NOAA Technical Memorandum NMFS-NWFSC-108. Status

Total Page:16

File Type:pdf, Size:1020Kb

NOAA Technical Memorandum NMFS-NWFSC-108. Status NOAA Technical Memorandum NMFS-NWFSC-108 Status Review of Five Rockfish Species in Puget Sound, Washington Bocaccio (Sebastes paucispinis), Canary Rockfish S.( pinniger), Yelloweye Rockfish S.( ruberrimus), Greenstriped Rockfish S.( elongatus), and Redstripe Rockfish S.( proriger) December 2010 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service NOAA Technical Memorandum NMFS-NWFSC Series The Northwest Fisheries Science Center of the National Marine Fisheries Service, NOAA, uses the NOAA Techni- cal Memorandum NMFS-NWFSC series to issue scientific and technical publications. Manuscripts have been peer reviewed and edited. Documents published in this series may be cited in the scientific and technical literature. The NMFS-NWFSC Technical Memorandum series of the Northwest Fisheries Science Center continues the NMFS- F/NWC series established in 1970 by the Northwest & Alaska Fisheries Science Center, which has since been split into the Northwest Fisheries Science Center and the Alaska Fisheries Science Center. The NMFS-AFSC Techni- cal Memorandum series is now being used by the Alaska Fisheries Science Center. Reference throughout this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. This document should be referenced as follows: Drake J.S., E.A. Berntson, J.M. Cope, R.G. Gustafson, E.E. Holmes, P.S. Levin, N. Tolimieri, R.S. Waples, S.M. Sog- ard, and G.D. Williams. 2010. Status review of five rockfish species in Puget Sound, Washington: bocaccio (Sebastes pau- cispinis), canary rockfish S.( pinniger), yelloweye rockfish S.( ruberrimus), greenstriped rockfish S.( elongatus), and redstripe rockfish S.( proriger). U.S. Dept. Commer., NOAA Tech. Memo. NMFS-NWFSC-108, 234 p. NOAA Technical Memorandum NMFS-NWFSC-108 Status Review of Five Rockfish Species in Puget Sound, Washington Bocaccio (Sebastes paucispinis), Canary Rockfish S.( pinniger), Yelloweye Rockfish S.( ruberrimus), Greenstriped Rockfish S.( elongatus), and Redstripe Rockfish S.( proriger) Jonathan S. Drake, Ewann A. Berntson, Jason M. Cope, Richard G. Gustafson, Elizabeth E. Holmes, Phillip S. Levin, Nick Tolimieri, Robin S. Waples, Susan M. Sogard,* and Gregory D. Williams Northwest Fisheries Science Center 2725 Montlake Boulevard East Seattle, Washington 98112 * Southwest Fisheries Science Center 110 Shaffer Road Santa Cruz, California 95060 December 2010 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Most NOAA Technical Memorandums NMFS-NWFSC are available online at the Northwest Fisheries Science Center web site (http://www.nwfsc.noaa.gov) Copies are also available from: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone orders (1-800-553-6847) e-mail orders ([email protected]) ii Table of Contents List of Figures...............................................................................................................................................v List of Tables ..............................................................................................................................................vii Executive Summary.....................................................................................................................................ix Introduction...................................................................................................................................................1 The Species Question....................................................................................................................................3 Approaches to Addressing Discreteness and Significance.......................................................................4 Ecological Features and DPS Discreteness ............................................................................................14 Genetic Differentiation...........................................................................................................................36 DPS Scenarios ........................................................................................................................................44 Western Boundary of the Puget Sound/Georgia Basin Bocaccio, Yelloweye Rockfish, and Canary Rockfish DPSs........................................................................................................................................52 The Extinction Risk Question.....................................................................................................................55 Approaches to the Determination of Extinction Risk.............................................................................55 Data Reviewed by the BRT ....................................................................................................................60 Additional Information on Rockfish Distribution and Abundance in Puget Sound ...............................73 Summary of Previous Assessments........................................................................................................74 Species Composition Trends ..................................................................................................................75 Estimates of Rockfish Trends in Puget Sound........................................................................................98 Methods ................................................................................................................................................100 Long-term Mean Population Growth Estimates...................................................................................105 Size Data for Each DPS........................................................................................................................107 Threats Assessment for Petitioned Species of Rockfish.......................................................................111 Overall Risk Determination..................................................................................................................120 Conclusions Regarding Risk Status for Each of the Five DPSs of Puget Sound Rockfish ......................122 Bocaccio ...............................................................................................................................................122 Canary Rockfish ...................................................................................................................................126 