [85] J.Lindau,A.S.Jönsson,Adsorptivefoulingofmodifiedandunmodifiedcommercialpolymeric Cosmochim.Ac.60(16)(1996),31393142. ultrafiltrationmembranes,JournalofMembraneScience160(1999),6576. [64] E.M.V.Hoek,M.Elimelech,Cakeenhancedconcentrationpolarization:Anewfouling [86] J.Cho,G.Amy,J.Pellerino,MembraneFiltrationofNaturalOrganicMatter:InitialComparison mechanismforsaltrejectingmembranes,Environ.Sci.Technol.37(2003),55815588. ofRejectionandFluxDeclineCharacteristicswithUltrafiltrationandNanofiltrationMembranes,Water [65] A.R.Roudman,F.A.Digiano,Surfaceenergyofexperimentalandcommercialnanofiltration Research33(11)(1999),25172526. membranes:effectsofwettingandnaturalorganicmatterfouling,JournalofMembraneScience175 [87] Q.Li,M.Elimelech,2004(15/01/2004)(2003),YaleUniversity, (2000),6173. http://www.yale.edu/env/elimelech/index_research.htm. [66] C.L.Tiller,C.R.O'Melia,Naturalorganicmatterandcolloidalstability:Modelsand [88] N.A.Wall,G.R.Choppin,Humicacidscoagulation:influenceofdivalentcations,Applied measurements,ColloidsandSurfacesA:PhysicochemicalandEngineeringAspects73(1993),89102. Geochemistry18(2003),15731582. [67] R.Beckett,N.P.Le,Theroleoforganicmatterandioniccompositionindeterminingthesurface [89] A.Schäfer,A.Fane,D.Waite,Directcoagulationpretreatmentinnanofiltrationofwatersrichin chargeofsuspendedparticlesinnaturalwaters,ColloidsandSurfaces44(1990),3549. organicmatterandcalcium,Desalination131(13)(2000),215224.

[68] C.Jarusutthirak,G.Amy,Membranefiltrationofwastewatereffluentsforreuse:effluentorganic [90] D.Hasson,A.Drak,R.Semiat,InceptionofCaSO4scalingonROmembranesatvariouswater matterrejectionandfouling,WaterScienceandTechnology43(10)(2001),225232. recoverylevels,Desalination139(2001),7381. [69] M.R.Wiesner,e.al.,CommitteeReport:membraneprocessesinpotablewatertreatment,J. [91] J.C.Cowan,D.J.Weintritt,WaterFormedScaleDepositsGulfPubl.Co,:Houston,1976. AWWAJan(1992),5964. [92] K.A.Faller,AWWA,1999. [70] S.A.Huber,OrganicsThevalueofchromatographiccharacterisationofTOCinprocesswater [93] R.Rautenbach,R.Albrecht,MembraneProcessesJohnWiley&Sons:NewYork,1989. plants,UltrapureWater(1998),1620. [94] J.W.Mullin,CrystallisationButterworths:London,1992. [71] A.I.Schäfer,R.Mauch,A.G.Fane,T.D.Waite,Chargeeffectsinthefractionationofnatural [95] J.A.Dirksten,T.A.Ring,Fundamentalsofcrystallization:kineticeffectsonparticlesize organicsusingultrafiltration,EnvironmentalScience&Technology36(2002),25722580. distributionsandmorphology,Chem.Eng.Sci.46(1991),23892427. [72] I.S.Chang,C.H.Lee,Membranefiltrationcharacteristicsinmembranecoupledactivatedsludge [96] I.Sutzkover,D.Hasson,R.Semiat,Simpletechniqueformeasuringtheconcentration systemtheeffectofphysiologicalstatesofactivatedsludgeonmembranefouling,Desalination120 polarizationlevelinareverseosmosissystem,Desalination131(2000),117127. (1998),221233. [97] C.A.C.vandeLisdonk,B.M.Rietman,S.G.J.Heijman,G.R.Sterk,J.C.Schippers,Prediction [73] G.Amy,J.Cho,InteractionsBetweenNaturalOrganicMatter(NOM)andMembranes: ofsupersaturationandmonitoringofscalinginreverseosmosisandnanofiltrationmembranesystems, RejectionandFouling,WaterScienceandTechnology40(9)(1999),131139. Desalination138(2001),259270. [74] E.D.Mackey,Foulingofultrafiltrationandnanofiltrationmembranesbydissolvedorganic [98] R.M.Smith,A.E.Martell,R.J.Motekaites,NISTcriticallyselectedstabilityconstantsofmetal matter,RiceUniversity,Houston,1999. complexesdatabase,Gaithersburg,MD(1996), [75] T.L.Champlin,Usingcirculationteststomodelnaturalorganicmatteradsorptionandparticle [99] S.C.J.M.vanHoof,J.G.Minnery,B.Mack,Performingamembraneautopsy,Desalination& depositionbyspiralwoundnanofiltrationmembraneelements,Desalination131(2000),105115. WaterReuse11(4)(2001),4046.

