A Comprehensive Review on Membrane Fouling: Mathematical Modelling, Prediction, Diagnosis, and Mitigation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wastewater Technology Fact Sheet: Ammonia Stripping
United States Office of Water EPA 832-F-00-019 Environmental Protection Washington, D.C. September 2000 Agency Wastewater Technology Fact Sheet Ammonia Stripping DESCRIPTION Ammonia stripping is a simple desorption process used to lower the ammonia content of a wastewater stream. Some wastewaters contain large amounts of ammonia and/or nitrogen-containing compounds that may readily form ammonia. It is often easier and less expensive to remove nitrogen from wastewater in the form of ammonia than to convert it to nitrate-nitrogen before removing it (Culp et al., 1978). Ammonia (a weak base) reacts with water (a weak acid) to form ammonium hydroxide. In ammonia stripping, lime or caustic is added to the wastewater until the pH reaches 10.8 to 11.5 standard units which converts ammonium hydroxide ions to ammonia gas according to the following reaction(s): + - NH4 + OH 6 H2O + NH38 Source: Culp, et. al, 1978. Figure 1 illustrates two variations of ammonia FIGURE 1 TWO TYPES OF STRIPPING stripping towers, cross-flow and countercurrent. In TOWERS a cross-flow tower, the solvent gas (air) enters along the entire depth of fill and flows through the packing, as the alkaline wastewater flows it may be more economical to use alternate downward. A countercurrent tower draws air ammonia removal techniques, such as steam through openings at the bottom, as wastewater is stripping or biological methods. Air stripping may pumped to the top of a packed tower. Free also be used to remove many hydrophobic organic ammonia (NH3) is stripped from falling water molecules (Nutrient Control, 1983). droplets into the air stream, then discharged to the atmosphere. -
Reverse Osmosis and Nanofiltration, Second Edition
Reverse Osmosis and Nanofiltration AWWA MANUAL M46 Second Edition Science and Technology AWWA unites the entire water community by developing and distributing authoritative scientific and technological knowledge. Through its members, AWWA develops industry standards for products and processes that advance public health and safety. AWWA also provides quality improvement programs for water and wastewater utilities. Copyright © 2007 American Water Works Association. All Rights Reserved. Contents List of Figures, v List of Tables, ix Preface, xi Acknowledgments, xiii Chapter 1 Introduction . 1 Overview, 1 RO and NF Membrane Applications, 7 Membrane Materials and Configurations, 12 References, 18 Chapter 2 Process Design . 21 Source Water Supply, 21 Pretreatment, 26 Membrane Process Theory, 45 Rating RO and NF Elements, 51 Posttreatment, 59 References, 60 Chapter 3 Facility Design and Construction . 63 Raw Water Intake Facilities, 63 Discharge, 77 Suspended Solids and Silt Removal Facilities, 80 RO and NF Systems, 92 Hydraulic Turbochargers, 95 Posttreatment Systems, 101 Ancillary Equipment and Facilities, 107 Instrumentation and Control Systems, 110 Waste Stream Management Facilities, 116 Other Concentrate Management Alternatives, 135 Disposal Alternatives for Waste Pretreatment Filter Backwash Water, 138 General Treatment Plant Design Fundamentals, 139 Plant Site Location and Layout, 139 General Plant Layout Considerations, 139 Membrane System Layout Considerations, 140 Facility Construction and Equipment Installation, 144 General Guidelines for Equipment Installation, 144 Treatment Costs, 151 References, 162 iii Copyright © 2007 American Water Works Association. All Rights Reserved. Chapter 4 Operations and Maintenance . 165 Introduction, 165 Process Monitoring, 168 Biological Monitoring, 182 Chemical Cleaning, 183 Mechanical Integrity, 186 Instrumentation Calibration, 188 Safety, 190 Appendix A SI Equivalent Units Conversion Tables . -
Factors Impacting EGR Cooler Fouling – Main Effects and Interactions
Emissions Controls Technologies, Part 2 Factors Impacting EGR Cooler Fouling – Main Effects and Interactions 16th Directions in Engine-Efficiency and Emissions Research Conference Detroit, MI – September, 2010 Dan Styles, Eric Curtis, Nitia Ramesh Ford Motor Company – Powertrain Research and Advanced Engineering John Hoard, Dennis Assanis, Mehdi Abarham University of Michigan Scott Sluder, John Storey, Michael Lance Oakridge National Laboratory Page 1 DEER 2010 Benefits and Challenges of Cooled EGR • Benefits • Challenges Enables more EGR flow More HC’s/SOF Cooler intake charge temp More PM Reduces engine out NOx More heat rejection by reduced peak in-cylinder More condensation temps HC/PM deposition in cooler (fouling) degraded heat transfer and higher flow resistance Increasing EGR Rate PM Increasing EGR Cooling NOx After 200 hr. Fouling Test Page 2 DEER 2010 What is EGR Cooler Fouling? • Deposition of Exhaust Constituents on EGR Cooler Walls Decreases heat transfer effectiveness and increases flow restrictiveness Page 3 DEER 2010 Previous DEER Conferences • DEER 2007 Benefits of an EGR catalyst for EGR Cooler Fouling Reduction • DEER 2008 Overview of EGR Cooler Fouling Literature Search Results of initial controlled fouling experiment High gas flow velocities reduce exhaust constituent trapping efficiency Low coolant temperatures increase Hydrocarbon condensation An oxidation catalyst is only marginally helpful at eliminating the heavier Hydrocarbons that are likely to condense in an EGR cooler • DEER 2009 Further -