Yelloweye Rockfish .............................................................................................................................129 Greenstriped Rockfish ..........................................................................................................................132 Redstripe Rockfish ...............................................................................................................................134 References.................................................................................................................................................137 iii Appendix A: Technical Comments and Reviews .....................................................................................161 Public Comments..................................................................................................................................161 External Peer Reviews..........................................................................................................................189 Appendix B: Responses to Comments and Reviews ................................................................................195 Responses to Peer Reviews ..................................................................................................................195 Responses to Public Comments............................................................................................................203 Appendix C: Marine Species in Greater Puget Sound..............................................................................213 Primary Producers ................................................................................................................................213 Zooplankton..........................................................................................................................................213 Benthic Invertebrates............................................................................................................................214 Fish .......................................................................................................................................................215 Birds and Mammals..............................................................................................................................216 Appendix D: Issues Pertaining to the Species Composition Data ............................................................219 Appendix E: Geological and Climatic History of Puget Sound................................................................223 Appendix F: Rockfish Historic Data Summary and Synthesis .................................................................227 Supplemental Fishery-independent Data..............................................................................................230 Fishery-dependent Data........................................................................................................................231 iv List of Figures
Recommended publications
  • California Saltwater Sport Fishing Regulations
    2017–2018 CALIFORNIA SALTWATER SPORT FISHING REGULATIONS For Ocean Sport Fishing in California Effective March 1, 2017 through February 28, 2018 13 2017–2018 CALIFORNIA SALTWATER SPORT FISHING REGULATIONS Groundfish Regulation Tables Contents What’s New for 2017? ............................................................. 4 24 License Information ................................................................ 5 Sport Fishing License Fees ..................................................... 8 Keeping Up With In-Season Groundfish Regulation Changes .... 11 Map of Groundfish Management Areas ...................................12 Summaries of Recreational Groundfish Regulations ..................13 General Provisions and Definitions ......................................... 20 General Ocean Fishing Regulations ��������������������������������������� 24 Fin Fish — General ................................................................ 24 General Ocean Fishing Fin Fish — Minimum Size Limits, Bag and Possession Limits, and Seasons ......................................................... 24 Fin Fish—Gear Restrictions ................................................... 33 Invertebrates ........................................................................ 34 34 Mollusks ............................................................................34 Crustaceans .......................................................................36 Non-commercial Use of Marine Plants .................................... 38 Marine Protected Areas and Other
    [Show full text]
  • Browning Washington 0250O 1
    Evidence of habitat associations and distribution patterns of rockfish in Puget Sound from archival data (1974-1977) Hilary F. Browning A thesis submitted in partial fulfillment of the requirements for the degree of Master of Marine Affairs University of Washington 2013 Committee: Terrie Klinger Ben Stewart-Koster Program Authorized to Offer Degree: School of Marine and Environmental Affairs 1 University of Washington Graduate School This is to certify that I have examined this copy of a master’s thesis by Hilary F. Browning and have found that it is complete and satisfactory in all respects, and that any and all revisions required by the final examining committee have been made. Committee Members: _____________________________________________________ Terrie Klinger _____________________________________________________ Ben Stewart-Koster Date: __________________________________ 2 In presenting this thesis in partial fulfillment of the requirements for a master’s degree at the University of Washington, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of this thesis is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Any other reproduction for any purposes or by any means shall not be allowed without my written permission. Signature: _________________________________ Date: _____________________________________ 3 University of Washington ABSTRACT Evidence of habitat associations and distribution patterns of rockfish in Puget Sound from archival data (1974-1977) Hilary F. Browning Chair of Supervisory Committee: Associate Professor Terrie Klinger School of Marine and Environmental Affairs Rockfish (Sebastes spp.) populations have declined dramatically and failed to recover in Puget Sound, WA following a period of heavy exploitation in the 1970s and 1980s.