71 72 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Introduction Chapter 8 – Fouling in Nanofiltration

[100] T.Koo,Y.J.Lee,R.Sheikholeslami,Silicafoulingandcleaningofreverseosmosismembranes, [124] M.Elimelech,J.Gregory,X.Jia,R.A.Williams,ParticleDeposition&Aggregation: Desalination139(2001),4356. Measurement,ModelingandSimulationed.R.A.Williams)ButterworthHeinemann:Woburn,MA, [101] W.L.Marshall,J.M.Warakomski,AmorphoussilicasolubilitiesII:Effectsonaqueoussalt 1995. solutionsat250C,GeochimicaCosmochimicaActa44(1980),915924. [125] B.V.Derjaguin,L.D.Landau,Theoryofthestabilityofstronglychargedlyophobicsolsandof [102] F.H.Butt,F.Rahman,U.Baduruthamal,CharacterizationoffoulantsbyautopsyofRO theadhesionofstronglychargedparticlesinsolutionsofelectrolytes,ActaPhysicochim.URSS14 desalinationmembranes,Desalination114(1997),5164. (1941),733. [103] M.Brusilovsky,J.Borden,D.Hasson,FluxdeclineduetogypsumprecipitationonRO [126] E.J.W.Verwey,J.T.G.Overbeek,TheoryoftheStabilityofLyophobicColloidsElsevier: membranes,Desalination86(1992),187222. Amsterdam,NL,1948.

[104] S.Lee,C.H.Lee,EffectofoperatingconditionsonCaSO4scaleformationmechanismin [127] R.H.Ottewill,J.N.Shaw,ElectrophoreticStudiesOnPolystyreneLatices,J.Electroanal.Chem. nanofiltrationforwatersoftening,WaterRes.34(2000),38543866. 37(JUN)(1972),133142. [105] Y.A.LeGouellec,M.Elimelech,Calciumsulfate(gypsum)scalinginnanofiltrationof [128] P.Bacchin,P.Aimar,V.Sanchez,ModelforColloidalFoulingofMembranes,AicheJournal41 agriculturaldrainagewater,JournalofMembraneScience205(12)(2002),279291. (2)(1995),368376. [106] J.Gilron,D.Hasson,Calciumsulphatefoulingofreverseosmosismembranes:Fluxdecline [129] D.T.Waite,A.I.Schafer,A.G.Fane,A.Heuer,Colloidalfoulingofultrafiltrationmembranes: mechanism,ChemicalEngineeringScience42(1987),23512360. Impactofaggregatestructureandsize,JournalofColloidandInterfaceScience212(1999),264274. [107] O.Söhnel,J.Garside,Precipitation.BasicPrinciplesandIndustrialApplicationsButterworth [130] X.H.Zhu,M.Elimelech,ColloidalFoulingofreverseosmosismembranesmeasurmentsand Heinemann:Oxford,1992. foulingmechanisms,Environ.Sci.Technol.31(1997),36543662. [108] Y.A.LeGouellec,M.Elimelech,Controlofcalciumsulfate(gypsum)scaleinnanofiltrationof [131] S.Hong,R.S.Faibish,M.Elimelech,Kineticsofpermeatefluxdeclineincrossflowmembrane salineagriculturaldrainagewater,EnvironEngSci19(2002),387397. filtrationofcolloidalsuspensions,JournalofColloidandInterfaceScience196(2)(1997),267277. [109] T.Pahiadaki,N.Andritsos,S.G.Yiantsios,A.J.Karabelas,CalciumcarbonatefoulingofRO [132] R.S.Faibish,M.Elimelech,Y.Cohen,Effectofinterparticleelectrostaticdoublelayer