DESCRIBING DUSKY ROCKFISH (Sebastes Ci/Iatus) HABITAT in the GULF of ALASKA USING HISTORICAL DATA

Total Page:16

File Type:pdf, Size:1020Kb

DESCRIBING DUSKY ROCKFISH (Sebastes Ci/Iatus) HABITAT in the GULF of ALASKA USING HISTORICAL DATA DESCRIBING DUSKY ROCKFISH (Sebastes ci/iatus) HABITAT IN THE GULF OF ALASKA USING HISTORICAL DATA A University Thesis Presented to the Faculty of California State University, Hayward In Partial Fulfillment of the Requirements for the Degree Master of Science in Marine Sciences by Rebecca Francesca Reuter March, 1999 Abstract Aspects of dusky rockfish (Sebastes ciliatus) habitat in the Gulf of Alaska are described using historical data sources. In this study Alaskan groundfish fishery data collected by observers between 1990-96 and research survey data collected from three triennial surveys conducted by the National Marine Fisheries Service were used. These two data sets provide data that are essential in the preliminary description of the habitat and ecology of S. ciliatus. Analyses using techniques such as geographic information systems (GIS) to describe the geographic distribution and hierarchical cluster analysis to describe rockfish species associations with S. ciliatus provide results that describe some of the parameters of their essential habitat. S. cilia/us occur in great abundance over localized areas throughout the Gulf of Alaska. Results of analyses using fishery data indicate that fishermen findS. ciliatus in abundance near mouths of submarine gullies/canyons and at deep banks. Analysis of survey data show that areas of S. ciliatus habitat are not adequately sampled, but they do support the results of the fishery data by showing that S. ciliatus do not have a dispersed distribution. The depth range where most adultS. ciliatus aggregations occur are located at I 00 - 200 m. Tllis information may be used to suggest a management scheme that calculates localized quotas for these habitat locations. The size, age composition and growth of S. ciliatus indicate that several habitats are utilized throughout their life cycle. Similar to other species of rockfish, larger and older S. ciliatus occur at deeper depths than the smaller and younger ones. The von BertalanftY growth parameters of S. ciliatus were similar for all regions and for both males and females. Unlike other species of rockfish, femaleS. cilia/us maximum length ii were not significantly larger than males. Further investigations of the age and growth patterns of dusky rockfish should be conducted to confirm these preliminary results. The rockfish associated with S. ciliatus are similar throughout the Gulf of Alaska. In the western and central regions, for both pata sets, S. polyspinus and S. a hilus co-occur most frequently with S. ciliatus. In the eastern region, for both data sets, many more rockfish species were associated with S. ciliatus suggesting that a greater diversity of rockfish occurs in the eastern region of the Gulf of Alaska and that more non-commercial species of rockfish are caught as bycatch in the fishery. These results, from the cluster analysis of rockfish species that co-occur with S. ciliatus, suggest that current rockfish management assemblages need revision. iii Aclmowledgments I would like to take this time to thank everyone that I have met and befriended, from New Mexico through the Monterey Bay area and north to Seattle and Alaska, along my journey towards my Masters degree. If'it were not for the support, guidance and caring from them I probably would have diverged from this journey a long time ago. Gregor Cailliet I thank you for who you are, a person with a wealth of knowledge that I admire and a good hearted person that I respect. Thanks for supporting me as I followed my desires to study what I present in this thesis. Thanks to my other committee members, Jon Heifetz for your knowledge of the rockfishes in the Gulf of Alaska and Mike Hedrick for your time and expert review of my thesis. Thanks to the Earl and Ethyl M. Myers Foundation and the International Women's Fishing Association for their funding support of my education and my initial research. A big thanks to everyone at the Alaska Fisheries Science Center who allowed me to use their data for my thesis and who ultimately gave me an office with a great view to Lake Washington. The support and guidance I received while conducting my research there was incalculable. Last but not least, thank you Sean Squires for being my partner in crime through thick and thin, from the early days back in 1993 until now. We can go on that honeymoon now because I have finished honey, I have finally finished. v Table of Contents Abstract ·········································································································· ii-iii Acknowledgements .................................................................................................... v Lists of Tables ············································'·····························································vii LJsts. o fF"1gures .......................................................................................................... vm··· Introduction .......................................................................................................... 