    [Show full text]
  • Rockfish (Sebastes) That Are Evolutionarily Isolated Are Also
    Biological Conservation 142 (2009) 1787–1796 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Rockfish (Sebastes) that are evolutionarily isolated are also large, morphologically distinctive and vulnerable to overfishing Karen Magnuson-Ford a,b, Travis Ingram c, David W. Redding a,b, Arne Ø. Mooers a,b,* a Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby BC, Canada V5A 1S6 b IRMACS, Simon Fraser University, 8888 University Drive, Burnaby BC, Canada V5A 1S6 c Department of Zoology and Biodiversity Research Centre, University of British Columbia, #2370-6270 University Blvd., Vancouver, Canada V6T 1Z4 article info abstract Article history: In an age of triage, we must prioritize species for conservation effort. Species more isolated on the tree of Received 23 September 2008 life are candidates for increased attention. The rockfish genus Sebastes is speciose (>100 spp.), morpho- Received in revised form 10 March 2009 logically and ecologically diverse and many species are heavily fished. We used a complete Sebastes phy- Accepted 18 March 2009 logeny to calculate a measure of evolutionary isolation for each species and compared this to their Available online 22 April 2009 morphology and imperilment. We found that evolutionarily isolated species in the northeast Pacific are both larger-bodied and, independent of body size, morphologically more distinctive. We examined Keywords: extinction risk within rockfish using a compound measure of each species’ intrinsic vulnerability to Phylogenetic diversity overfishing and categorizing species as commercially fished or not. Evolutionarily isolated species in Extinction risk Conservation priorities the northeast Pacific are more likely to be fished, and, due to their larger sizes and to life history traits Body size such as long lifespan and slow maturation rate, they are also intrinsically more vulnerable to overfishing.
    [Show full text]
  • Management Plan for the Yelloweye Rockfish (Sebastes Ruberrimus) in Canada
    Proposed Species at Risk Act Management Plan Series Management Plan for the Yelloweye Rockfish (Sebastes ruberrimus) in Canada Yelloweye Rockfish 2018 Recommended citation: Fisheries and Oceans Canada. 2018. Management Plan for the Yelloweye Rockfish (Sebastes ruberrimus) in Canada [Proposed]. Species at Risk Act Management Plan Series. Fisheries and Oceans Canada, Ottawa. iv + 32 pp. Additional copies: For copies of the management plan, or for additional information on species at risk, including COSEWIC Status Reports, residence descriptions, action plans, and other related recovery documents, please visit the SAR Public Registry. Cover illustration: K.L. Yamanaka, Fisheries and Oceans Canada Également disponible en français sous le titre « Plan de gestion visant le sébaste aux yeux jaunes (Sebastes ruberrimus) au Canada [Proposition]» © Her Majesty the Queen in Right of Canada, represented by the Minister of the Environment, 2018. All rights reserved. ISBN ISBN to be included by SARA Responsible Agency Catalogue no. Catalogue no. to be included by SARA Responsible Agency Content (excluding the illustrations) may be used without permission, with appropriate credit to the source. Management Plan for the Yelloweye Rockfish [Proposed] 2018 Preface The federal, provincial, and territorial government signatories under the Accord for the Protection of Species at Risk (1996) agreed to establish complementary legislation and programs that provide for effective protection of species at risk throughout Canada. Under the Species at Risk Act (S.C. 2002, c.29) (SARA), the federal competent ministers are responsible for the preparation of a management plan for species listed as special concern and are required to report on progress five years after the publication of the final document on the Species at Risk Public Registry.
    [Show full text]
  • Rockfish Population Slowly on the Rise
    West Coast rockfish Rockfish population slowly on the rise Above: Rockfish in a kelp forest. Right: Black rockfish. Inset: Juvenile rockfish. More than 60 species of rockfi sh dwell in ocean perch, and canary. These species are of- schooling rockfi sh. vast numbers in the Eastern Pacifi c Ocean fi cially “overfi shed,” a designation which the When you’ve got a permit for hake, you’re from Baja to Alaska. White-fl eshed and deli- council grants when a fi sh’s population drops geared up for hake, you’re fi shing for hake, cious, they frequently school together and to 25 percent of its estimated virgin level, and and you know there is a hell of a lot of hake often intermingle with other commercially a stock is not considered “recovered” until it around, nothing stinks so much as scooping sought fi shes — but seven members of the ge- has climbed back up to the 40-percent mark. up a school of lousy rockfi sh — especially nus Sebastes have spoiled the party. These guidelines were devised and written ones protected by strict bycatch limits. Actually, it was fi shermen, who harvested into policy in 1998 as part of the Fishery Man- The fl eet may have dozens of tonnes of hake them nearly to economic extinction last centu- agement Plan. Since then, two species have as- left uncaught in the quota but must stop be- ry, and this handful of species is now largely cended back to the 40 percent level and been cause the rockfi sh cap has been exceeded.