andNFmembranes,(inpreparation), interactionsonpermeatefluxdeclineincrossflowmembranefiltrationofcolloidalsuspensions:An experimentalinvestigation,J.ColloidInterfaceSci.204(1)(1998),7786. [110] N.Andritsos,A.J.Karabelas,P.G.Koutsoukos,MorphologyandstructureofCaCO3scale layersformedunderisothermalflowconditions,Langmuir13(1997),28732879. [133] X.H.Zhu,M.Elimelech,FoulingofReverseOsmosisMembranesbyAluminumOxide Colloids,JournalofEnvironmentalEngineeringAsce121(12)(1995),884892. [111] D.Myers,Surfaces,Interfaces,andColloidsJohnWiley&Sons:NewYork,1999. [134] S.G.Yiantsios,A.J.Karabelas,Theeffectofcolloidstabilityonmembranefouling,Desalination [112] P.C.Hiemenz,R.Rajagopalan,PrinciplesofColloidandSurfaceChemistryMarcelDekker: 118(13)(1998),143152. Monticello,NY,1997. [135] D.Y.Kwon,S.Vigneswaran,H.H.Ngo,H.S.Shin,Anenhancementofcriticalfluxin [113] M.K.H.Liew,A.G.Fane,P.L.Rogers,Foulingofmicrofiltrationmembranesbybrothfree crossflowmicrofiltrationwithapretreatmentoffloatingmediumflocculator/prefilter,WaterScience antifoamagents,BiotechnologyandBioengineering56(1)(1997),8998. andTechnology36(12)(1997),267274. [114] S.T.Kelley,A.L.Zydney,Proteinfoulingduringmicrofiltration:comparitivebehaviorof [136] A.G.Abulnour,M.H.Sorour,H.A.Talaat,Comparativeeconomicsfordesaltingofagricultural differentmodelproteins,BiotechnologyandBioengineering55(1,July5)(1997),91100. drainagewater(ADW),Desalination152(13)(2003),353357. [115] K.Hagen,Removalofparticles,bacteriaandparasiteswithultrafiltrationfordrinkingwater [137] W.Reimann,Treatmentofagriculturalwastewaterandreuse,WaterScienceandTechnology46 treatment,Desalination119(13)(1998),8591. (1112)(2002),177182. [116] L.T.Fu,B.A.Dempsey,OptimizingmembraneoperationswithenhancedcoagulationofTOC [138] H.A.Talaat,M.H.Sorour,N.A.Rahman,H.F.Shaalan,Pretreatmentofagriculturaldrainage fordrinkingwatertreatment,AbstractsofPapersoftheAmericanChemicalSociety212(1996),13 water(ADW)forlargescaledesalination,Desalination152(13)(2003),299305. ENVR. [139] C.Combe,E.Molis,P.Lucas,R.Riley,M.M.Clark,TheeffectofCAmembranepropertieson [117] J.J.Porter,Recoveryofpolyvinylalcoholandhotwaterfromthetextilewastewaterusing adsorptivefoulingbyhumicacid,J.MembraneSci.154(1)(1999),7387. thermallystablemembranes,JournalofMembraneScience151(1)(1998),4553. [140] K.Riedl,B.Girard,R.W.Lencki,Influenceofmembranestructureonfoulinglayermorphology [118] D.E.Potts,R.C.Ahlert,S.S.Wang,Acriticalreviewoffoulingofreverseosmosismebranes, duringapplejuiceclarification,J.MembraneSci.139(2)(1998),155166. Desalination35(1981),235264. [141] W.R.Bowen,T.A.Doneva,Atomicforcemicroscopystudiesofmembranes:Effectofsurface [119] G.Tchobanoglous,J.Darby,K.Bourgeous,J.McArdle,P.Genest,M.Tylla,Ultrafiltrationasan