Investigation of Fouling Mechanisms on Ion Exchange Membranes During Electrolytic Separations
INVESTIGATION OF FOULING MECHANISMS ON ION EXCHANGE MEMBRANES DURING ELECTROLYTIC SEPARATIONS By Matthew James Edwards A thesis submitted to the faculty of The University of Mississippi in partial fulfillment of the requirements of the Sally McDonnell Barksdale Honors College. Oxford, MS 2019 Approved by: __________________________________ Advisor: Dr. Alexander M. Lopez _________________________________ Reader: Dr. Adam Smith __________________________________ Reader: Dr. John H. O’Haver i Ó 2019 Matthew James Edwards ALL RIGHTS RESERVED ii DEDICATION I would like to dedicate this Capstone Project to my parents, Michael and Nidia Edwards. Their support and commitment to my education has been unfailing for as long as I can remember. I am thankful for everything they have done. It is with their help that I am privileged to attend The University of Mississippi, and I will forever be grateful. iii ACKNOWLEDGEMENTS I would first like thank Dr. Alexander M. Lopez and The University of Mississippi Chemical Engineering Department for the opportunity to work on this research project. The guidance, patience, and willingness to work with and teach an undergraduate student has been beneficial and inspiring to me during my time here at Ole Miss. Second, I would like to thank Dr. Paul Scovazzo for providing guidance on how to write this thesis and for allowing me to use his lab and equipment as well. I would also like to thank all the graduate students of the Chemical Engineering Department, primarily Saloumeh Kolahchyan. The willingness to take the time to answer my questions, to guide me in how use all the equipment in the lab, and to show me how to follow lab protocols required for the completion of my thesis research. -
An Analysis of Water for Water-Side Fouling Potential Inside Smooth
AN ANALYIS OF WATER FOR WATER-SIDE FOULING POTENTIAL INSIDE SMOOTH AND AUGMENTED COPPER ALLOY CONDENSER TUBES IN COOLING TOWER WATER APPLICATIONS by Ian Tubman A Thesis Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering in the Department of Mechanical Engineering Mississippi State, Mississippi December 2002 AN ANALYIS OF WATER FOR WATER-SIDE FOULING POTENTIAL INSIDE SMOOTH AND AUGMENTED COPPER ALLOY CONDENSER TUBES IN COOLING TOWER WATER APPLICATIONS by Ian Tubman Approved: _________________________ ________________________ Louay Chamra Rogelio Luck Associate Professor of Associate Professor and Mechanical Engineering Graduate Coordinator of the (Director of Thesis) Department of Mechanical Engineering _________________________ ________________________ B.Keith Hodge Carl A. James Professor of Assistant Research Professor Mechanical Engineering of Mechanical Engineering (Committee Member) (Committee Member) _________________________ A. Wayne Bennett Dean of the James Worth Bagley College of Engineering Name: Ian Tubman Date of Degree: May 10, 2003 Institution: Mississippi State University Major Field: Mechanical Engineering Major Professor: Dr. Louay Chamra Title of Study: AN ANALYIS OF WATER FOR WATER-SIDE FOULING POTENTIAL INSIDE SMOOTH AND AUGMENTED COPPER ALLOY CONDENSER TUBES IN COOLING TOWER WATER APPLICATIONS Pages in Study: 100 Candidate for Degree of Master of Science This thesis investigates the potential for fouling in plain and augmented tubes in cooling tower applications. Three primary factors that affect fouling potential are examined: inside tube geometry, water velocity, and water quality. This paper presents a literature survey for in general precipitation fouling, particulate fouling, cooling water fouling, and fouling in enhanced tubes. -
Particle Separation and Fractionation by Microfiltration
Particle separation and fractionation by microfiltration Promotor: Prof. Dr. Ir. R.M. Boom Hoogleraar Levensmiddelenproceskunde, Wageningen Universiteit Copromotoren: Dr. Ir. C.G.P.H. Schro¨en Universitair docent, sectie Proceskunde, Wageningen Universiteit Dr. Ir. R.G.M. van der Sman Universitair docent, sectie Proceskunde, Wageningen Universiteit Promotiecommissie: Prof. Dr. Ir. J.A.M. Kuipers Universiteit Twente Prof. Dr. Ir. M. Wessling Universiteit Twente Dr. Ir. A. van der Padt Royal Friesland Foods Prof. Dr. M.A. Cohen Stuart Wageningen Universiteit Janneke Kromkamp Particle separation and fractionation by microfiltration Scheiding en fractionering van deeltjes middels microfiltratie Proefschrift Ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof.dr. M.J. Kropff, in