1 Background .......................................................................................................... 5 Chapter 1: Distribution and abundance patterns of Sebastes ciliatus Introduction .................................................................................................... 12 Methods ......................................................................................................... 14 Results .......................................................................................................... 21 Discussion ...................................................................................................... 24 Chapter 2: Size composition, age and growth of Sebastes ciliatus Introduction .................................................................................................... 3 8 Methods ......................................................................................................... 40 Results .......................................................................................................... 43 Discussion ...................................................................................................... 45 Chapter 3: Rockfish associated with Sebastes ciliatus Introduction .................................................................................................... 53 Methods ................................................................... , ..................................... 55 Results .................................... , ..................................................................... 57 Discussion ...................................................................................................... 60 Summary .......................................................................................................... 75 References .......................................................................................................... 76 vi List of Tables Table Page 0.1 List of rockfishes (Sebastes spp.) from the north Pacific ocean and their respective management assemblage in the GOA. ............................................................... 8 1.1 Results from Kolmogorov-Smirnov test for abundance and frequency of occurrence by depth for CFOD and RSD. a-b. CFOD ............................................................................................... 26-27 c-d. RSD ............................................................................................... 28 2.1 Kolmogorov-Smirnov two sample test results from length frequency distribution by depth of CFOD and RSD for the central and eastern regions. ............................................................................................... 48 3 .I Frequency of occurrence (%) of rockfish with dusky rockfish in respective region based on CPUE from CFOD .................................................. 63 3.2 Frequency of occurrence(%) of rockfish species with dusky rockfish from RSD in respective region based on CPUE ............................................... 64 3.3 Abbreviations of rockfish species found in clustered hauls at the upper slope strata of the Gulf of Alaska ..................................................................... 65 vii List of Figures Figure Page 0.1 Map of Gulf of Alaska study area split into fishery management areas .............. 9 0.2 Pelagic shelf rockfish total catch and ABC levels for the entire GOA since in became a management group in 1988 .................................................................. 10 0.3 Illustrations of Sebastes ciliatus from a. Tilesius (181 0), b. Evermann (1898), c. Barsukov (1964) and d. Westrheim (1968, 1973) ............................................ 11 1.1 a. Average CPUE (kg/hr) of dusky rockfish in the Gulf of Alaska from CFOD, 1990-1996 by management region. b. Average catch per unit effort (kg/km2) of dusky rockfish per region and year of GOA research survey .......................... 29 1.2 Depth distribution of dusky rockfish from fishery data for each region Of the GOA based on frequency of occurrence and density (avg. CPUE) plus total effort for years 1990-1996 ................................................................... 30 1.3 Depth distribution of dusky rockfish from survey data for each region Of the GOA based on frequency of occurrence and density (avg. CPUE) plus total effort from 1990, 1993 and 1996 surveys ............................................ 31 1.4 Map of the geographic distribution of the