roughnessondoublelayerinteractionsandparticleadhesion,J.ColloidInter.Sci229(2000),544549. advancedtertiarytreatmentprocessformunicipalwastewater,Desalination119(13)(1998),315321. [142] J.W.Carter,G.Hoyland,A.P.M.Hasting,Concentrationpolarisationinreverseosmosisflow [120] E.VanHoutte,J.Verbauwhede,F.Vanlerberghe,S.Demunter,J.Cabooter,Treatingdifferent systemsunderlaminarconditions.Effectofsurfaceroughnessandfouling,Chem.Eng.Sci.29(1974), typesofrawwaterwithmicroandultrafiltrationforfurtherdesalinationusingreverseosmosis, 16511658. Desalination117(1998),4960. [143] M.Hirose,H.Ito,Y.Kamiyama,Effectofskinlayersurfacestructuresonthefluxbehaviourof [121] L.Vera,R.VillarroelLopez,S.Delgado,S.Elmaleh,Crossflowmicrofiltrationofbiologically ROmembranes,J.MembraneSci.121(2)(1996),209215. treatedwastewater,Desalination114(1)(1997),6575. [144] J.Y.Kim,H.K.Lee,S.C.Kim,Surfacestructureandphaseseparationmechanismof [122] S.K.Hong,M.Elimelech,Chemicalandphysicalaspectsofnaturalorganicmatter(nom)fouling polysulfonemembranesbyatomicforcemicroscopy,J.MembraneSci.163(2)(1999),159166. ofnanofiltrationmembranes,J.MembraneScience132(1997),159181. [145] T.Knoell,J.Safarik,T.Cormack,R.Riley,S.W.Lin,H.Ridgway,Biofoulingpotentialsof [123] W.Stumm,J.J.Morgan,AquaticChemistryWileyInterscience:NewYork,NY,1996. microporouspolysulfonemembranescontainingasulfonatedpolyetherethersulfone/polyethersulfone

73 74 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Introduction Chapter 8 – Fouling in Nanofiltration blockcopolymer:correlationofmembranesurfacepropertieswithbacterialattachment,J.Membrane [168] K.C.Marshall,Adsorptionandadhesionprocessesinmicrobialgrowthatinterfaces,Adv. Sci.157(1)(1999),117138. ColloidInterfaceSci.25(1986),5986. [146] M.D.Louey,P.Mulvaney,P.J.Stewart,Characterisationofadhesionalpropertiesoflactose [169] K.Power,K.C.Marshall,Cellulargrowthandreproductionofmarinebacteriaonsurfacebound carriersusingatomicforcemicroscopy,JournalofPharmaceuticalandBiomedicalAnalysis25(34) substrate,Biofouling1(1988),163174. (2001),559567. [170] J.W.Costerton,Z.Lewandowski,D.DeBeer,D.Caldwell,D.Korber,G.James,Biofilms,the [147] J.A.Brant,A.E.Childress,Assessingshortrangemembranecolloidinteractionsusingsurface customizedmicroniche,J.Bact.176(1994),21372142. energetics,J.Membr.Sci.203(12)(2002),257273. [171] J.W.Costerton,P.S.Stewart,E.P.Greenberg,Bacterialbiofilms:acommoncauseofpersistent [148] E.M.V.Hoek,S.Hong,M.Elimelech,Influenceofmembranesurfacepropertiesoninitialrate infections,Science284(1999),13181322. ofcolloidalfoulingofreverseosmosisandnanofiltrationmembranes,JournalofMembraneScience [172] J.D.Bryers,F.Drummond,Localmacromoleculediffusioncoefficientsinstructurallynon 