het openbaar te verdedigen op dinsdag 6 september 2005 des namiddags te vier uur in de Aula. Particle separation and fractionation by microfiltration Janneke Kromkamp Thesis Wageningen University, The Netherlands, 2005 - with Dutch summary ISBN: 90-8504-239-9 Contents 1 Introduction 1 1.1 Membrane filtration 2 1.2 Microfiltration 2 1.3 Mass transport 5 1.4 Shear-induced diffusion 7 1.5 Research aim and outline 9 2 Lattice Boltzmann simulation of 2D and 3D non-Brownian suspensions in Couette flow 13 2.1 Introduction 14 2.2 Computer simulation method 15 2.2.1 Simulation of the fluid 15 2.2.2 Fluid-particle interactions 17 2.2.3 Accuracy of particle representation and particle-particle interactions 18 2.3 Single and pair particles -
Performance of a Novel Green Scale Inhibitor
E3S Web of Conferences 266, 01019 (2021) https://doi.org/10.1051/e3sconf/202126601019 TOPICAL ISSUES 2021 Performance of a novel green scale inhibitor Leila Mahmoodi1, M. Reza Malayeri2, Farshad Farshchi Tabrizi3 1Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz Uni- versity, Iran 2Technische Universität Dresden, Dresden, Germany 3Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz Uni- versity, Iran Abstract:Many aspects of oilfield scale inhibition with green scale inhibi- tors (SIs) have remained untouched. For instance, the discharge of large amounts of produced water containing various types of hazardous chemi- cals, such as SIs into the environment has become a major concern. In- stead, environmental regulators encourage operators to look for greener SIs. In this study, the performance of a green SI was investigated using PHREEQC simulation. For a specific case study, two brines are considered to mix incompatibly to estimate the critical mixing ratio that has the high- est tendency to scaling. Subsequently, for 50/50 mixing ratio as the critical value, theoptimal dosage of SI and its performance in the presence of two different rocks were investigated such that 450 mg/L SI would be consi- dered as optimal value. Moreover, the simulated results show that more SI adsorption on calcite would be predicted, compared to dolomite. 1 Introduction In the oil and gas industry, one of the primary production problems is mineral deposition resulting from the water-flooding, incompatible water mixing, and/or hydro-fracturing processes that are applied to maintain sustainable hydrocarbon production in oil, gas, or gas-condensate fields [1]. -
Mitigation of Membrane Fouling in Microfiltration
MITIGATION OF MEMBRANE FOULING IN MICROFILTRATION & ULTRAFILTRATION OF ACTIVATED SLUDGE EFFLUENT FOR WATER REUSE A thesis submitted in fulfilment of the requirement for the degree of Doctor of Philosophy (PhD) Sy Thuy Nguyen Bachelor of Engineering (Chemical), RMIT University, Melbourne School of Civil, Environmental & Chemical Engineering Department of Chemical Engineering RMIT University, Melbourne, Australia December 2012 i DECLARATION I hereby declare that: the work presented in this thesis is my own work except where due acknowledgement has been made; the work has not been submitted previously, in whole or in part, to qualify for any other academic award; the content of the thesis is the result of work which has been carried out since the official commencement date of the approved research program Signed by Sy T. Nguyen ii ACKNOWLEDGEMENTS Firstly, I would like to thank Prof. Felicity Roddick, my senior supervisor, for giving me the opportunity to do a PhD in water science and technology and her scientific input in every stage of this work. I am also grateful to Dr John Harris and Dr Linhua Fan, my co-supervisors, for their ponderable advice and positive criticisms. The Australian Research Council (ARC) and RMIT University are acknowledged for providing the funding and research facilities to make this project and thesis possible. I also wish to thank the staff of the School of Civil, Environmental and Chemical Engineering, the Department of Applied Physics and the Department of Applied Chemistry, RMIT University, for the valuable academic, administrative and technical assistance. Lastly, my parents are thanked for the encouragement and support I most needed during the time this research was carried out. -
Membrane Technology and Applications, 2Nd Edition
MEMBRANE TECHNOLOGY AND APPLICATIONS SECOND EDITION Richard W. Baker Membrane Technology and Research, Inc. Menlo Park, California MEMBRANE TECHNOLOGY AND APPLICATIONS MEMBRANE TECHNOLOGY AND APPLICATIONS SECOND EDITION Richard W. Baker Membrane Technology and Research, Inc. Menlo Park, California First Edition published by McGraw-Hill, 2000. ISBN: 0 07 135440 9 Copyright 2004 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone (+44) 1243 779777 Email (for orders and customer service enquiries): [email protected] Visit our Home Page on www.wileyeurope.com or www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to [email protected], or faxed to (+44) 1243 770620. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought. Other Wiley Editorial Offices John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA Wiley-VCH Verlag GmbH, Boschstr. -