Recommended publications
  • Common Fishes of California
    COMMON FISHES OF CALIFORNIA Updated July 2016 Blue Rockfish - SMYS Sebastes mystinus 2-4 bands around front of head; blue to black body, dark fins; anal fin slanted Size: 8-18in; Depth: 0-200’+ Common from Baja north to Canada North of Conception mixes with mostly with Olive and Black R.F.; South with Blacksmith, Kelp Bass, Halfmoons and Olives. Black Rockfish - SMEL Sebastes melanops Blue to blue-back with black dots on their dorsal fins; anal fin rounded Size: 8-18 in; Depth: 8-1200’ Common north of Point Conception Smaller eyes and a bit more oval than Blues Olive/Yellowtail Rockfish – OYT Sebastes serranoides/ flavidus Several pale spots below dorsal fins; fins greenish brown to yellow fins Size: 10-20in; Depth: 10-400’+ Midwater fish common south of Point Conception to Baja; rare north of Conception Yellowtail R.F. is a similar species are rare south of Conception, while being common north Black & Yellow Rockfish - SCHR Sebastes chrysomelas Yellow blotches of black/olive brown body;Yellow membrane between third and fourth dorsal fin spines Size: 6-12in; Depth: 0-150’ Common central to southern California Inhabits rocky areas/crevices Gopher Rockfish - SCAR Sebastes carnatus Several small white blotches on back; Pale blotch extends from dorsal spine onto back Size: 6-12 in; Depth: 8-180’ Common central California Inhabits rocky areas/crevice. Territorial Copper Rockfish - SCAU Sebastes caurinus Wide, light stripe runs along rear half on lateral line Size:: 10-16in; Depth: 10-600’ Inhabits rocky reefs, kelpbeds,
    [Show full text]
  • A Checklist of the Fishes of the Monterey Bay Area Including Elkhorn Slough, the San Lorenzo, Pajaro and Salinas Rivers
    f3/oC-4'( Contributions from the Moss Landing Marine Laboratories No. 26 Technical Publication 72-2 CASUC-MLML-TP-72-02 A CHECKLIST OF THE FISHES OF THE MONTEREY BAY AREA INCLUDING ELKHORN SLOUGH, THE SAN LORENZO, PAJARO AND SALINAS RIVERS by Gary E. Kukowski Sea Grant Research Assistant June 1972 LIBRARY Moss L8ndillg ,\:Jrine Laboratories r. O. Box 223 Moss Landing, Calif. 95039 This study was supported by National Sea Grant Program National Oceanic and Atmospheric Administration United States Department of Commerce - Grant No. 2-35137 to Moss Landing Marine Laboratories of the California State University at Fresno, Hayward, Sacramento, San Francisco, and San Jose Dr. Robert E. Arnal, Coordinator , ·./ "':., - 'I." ~:. 1"-"'00 ~~ ~~ IAbm>~toriesi Technical Publication 72-2: A GI-lliGKL.TST OF THE FISHES OF TtlE MONTEREY my Jl.REA INCLUDING mmORH SLOUGH, THE SAN LCRENZO, PAY-ARO AND SALINAS RIVERS .. 1&let~: Page 14 - A1estria§.·~iligtro1ophua - Stone cockscomb - r-m Page 17 - J:,iparis'W10pus." Ribbon' snailt'ish - HE , ,~ ~Ei 31 - AlectrlQ~iu.e,ctro1OphUfi- 87-B9 . .', . ': ". .' Page 31 - Ceb1diehtlrrs rlolaCewi - 89 , Page 35 - Liparis t!01:f-.e - 89 .Qhange: Page 11 - FmWulns parvipin¢.rl, add: Probable misidentification Page 20 - .BathopWuBt.lemin&, change to: .Mhgghilu§. llemipg+ Page 54 - Ji\mdJ11ui~~ add: Probable. misidentifioation Page 60 - Item. number 67, authOr should be .Hubbs, Clark TABLE OF CONTENTS INTRODUCTION 1 AREA OF COVERAGE 1 METHODS OF LITERATURE SEARCH 2 EXPLANATION OF CHECKLIST 2 ACKNOWLEDGEMENTS 4 TABLE 1
    [Show full text]
  • Field Guide to the Rockfishes (Scorpaenidae) of Alaska
    Field Guide to the Rockfishes (Scorpaenidae) of Alaska Extracted from: Orr, J. W., M. A. Brown, and D. C. Baker. 2000. Guide to rockfishes (Scorpaenidae) of the genera Sebastes, Sebastolobus, and Adelosebastes of the Northeast Pacific Ocean, second edition. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-117, 47 p. U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center Alaska Groundfish Observer Program 2002 ABSTRACT The rockfishes (family Scorpaenidae) of the northeast Pacific Ocean north of Mexico comprise five genera, three of which are included in this guide: Sebastes, Sebastolobus, and Adelosebastes. Sebastes includes some 100 species worldwide; 33, including one to be described, are presently recognized from Alaskan waters. Sebastolobus (commonly known as the thornyheads) includes only three species worldwide; all three are found in Alaskan waters. The single species of Adelosebastes (the Aleutian scorpionfish, A. latens) is known only from the Aleutian Islands and Emperor Seamounts. Of the three genera treated here, Sebastes poses the most difficulties in identification, both because of the numbers of species and because of their morphological similarity and variability. This guide includes color images of 37 species photographed under natural and electronic flash conditions in the field. Most specimens were photographed immediately after collection. iii CONTENTS Abstract.......................................................................................................