    [Show full text]
  • Southward Range Extension of the Goldeye Rockfish, Sebastes
    Acta Ichthyologica et Piscatoria 51(2), 2021, 153–158 | DOI 10.3897/aiep.51.68832 Southward range extension of the goldeye rockfish, Sebastes thompsoni (Actinopterygii: Scorpaeniformes: Scorpaenidae), to northern Taiwan Tak-Kei CHOU1, Chi-Ngai TANG2 1 Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan 2 Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan http://zoobank.org/5F8F5772-5989-4FBA-A9D9-B8BD3D9970A6 Corresponding author: Tak-Kei Chou ([email protected]) Academic editor: Ronald Fricke ♦ Received 18 May 2021 ♦ Accepted 7 June 2021 ♦ Published 12 July 2021 Citation: Chou T-K, Tang C-N (2021) Southward range extension of the goldeye rockfish, Sebastes thompsoni (Actinopterygii: Scorpaeniformes: Scorpaenidae), to northern Taiwan. Acta Ichthyologica et Piscatoria 51(2): 153–158. https://doi.org/10.3897/ aiep.51.68832 Abstract The goldeye rockfish,Sebastes thompsoni (Jordan et Hubbs, 1925), is known as a typical cold-water species, occurring from southern Hokkaido to Kagoshima. In the presently reported study, a specimen was collected from the local fishery catch off Keelung, northern Taiwan, which represents the first specimen-based record of the genus in Taiwan. Moreover, the new record ofSebastes thompsoni in Taiwan represented the southernmost distribution of the cold-water genus Sebastes in the Northern Hemisphere. Keywords cold-water fish, DNA barcoding, neighbor-joining, new recorded genus, phylogeny, Sebastes joyneri Introduction On an occasional survey in a local fish market (25°7.77′N, 121°44.47′E), a mature female individual of The rockfish genusSebastes Cuvier, 1829 is the most spe- Sebastes thompsoni (Jordan et Hubbs, 1925) was obtained ciose group of the Scorpaenidae, which comprises about in the local catches, which were caught off Keelung, north- 110 species worldwide (Li et al.
    [Show full text]
  • Vii Fishery-At-A-Glance: California Sheephead
    Fishery-at-a-Glance: California Sheephead (Sheephead) Scientific Name: Semicossyphus pulcher Range: Sheephead range from the Gulf of California to Monterey Bay, California, although they are uncommon north of Point Conception. Habitat: Both adult and juvenile Sheephead primarily reside in kelp forest and rocky reef habitats. Size (length and weight): Male Sheephead can grow up to a length of three feet (91 centimeters) and weigh over 36 pounds (16 kilograms). Life span: The oldest Sheephead ever reported was a male at 53 years. Reproduction: As protogynous hermaphrodites, all Sheephead begin life as females, and older, larger females can develop into males. They are batch spawners, releasing eggs and sperm into the water column multiple times during their spawning season from July to September. Prey: Sheephead are generalist carnivores whose diet shifts throughout their growth. Juveniles primarily consume small invertebrates like tube-dwelling polychaetes, bryozoans and brittle stars, and adults shift to consuming larger mobile invertebrates like sea urchins. Predators: Predators of adult Sheephead include Giant Sea Bass, Soupfin Sharks and California Sea Lions. Fishery: Sheephead support both a popular recreational and a commercial fishery in southern California. Area fished: Sheephead are fished primarily south of Point Conception (Santa Barbara County) in nearshore waters around the offshore islands and along the mainland shore over rocky reefs and in kelp forests. Fishing season: Recreational anglers can fish for Sheephead from March 1through December 31 onboard boats south of Point Conception and May 1 through December 31 between Pigeon Point and Point Conception. Recreational divers and shore-based anglers can fish for Sheephead year round.