188(1)(2001),115128. uniformbacterialbiofilmsusingfluorescencerecoveryafterphotobleaching(FRAP),Biotechnol. [149] S.L.Walker,S.Bhattacharjee,E.M.V.Hoek,M.Elimelech,Anovelasymmetricclampingcell Bioeng60(1998),462473. formeasuringstreamingpotentialofflatsurfaces,Langmuir18(2002),21932198. [173] M.Kühl,B.B.Jorgensen,Microsensormeasurementsofsulfatereductionandsulfideoxidation [150] C.J.vanOss,InterfacialForcesinAqueousMediaMarcellDekker,Inc.:NewYork,NY,1994. incompactmicrobialcommunitiesofaerobicbiofilms,Appl.Env.Microbiol.58(1992),11641174. [151] L.F.Song,M.Elimelech,ParticleDepositionOntoaPermeableSurfaceinLaminarFlow, [174] J.D.Bryers,Twophotonexcitationmicroscopyforanalysisofbiofilmprocesses,Method JournalofColloidandInterfaceScience173(1)(1995),165180. Eenzymol.337(2001),259269. [152] L.Song,M.Elimelech,Theoryofconcentrationpolarizationincrossflowfiltration,J.Chem.Soc. [175] G.A.McFethers,F.P.Yu,B.H.Pyle,P.S.Stewart,Physiologicalassessmentofbacteriausing FaradayTrans.91(19)(1995),33893398. fluorochromes,J.Microbiol.Meth.21(1995),113. [153] R.D.Cohen,R.F.Probstein,ColloidalFoulingofReverseOsmosisMembranes,Journalof [176] R.I.Amann,W.Ludwig,K.H.Schleifer,PhylogeneticIdentificationandinsituDetectionof ColloidandInterfaceScience114(1)(1986),194207. IndividualMicrobialCellsWithoutCultivation,Microbiol.Rev.59(1995),143169. [154] S.L.Goren,Thehydrodynamicforceresistingtheapproachofaspheretoaplanepermeable [177] H.Y.Dang,C.R.Lovell,Bacterialprimarycolonizationandearlysuccessiononsurfacesin wall,JournalofColloidandInterfaceScience69(1)(1973),7885. marinewatersasdeterminedbyamplifiedrRNAgenerestrictionanalysisandsequenceanalysisof16S [155] M.R.Wiesner,M.M.Clark,J.Mallevialle,MembraneFiltrationofCoagulatedSuspensions, rRNAgenes,Appl.Env.Microb.66(2000),467475. JournalofEnvironmentalEngineeringAsce115(1)(1989),2040. [178] D.M.Moll,R.S.Summers,Assessmentofdrinkingwaterfiltermicrobialcommunitiesusing [156] W.R.Bowen,A.Mongruel,P.M.Williams,Predictionoftherateofcrossflowmembrane taxonomicandmetabolicprofiles,WaterSci.Technol.39(1999),8389. ultrafiltration:Acolloidalinteractionapproach,ChemicalEngineeringScience51(18)(1996),4321 [179] G.G.D.Rodriguez,D.Phipps,K.Ishiguro,H.F.Ridgway,Useoffluorescentprobefordirect 4333. visualizationofrespiringbacteria,Appl.Env.Microbiol.58(1992),18011808. [157] W.R.Bowen,A.O.Sharif,Hydrodynamicandcolloidalinteractionseffectsontherejectionofa [180] H.F.Ridgeway,Microbialfoulingofreverseosmosismembranes:genesisandcontrol,in particlelargerthanaporeinmicrofiltrationandultrafiltrationmembranes,ChemicalEngineering