    [Show full text]
  • Status of Yellowtail Rockfish (Sebastes Flavidus) Along the U.S
    Status of Yellowtail Rockfish (Sebastes flavidus) Along the U.S. Pacific Coast in 2017 Andi Stephens1 Ian G. Taylor2 1Northwest Fisheries Science Center, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 2032 S.E. OSU Drive Newport, Oregon 97365 2Northwest Fisheries Science Center, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 2725 Montlake Boulevard East, Seattle, Washington 98112 January 2018 Status of Yellowtail Rockfish (Sebastes flavidus) Along the U.S. Pacific Coast in 2017 Contents Executive Summary1 Stock...........................................1 Catches . .3 Data and Assessment . .7 Stock Biomass . .7 Recruitment . 10 Exploitation status . 12 Ecosystem Considerations . 15 Reference Points . 15 Management Performance . 16 Unresolved Problems And Major Uncertainties . 17 Decision Tables . 18 Research And Data Needs . 23 1 Introduction 25 1.1 Basic Information . 25 1.2 Life History . 26 1.3 Ecosystem Considerations . 26 1.4 Fishery and Management History . 27 1.5 Assessment History . 28 1.6 Fisheries off Canada, Alaska, and/or Mexico . 28 2 Data 30 2.1 Biological Parameters . 30 2.1.1 Weight-Length . 30 2.1.2 Maturity And Fecundity . 30 2.1.3 Natural Mortality . 31 i 2.1.4 Aging Precision And Bias . 31 2.2 Biological Data and Indices . 32 2.3 Northern Model Data . 32 2.3.1 Commercial Fishery Landings . 32 2.3.2 Sport Fishery Removals . 33 2.3.3 Estimated Discards . 33 2.3.4 Abundance Indices . 34 2.3.5 Fishery-Independent Data . 34 2.3.6 Biological Samples . 36 2.4 Southern Model Data .
    [Show full text]
  • Localized Depletion of Three Alaska Rockfish Species Dana Hanselman NOAA Fisheries, Alaska Fisheries Science Center, Auke Bay Laboratory, Juneau, Alaska
    Biology, Assessment, and Management of North Pacific Rockfishes 493 Alaska Sea Grant College Program • AK-SG-07-01, 2007 Localized Depletion of Three Alaska Rockfish Species Dana Hanselman NOAA Fisheries, Alaska Fisheries Science Center, Auke Bay Laboratory, Juneau, Alaska Paul Spencer NOAA Fisheries, Alaska Fisheries Science Center, Resource Ecology and Fisheries Management (REFM) Division, Seattle, Washington Kalei Shotwell NOAA Fisheries, Alaska Fisheries Science Center, Auke Bay Laboratory, Juneau, Alaska Rebecca Reuter NOAA Fisheries, Alaska Fisheries Science Center, REFM Division, Seattle, Washington Abstract The distributions of some rockfish species in Alaska are clustered. Their distribution and relatively sedentary movement patterns could make localized depletion of rockfish an ecological or conservation concern. Alaska rockfish have varying and little-known genetic stock structures. Rockfish fishing seasons are short and intense and usually confined to small areas. If allowable catches are set for large management areas, the genetic, age, and size structures of the population could change if the majority of catch is harvested from small concentrated areas. In this study, we analyzed data collected by the North Pacific Observer Program from 1991 to 2004 to assess localized depletion of Pacific ocean perch (Sebastes alutus), northern rockfish S.( polyspinis), and dusky rockfish (S. variabilis). The data were divided into blocks with areas of approxi- mately 10,000 km2 and 5,000 km2 of consistent, intense fishing. We used two different block sizes to consider the size for which localized deple- tion could be detected. For each year, the Leslie depletion estimator was used to determine whether catch-per-unit-effort (CPUE) values in each 494 Hanselman et al.—Three Alaska Rockfish Species block declined as a function of cumulative catch.
    [Show full text]
  • Fishes-Of-The-Salish-Sea-Pp18.Pdf
    NOAA Professional Paper NMFS 18 Fishes of the Salish Sea: a compilation and distributional analysis Theodore W. Pietsch James W. Orr September 2015 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce Papers NMFS National Oceanic and Atmospheric Administration Kathryn D. Sullivan Scientifi c Editor Administrator Richard Langton National Marine Fisheries Service National Marine Northeast Fisheries Science Center Fisheries Service Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Offi ce of Science and Technology Fisheries Research and Monitoring Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientifi c Publications Offi ce 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service - The NOAA Professional Paper NMFS (ISSN 1931-4590) series is published by the Scientifi c Publications Offi ce, National Marine Fisheries Service, The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original NOAA, 7600 Sand Point Way NE, research reports, taxonomic keys, species synopses, fl ora and fauna studies, and data- Seattle, WA 98115. intensive reports on investigations in fi shery science, engineering, and economics. The Secretary of Commerce has Copies of the NOAA Professional Paper NMFS series are available free in limited determined that the publication of numbers to government agencies, both federal and state. They are also available in this series is necessary in the transac- exchange for other scientifi c and technical publications in the marine sciences.