    [Show full text]
  • DESCRIBING DUSKY ROCKFISH (Sebastes Ci/Iatus) HABITAT in the GULF of ALASKA USING HISTORICAL DATA
    DESCRIBING DUSKY ROCKFISH (Sebastes ci/iatus) HABITAT IN THE GULF OF ALASKA USING HISTORICAL DATA A University Thesis Presented to the Faculty of California State University, Hayward In Partial Fulfillment of the Requirements for the Degree Master of Science in Marine Sciences by Rebecca Francesca Reuter March, 1999 Abstract Aspects of dusky rockfish (Sebastes ciliatus) habitat in the Gulf of Alaska are described using historical data sources. In this study Alaskan groundfish fishery data collected by observers between 1990-96 and research survey data collected from three triennial surveys conducted by the National Marine Fisheries Service were used. These two data sets provide data that are essential in the preliminary description of the habitat and ecology of S. ciliatus. Analyses using techniques such as geographic information systems (GIS) to describe the geographic distribution and hierarchical cluster analysis to describe rockfish species associations with S. ciliatus provide results that describe some of the parameters of their essential habitat. S. cilia/us occur in great abundance over localized areas throughout the Gulf of Alaska. Results of analyses using fishery data indicate that fishermen findS. ciliatus in abundance near mouths of submarine gullies/canyons and at deep banks. Analysis of survey data show that areas of S. ciliatus habitat are not adequately sampled, but they do support the results of the fishery data by showing that S. ciliatus do not have a dispersed distribution. The depth range where most adultS. ciliatus aggregations occur are located at I 00 - 200 m. Tllis information may be used to suggest a management scheme that calculates localized quotas for these habitat locations.
    [Show full text]
  • Common Fishes of California
    COMMON FISHES OF CALIFORNIA Updated July 2016 Blue Rockfish - SMYS Sebastes mystinus 2-4 bands around front of head; blue to black body, dark fins; anal fin slanted Size: 8-18in; Depth: 0-200’+ Common from Baja north to Canada North of Conception mixes with mostly with Olive and Black R.F.; South with Blacksmith, Kelp Bass, Halfmoons and Olives. Black Rockfish - SMEL Sebastes melanops Blue to blue-back with black dots on their dorsal fins; anal fin rounded Size: 8-18 in; Depth: 8-1200’ Common north of Point Conception Smaller eyes and a bit more oval than Blues Olive/Yellowtail Rockfish – OYT Sebastes serranoides/ flavidus Several pale spots below dorsal fins; fins greenish brown to yellow fins Size: 10-20in; Depth: 10-400’+ Midwater fish common south of Point Conception to Baja; rare north of Conception Yellowtail R.F. is a similar species are rare south of Conception, while being common north Black & Yellow Rockfish - SCHR Sebastes chrysomelas Yellow blotches of black/olive brown body;Yellow membrane between third and fourth dorsal fin spines Size: 6-12in; Depth: 0-150’ Common central to southern California Inhabits rocky areas/crevices Gopher Rockfish - SCAR Sebastes carnatus Several small white blotches on back; Pale blotch extends from dorsal spine onto back Size: 6-12 in; Depth: 8-180’ Common central California Inhabits rocky areas/crevice. Territorial Copper Rockfish - SCAU Sebastes caurinus Wide, light stripe runs along rear half on lateral line Size:: 10-16in; Depth: 10-600’ Inhabits rocky reefs, kelpbeds,
    [Show full text]
  • A Checklist of the Fishes of the Monterey Bay Area Including Elkhorn Slough, the San Lorenzo, Pajaro and Salinas Rivers
    f3/oC-4'( Contributions from the Moss Landing Marine Laboratories No. 26 Technical Publication 72-2 CASUC-MLML-TP-72-02 A CHECKLIST OF THE FISHES OF THE MONTEREY BAY AREA INCLUDING ELKHORN SLOUGH, THE SAN LORENZO, PAJARO AND SALINAS RIVERS by Gary E. Kukowski Sea Grant Research Assistant June 1972 LIBRARY Moss L8ndillg ,\:Jrine Laboratories r. O. Box 223 Moss Landing, Calif. 95039 This study was supported by National Sea Grant Program National Oceanic and Atmospheric Administration United States Department of Commerce - Grant No. 2-35137 to Moss Landing Marine Laboratories of the California State University at Fresno, Hayward, Sacramento, San Francisco, and San Jose Dr. Robert E. Arnal, Coordinator , ·./ "':., - 'I." ~:. 1"-"'00 ~~ ~~ IAbm>~toriesi Technical Publication 72-2: A GI-lliGKL.TST OF THE FISHES OF TtlE MONTEREY my Jl.REA INCLUDING mmORH SLOUGH, THE SAN LCRENZO, PAY-ARO AND SALINAS RIVERS .. 