Fouling Factors: a Survey of Their Application in Today's Air Conditioning and Refrigeration Industry
AHRI Guideline E (formerly ARI Guideline E) 1997 GUIDELINE for Fouling Factors: A Survey Of Their Application In Today's Air Conditioning And Refrigeration Industry IMPORTANT SAFETY RECOMMENDATIONS It is strongly recommended that the product be designed, constructed, assembled and installed in accordance with nationally recognized safety requirements appropriate for products covered by this guideline. ARI, as a manufacturers' trade association, uses its best efforts to develop guidelines employing state-of-the-art and accepted industry practices. However, ARI does not certify or guarantee safety of any products, components or systems designed, tested, rated, installed or operated in accordance with these guidelines or that any tests conducted under its standards will be non-hazardous or free from risk. Note: This guideline supersedes ARI Guideline E-1988. Price $10.00 (M) $20.00 (NM) ©Copyright 1997, by Air-Conditioning, Heating, and Refrigeration Institute Printed in U.S.A. Registered United States Patent and Trademark Office TABLE OF CONTENTS SECTION PAGE Section 1. Purpose ...................................................................................................................... 1 Section 2. Scope ......................................................................................................................... 1 Section 3. Definitions................................................................................................................. 1 Section 4. Background .............................................................................................................. -
Selective Catalytic Reduction (SCR) Are
EPA/452/B-02-001 Section 4 NOx Controls EPA/452/B-02-001 Section 4.2 NOx Post- Combustion i Introduction Nitrogen oxides (NOx) are gaseous pollutants that are primarily formed through combustion process. While flue gas is within the combustion unit, about 95% of the NOx exists in the form of nitric oxide (NO). The balance is nitrogen dioxide (NO2), which is unstable at high temperatures. Once the flue gas is emitted into the atmosphere, most of the NOx is ultimately converted to NO2. NOx in the atmosphere reacts in the presence of sunlight to form ozone (O3), one of the criteria pollutants for which health-based National Ambient Air Quality Standards have been established. Since ozone formation requires sunlight and high temperatures, ozone formation is greatest in summer months. NOx is generated in one of three forms; fuel NOx, thermal NOx, and prompt NOx. Fuel NOx is produced by oxidation of nitrogen in the fuel source. Combustion of fuels with high nitrogen content such as coal and residual oils produces greater amounts of NOx than those with low nitrogen content such as distillate oil and natural gas. Thermal NOx is formed by the fixation of ° ° molecular nitrogen and oxygen at temperatures greater than 3600 F (2000 C). Prompt NOx forms from the oxidation of hydrocarbon radicals near the combustion flame and produces an insignificant amount of NOx. Selective Noncatalytic Reduction (SNCR) and Selective Catalytic Reduction (SCR) are post-combustion control technologies based on the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). -
Characteristics of Cooling Water Fouling in a Heat Exchange System Sun-Kyung Sung1,*, Sang-Ho Suh2 and Dong-Woo Kim3 1Dept
Journal of Mechanical Science and Technology Journal of Mechanical Science and Technology 22 (2008) 1568~1575 www.springerlink.com/content/1738-494x DOI 10.1007/s12206-008-0422-9 Characteristics of cooling water fouling in a heat exchange system Sun-Kyung Sung1,*, Sang-Ho Suh2 and Dong-Woo Kim3 1Dept. of Building Equipment System Engineering, Kyungwon University , Sungnam Kyonggi 461-702, Korea 2Dept. of Mechanical Engineering, Soongsil University, Seoul 156-743, Korea 3Dept. of Building Technology, Suwon Science College, Hwasung, Kyonggi 445-742, Korea (Manuscript Received June 14, 2007; Revised April 6, 2008; Accepted April 22, 2008) -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Abstract This study investigated the efficiency of the physical water treatment method in preventing and controlling fouling accumulation on heat transfer surfaces in a laboratory heat exchange system with tap and artificial water. To investigate the fouling characteristics, an experimental test facility with a plate type heat exchange system was newly built, where cooling and hot water moved in opposite directions forming a counter-flow heat exchanger. The obtained fouling resis- tances were used to analyze the effects of the physical water treatment on fouling mitigation. Furthermore, the surface tension and pH values of water were also measured. This study