    [Show full text]
  • Guide to Rockfishes (Scorpaenidae) of the Genera Sebastes, Sebastolobus, and Adelosebastes of the Northeast Pacific Ocean, Second Edition
    NOAA Technical Memorandum NMFS-AFSC-117 Guide to Rockfishes (Scorpaenidae) of the Genera Sebastes, Sebastolobus, and Adelosebastes of the Northeast Pacific Ocean, Second Edition by James Wilder Orr, Michael A. Brown, and David C. Baker U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center August 2000 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The new NMFS-NWFSC series will be used by the Northwest Fisheries Science Center. This document should be cited as follows: Orr, J. W., M. A. Brown, and D. C. Baker. 2000. Guide to rockfishes (Scorpaenidae) of the genera Sebastes, Sebastolobus, and Adelosebastes of the Northeast Pacific Ocean, second edition. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-117, 47 p. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-117 Guide to Rockfishes (Scorpaenidae) of the Genera Sebastes, Sebastolobus, and Adelosebastes of the Northeast Pacific Ocean, Second Edition by J. W. Orr,1 M. A. Brown, 2 and D. C. Baker 2 1 Resource Assessment and Conservation Engineering Division Alaska Fisheries Science Center 7600 Sand Point Way N.E.
    [Show full text]
  • Gopher Rockfish
    Summary of Data Sources for Stock Assessments for the Species in the Nearshore Fisheries Management Plan (NFMP) Teresa Ish1,2 Meisha Key3 Yasmin Lucero1 1 Center for Stock Assessment Research (CSTAR), Department of Applied Mathematics and Statistics, UC Santa Cruz, Santa Cruz, CA 95064 2 Also with Sustainable Fishery Advocates, P.O. Box 233, Santa Cruz, CA 95061 3 California Department of Fish and Game, 20 Lower Ragsdale Drive, #100 Monterey, CA 93940 February 1, 2005 Table of Contents Scope and structure of report 1 Table 1: Ranking of species by data richness 2 Descriptions of data sources 3 Table 2: Summary of data by data source 10 Individual species reports and data summary tables Black rockfish (Sebastes melanops) 12 Black and yellow rockfish (Sebastes chrysomelas) 16 Blue rockfish (Sebastes mystinus) 20 Brown rockfish (Sebastes auriculatus) 24 Cabezon (Scorpaenichthys marmoratus) 28 Calico rockfish (Sebastes dalli) 32 China rockfish (Sebastes nebulosus) 35 Copper rockfish (Sebastes caurinus) 39 Gopher rockfish (Sebastes carnatus) 42 Grass rockfish (Sebastes rastrelliger) 46 Kelp greenling (Hexagrammos decagrammus) 50 Kelp rockfish (Sebastes atrovirens) 53 Monkeyface prickleback eel (Cebidichthys violaceus) 57 Olive rockfish (Sebastes serranoides) 60 Quillback rockfish (Sebastes maliger) 63 Rock greenling (Hexagrammos lagocephalus) 66 Scorpionfish (Scorpaena guttata) 68 Sheephead (Semicossyphus pulcher) 71 Treefish (Sebastes serriceps) 74 Scope and structure of report The purpose of this report is to summarize the data sources that are available for the 19 nearshore species identified in the Nearshore Fisheries Management Plan (NFMP), to provide a means for the California Fish and Game to determine which species have enough data to assess and where more data need to be collected.