BiologicalfoulingofIndustrialWaterSystems:AProblemSolvingApproach(eds.M.W.Mittelman, Science53(5)(1998),879890. G.G.Geesey)WaterMicroAssociates,SanDiego,California,1987,138193. [158] J.N.Israelachvili,IntermolecularandSurfaceForcesAcademicPress:London,1992. [181] G.L.Leslie,R.P.Schneider,A.G.Fane,K.C.Marshall,C.J.D.Fell,Foulingofa [159] M.Elimelech,X.Zhu,A.E.Childress,S.Hong,Roleofmembranesurfacemorphologyin microfiltrationmembranebytwoGramnegativebacteria,ColloidsandSurfaces,A:Physicochemical colloidalfoulingofcelluloseacetateandcompositearomaticpolyamidereverseosmosismembranes,J. andEngineeringAspects73(1993),165178. MembraneSci.127(1997),101109. [182] P.H.Hodgson,G.L.Leslie,R.P.Schneider,A.G.Fane,C.J.D.Fell,K.C.Marshall,Cake [160] H.M.LappinScott,J.W.Costerton,Bacterialbiofilmsandsurfacefouling,Biofouling1(1989), resistanceandsoluterejectioninbacterialmicrofiltration:theroleoftheextracellularmatrix,Journalof 323342. MembraneScience79(1993),3553. [161] H.C.Flemming,G.Schaule,T.Griebe,J.Schmitt,A.Tamachkiarowa,BiofoulingtheAchilles [183] H.C.Flemming,G.Schaule,R.McDonough,H.F.Ridgway,Effectsandextentofbiofilm heelofmembraneprocesses,Desalination113(1997),215225. accumulationonmembranesystems,inBiofoulingandBiocorrosioninIndustrialWaterSystems(eds. G.G.Geesey,Z.Lewandowski,H.C.Flemming)CRCPress,BocaRaton,1992,6389. [162] H.F.Ridgway,H.C.Flemming,Membranebiofouling,inWaterTreatmentMembrane Processes(eds.J.Mallevialle,P.E.Odendaal,M.R.Wiesner)McGrawHill,NewYork,1996,6.16.62. [184] J.W.Costerton,R.T.Irvin,Thebacterialglycocalyxinnatureanddisease,Ann.Rev.Microbiol. (1981),299324. [163] H.C.Flemming,BiofoulingbeiMembranprozessenSpringer:Berlin,1995. [185] L.H.Rowley,Elevenbiocidesareinvestigatedformicrobialefficacyandmembrane [164] S.B.SadrGhayeni,P.J.Beatson,R.P.Schneider,A.G.Fane,Adhesionofwastewaterbacteria compatibilitytouseattheYumadesaltingplant,Desalination97(1994),3543. toreverseosmosismembranes,J.MembraneScienceandTechnology138(1997),2942. [186] J.S.Vrouwenvelder,D.vanderKooij,inAWWAMembraneTechnol.Conf.;7AWWA,San [165] R.P.Schneider,ConditioningfilmInducedmodificationofsubstratumphysicochemistry Diego,California,2001. analysisbycontactangles,J.Colloid&InterfaceScience182(1996),204213. [187] J.P.vanderHoek,J.A.M.H.Hofman,P.A.C.Bonné,M.M.Nederlof,H.S.Vrouwenvelder, [166] R.Bos,H.C.vanderMei,H.J.Busscher,Physicochemistryofinitialmicrobialadhesive ROtreatment:selectionofapretreatmentschemebasedonfoulingcharacteristicsandoperating interactionsitsmechanismsandmethodsofstudy,FEMSMicrobiol.Rev.23(1999),179230. conditionsbasedonenvironmentalimpact,Desalination127(2000),89101. [167] K.C.Marshall,R.Stout,R.Mitchell,Mechanismofinitialeventsinthesorptionofmarine [188] E.vanHoutte,F.Vanlerberghe,inAWWAMembraneTechnol.Conf.;7AWWA,SanDiego, bacteriatosurfaces,J.Gen.Microbiol.68(1971),337348. California,,2001.