1&let~: Page 14 - A1estria§.·~iligtro1ophua - Stone cockscomb - r-m Page 17 - J:,iparis'W10pus." Ribbon' snailt'ish - HE , ,~ ~Ei 31 - AlectrlQ~iu.e,ctro1OphUfi- 87-B9 . .', . ': ". .' Page 31 - Ceb1diehtlrrs rlolaCewi - 89 , Page 35 - Liparis t!01:f-.e - 89 .Qhange: Page 11 - FmWulns parvipin¢.rl, add: Probable misidentification Page 20 - .BathopWuBt.lemin&, change to: .Mhgghilu§. llemipg+ Page 54 - Ji\mdJ11ui~~ add: Probable. misidentifioation Page 60 - Item. number 67, authOr should be .Hubbs, Clark TABLE OF CONTENTS INTRODUCTION 1 AREA OF COVERAGE 1 METHODS OF LITERATURE SEARCH 2 EXPLANATION OF CHECKLIST 2 ACKNOWLEDGEMENTS 4 TABLE 1
    [Show full text]
  • Multiple Paternity and Maintenance of Genetic Diversity in the Live-Bearing Rockfishes Sebastes Spp
    Vol. 357: 245–253, 2008 MARINE ECOLOGY PROGRESS SERIES Published April 7 doi: 10.3354/meps07296 Mar Ecol Prog Ser Multiple paternity and maintenance of genetic diversity in the live-bearing rockfishes Sebastes spp. John R. Hyde1, 2,*, Carol Kimbrell2, Larry Robertson2, Kevin Clifford3, Eric Lynn2, Russell Vetter2 1Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, California 92093-0203, USA 2Southwest Fisheries Science Center, NOAA/NMFS, 8604 La Jolla Shores Dr., La Jolla, California 92037, USA 3Oregon Coast Aquarium, 2820 SE Ferry Slip Rd, Newport, Oregon 97365, USA ABSTRACT: The understanding of mating systems is key to the proper management of exploited spe- cies, particularly highly fecund, r-selected fishes, which often show strong discrepancies between census and effective population sizes. The development of polymorphic genetic markers, such as codominant nuclear microsatellites, has made it possible to study the paternity of individuals within a brood, helping to elucidate the species’ mating system. In the present study, paternity analysis was performed on 35 broods, representing 17 species of the live-bearing scorpaenid genus Sebastes. We report on the finding of multiple paternity from several species of Sebastes and show that at least 3 sires can contribute paternity to a single brood. A phylogenetically and ecologically diverse sample of Sebastes species was examined, with multiple paternity found in 14 of the 35 broods and 10 of the 17 examined species, we suggest that this behavior is not a rare event within a single species and is likely common throughout the genus. Despite high variance in reproductive success, Sebastes spp., in general, show moderate to high levels of genetic diversity.
    [Show full text]
  • Echinodermata
    Echinodermata Bruce A. Miller The phylum Echinodermata is a morphologically, ecologically, and taxonomically diverse group. Within the nearshore waters of the Pacific Northwest, representatives from all five major classes are found-the Asteroidea (sea stars), Echinoidea (sea urchins, sand dollars), Holothuroidea (sea cucumbers), Ophiuroidea (brittle stars, basket stars), and Crinoidea (feather stars). Habitats of most groups range from intertidal to beyond the continental shelf; this discussion is limited to species found no deeper than the shelf break, generally less than 200 m depth and within 100 km of the coast. Reproduction and Development With some exceptions, sexes are separate in the Echinodermata and fertilization occurs externally. Intraovarian brooders such as Leptosynapta must fertilize internally. For most species reproduction occurs by free spawning; that is, males and females release gametes more or less simultaneously, and fertilization occurs in the water column. Some species employ a brooding strategy and do not have pelagic larvae. Species that brood are included in the list of species found in the coastal waters of the Pacific Northwest (Table 1) but are not included in the larval keys presented here. The larvae of echinoderms are morphologically and functionally diverse and have been the subject of numerous investigations on larval evolution (e.g., Emlet et al., 1987; Strathmann et al., 1992; Hart, 1995; McEdward and Jamies, 1996)and functional morphology (e.g., Strathmann, 1971,1974, 1975; McEdward, 1984,1986a,b; Hart and Strathmann, 1994). Larvae are generally divided into two forms defined by the source of nutrition during the larval stage. Planktotrophic larvae derive their energetic requirements from capture of particles, primarily algal cells, and in at least some forms by absorption of dissolved organic molecules.
    [Show full text]