75 76 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Introduction Chapter 8 – Fouling in Nanofiltration

[189] J.Lozier,S.Kommineni,Z.Chowdhury,F.Miller,M.Pearthree,M.P.Ring,inAWWA [213] M.Nyström,H.Zhu,Characterizationofcleaningresultsusingcombinedfluxandstreaming MembraneTechnol.Conf.;18AWWA,SanDiego,California,2001. potentialmethods,J.MembraneSci.131(1997),195205. [190] M.Jenkins,M.B.Tanner,Operationalexperiencewithanewfoulingresistantreverseosmosis [214] P.Fu,H.Ruiz,J.Lozier,K.Thompson,C.Spangenberg,Apilotstudyongroundwaternatural membrane,Desalination119(1998),243250. organicsremovalbylowpressuremembranes,Desalination102(1995),4756. [191] J.A.Redondo,ImproveROsystemperformanceandreduceoperatingcostwithFIMTEC [215] M.Mänttäri,H.Martin,J.NuortilaJokinen,M.Nyström,Usingaspiralwoundnanofiltration foulingresistant(FR)elements,Desalination126(1999),249259. elementforthefiltrationofpapermilleffluents;pretreatmentandfouling,AdvancesinEnvironmental [192] A.M.Shahalam,A.AlHarthy,A.AlZawhry,FeedwaterpretreatmentinROsystems:unit Research3(2)(1999),202214. processesintheMiddleEast,Desalination150(2002),235245. [216] S.Platt,M.Nyström,G.Capanelli,A.Bottino,StabilityofNFmembranesunderextremeacid [193] A.Maartens,E.P.Jacobs,P.Swart,UFofpulpandpapereffluent:membranefouling conditions,(inpreparation), preventionandcleaning,J.MembraneSci.209(2002),8192. [217] M.Mänttäri,A.Pihlajamäki,E.Kaipainen,M.Nyström,Effectoftemperatureandmembrane [194] S.Belfer,J.Gilron,EUreport,2002. pretreatmentonthefiltrationpropertiesofnanofiltrationmembranes,Desalination145(2002),8186. [195] J.Gilron,S.Belfer,P.Väisänen,M.Nyström,Effectsofsurfacemodificationonantifoulingand [218] C.R.Gillham,P.J.Fryer,A.P.M.Hasting,D.I.Wilson,Cleaninginplaceofwheyprotein performancepropertiesofreverseosmosismembranes,Desalination140(2001),167179. foulingdeposits:Mechanismscontrollingcleaning,Trans.IchemE77(partC)(1999),127136. [196] J.P.Chen,S.L.Kim,Y.P.Ting,Optimizationofmembranephysicalandchemicalcleaningbua [219] M.L.Cabero,F.A.Riera,R.Alvarez,Rinsingofultrafiltrationceramicmembranesfouledwith statisticallydesignedapproach,JournalofMembraneScience219(12)(2003),2745. wheyproteins:effectsofcleaningprocedures,J.MembraneSci.154(1999),239250. [197] A.L.Lim,R.Bai,Membranefoulingandcleaninginmicrofiltrationofactivatedsludge [220] G.Daufin,U.Merin,J.P.Labbe,A.Quemerais,F.L.Kerherve,Cleaningofinorganic wastewater,JournalofMembraneScience216(2003),279290. membranesafterwheyandmilkultrafiltration,Biotech.Bioeng.38(1)(1991),8289. [198] G.Trägårdh,Membranecleaning,Desalination71(1989),325335. [221] E.Räsänen,M.Nyström,J.Sahlstein,O.Tossavainen,Comparisonofcommercialmembranesin nanofiltrationofsweetwhey,LeLait82(2002),343356. [199] J.Wagner,MembraneFiltrationHandbook:PracticalTipsandHintsOsmonics,Inc.2001. [222] S.S.Madaeni,T.Mohamamdi,M.K.Moghadam,Chemicalcleaningofreverseosmosis [200] R.Deqian,Cleaningandregenerationofmembranes,Desalination62(1987),363371. membranes,Desalination134(2001),7782. [201] R.Liikanen,J.YliKuivila,R.Laukkanen,Efficiencyofvariouschemicalcleaningsfor [223] E.Räsänen,M.Nyström,J.Sahlstein,O.Tossavainen,Purificationandregenerationofdiluted nanofiltrationmembranefouledbyconventionallytreatedsurfacewater,J.MembraneSci.195(2002), causticandacidicwashingsolutionsbymembranefiltration,Desalination149(2002),185190. 265276. [224] G.GésanGuiziou,E.Boyaval,G.Daufin,Nanofiltrationfortherecoveryofcausticcleaningin [202] M.A.Argüello,S.Alvarez,F.A.Riera,R.Alvarez,Enzymaticcleaningofinorganicultrafiltration placesolutions:robustnesstowardslargevariationofcomposition,Desalination149(2002),127129. membranesusedforwheyproteinfractionation,JournalofMembraneScience216(2003),121134. [225] M.Forstmeier,B.Goers,G.Wozny,UF/NFtreatmentofrinsingwatersinaliquiddetergent [203] Q.Li,M.Elimelech,Organicfoulingandchemicalcleaningofnanofiltrationmembranes: productionplant,Desalination149(2002),175177. measurementsandmechanisms,EnvironmentalScience&Technologysubmitted(2003), [204] M.J.MunozAguado,D.E.Wiley,A.G.Fane,Enzymaticanddetergentcleaningofa polysulphoneultrafiltrationmembranefouledwithBSAandwhey,J.MembraneSci.117(1996),175 187. 13 INDEX [205] E.H.K.Zeiher,F.P.Yu,Membranes:biocidesusedforindustrialmembranesystem Pleaseaddanindextoyourchapter,whichincludeskeywordsandpagenumberinyourchapter. sanitization,UltrapureWater17(3)(2000),5564. [206] A.Weis,M.R.Bird,M.Nyström,Theinfluenceofmorphology,hydrophobicityandchargeupon A AtomicForceMicroscopy(AFM) 75 thelongtermperformanceofultrafiltrationmembranesfouledwithspentsulphiteliquor,Journalof Absorbance 353 MembraneScience(submitted), AcidityofNaturalOrganics 21,100 B [207] K.Kosutic,B.Kunst,ROandNFmembranefoulingandcleaningandporesizedistribution ActivatedCarbonAdsorption 81 Backflushing 82 variations,Desalination150(2002),113120. AdsorptionofOrganicsonMembranes 21 BackgroundSolution 65 92 [208] T.Thorsen,Fundamentalstudiesonmembranefiltrationofcolouredsurfacewater,NTNU, AggregateFormationandStructureofColloids 31 Backwashing 82 Trondheim,Norway,2001. AggregateSize 122 BacterialRegrowth 33 [209] W.Weis,M.Bird,M.Nyström,ThevariationofzetapotentialwithpHforUFmembranes AggregateStructure 124 Bases 7 subjectedroarangeoffoulingandcleaningprotocols,inFouling,CleaningandDisinfectioninFood AggregateswithOrganics(SPO) 117,119 Bioavailability 8 Processing(eds.D.I.Wilson,P.J.Fryer,A.P.M.Hastings),ProceedingsofaconferenceheldatJesus AggregationofNaturalOrganics 22,112 Biofilms 33 College,Cambridge,2002,181188. Amphiphilics 110 BlockingLawAnalysis 150 [210] H.Zhu,M.Nyström,Cleaningresultscharacterizedwithflux,streamingpotentialandFTIR Aromaticity 14,109 BreakUpofAggregates 147 measurements,ColloidsSurfacesA:Phys.Eng.Asp.138(23)(1998),309321. AshContent 10 BrownianDiffusion 6 [211] C.J.Shorrock,M.R.Bird,J.A.Howell,Membranecleaning:removalofirreversiblyfouledyeast deposits,Trans.IChemE.76(partC)(1998),18. [212] M.Bartlett,M.R.Bird,J.A.Howell,Anexperimentalstudyforthedevelopmentofaqualitative membranecleaningmodel,J.MembraneSci.105(1995),147157.

77 78 Schäfer, A.I. ; Andritsos, N. ; Karabelas, A.J. ; Hoek, E.M.V. ; Schneider, R. ; Nyström, M. (2004) Fouling in Nanofiltration, in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 20, 169-239. Introduction

79