    [Show full text]
  • ASFIS ISSCAAP Fish List February 2007 Sorted on Scientific Name
    ASFIS ISSCAAP Fish List Sorted on Scientific Name February 2007 Scientific name English Name French name Spanish Name Code Abalistes stellaris (Bloch & Schneider 1801) Starry triggerfish AJS Abbottina rivularis (Basilewsky 1855) Chinese false gudgeon ABB Ablabys binotatus (Peters 1855) Redskinfish ABW Ablennes hians (Valenciennes 1846) Flat needlefish Orphie plate Agujón sable BAF Aborichthys elongatus Hora 1921 ABE Abralia andamanika Goodrich 1898 BLK Abralia veranyi (Rüppell 1844) Verany's enope squid Encornet de Verany Enoploluria de Verany BLJ Abraliopsis pfefferi (Verany 1837) Pfeffer's enope squid Encornet de Pfeffer Enoploluria de Pfeffer BJF Abramis brama (Linnaeus 1758) Freshwater bream Brème d'eau douce Brema común FBM Abramis spp Freshwater breams nei Brèmes d'eau douce nca Bremas nep FBR Abramites eques (Steindachner 1878) ABQ Abudefduf luridus (Cuvier 1830) Canary damsel AUU Abudefduf saxatilis (Linnaeus 1758) Sergeant-major ABU Abyssobrotula galatheae Nielsen 1977 OAG Abyssocottus elochini Taliev 1955 AEZ Abythites lepidogenys (Smith & Radcliffe 1913) AHD Acanella spp Branched bamboo coral KQL Acanthacaris caeca (A. Milne Edwards 1881) Atlantic deep-sea lobster Langoustine arganelle Cigala de fondo NTK Acanthacaris tenuimana Bate 1888 Prickly deep-sea lobster Langoustine spinuleuse Cigala raspa NHI Acanthalburnus microlepis (De Filippi 1861) Blackbrow bleak AHL Acanthaphritis barbata (Okamura & Kishida 1963) NHT Acantharchus pomotis (Baird 1855) Mud sunfish AKP Acanthaxius caespitosa (Squires 1979) Deepwater mud lobster Langouste
    [Show full text]
  • Yellowmouth Rockfish (Sebastes Reedi)
    COSEWIC Assessment and Status Report on the Yellowmouth Rockfish Sebastes reedi in Canada THREATENED 2010 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2010. COSEWIC assessment and status report on the Yellowmouth Rockfish Sebastes reedi in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 57 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Production note: COSEWIC would like to acknowledge Andrea L. Smith for writing the status report on the Yellowmouth Rockfish Sebastes reedi in Canada, prepared under contract with Environment Canada. This report was overseen and edited by Alan Sinclair, Co-Chair of the COSEWIC Marine Fishes Specialist Subcommittee, and Howard Powles, previous Co-Chair of the COSEWIC Marine Fishes Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur le sébaste à bouche jaune (Sebastes reedi) au Canada. Cover illustration/photo: Yellowmouth Rockfish — Line drawing of adult Yellowmouth Rockfish. Illustrator is Wayne Laroche. Taken from Matarese et al. 1989. ©Her Majesty the Queen in Right of Canada, 2010. Catalogue CW69-14/605-2010E-PDF ISBN 978-1-100-15991-1 Recycled paper COSEWIC Assessment Summary Assessment Summary – April 2010 Common name Yellowmouth Rockfish Scientific name Sebastes reedi Status Threatened Reason for designation As with other rockfish species, this slow-growing (generation time 30 years), long-lived (maximum age 100 years) species is vulnerable to commercial fishing.
    [Show full text]
  • Otolith Shape and Genomic Variation in Deacon Rockfish (Sebastes Diaconus)
    Received: 10 July 2019 | Revised: 20 September 2019 | Accepted: 25 September 2019 DOI: 10.1002/ece3.5763 ORIGINAL RESEARCH Sex matters: Otolith shape and genomic variation in deacon rockfish (Sebastes diaconus) Felix Vaux1 | Leif K. Rasmuson2 | Lisa A. Kautzi2 | Polly S. Rankin2 | Matthew T. O. Blume2 | Kelly A. Lawrence2 | Sandra Bohn1 | Kathleen G. O'Malley1 1State Fisheries Genomics Lab, Coastal Oregon Marine Experiment Abstract Station, Department of Fisheries and Little is known about intraspecific variation within the deacon rockfish (Sebastes di‐ Wildlife, Hatfield Marine Science Center, Oregon State University, Newport, aconus), a recently described species found in the northeast Pacific Ocean. We in‐ OR, USA vestigated population structure among fish sampled from two nearshore reefs (Siletz 2 Marine Resources Program, Oregon Reef and Seal Rock) and one offshore site (Stonewall Bank) within a <50‐km2 area off Department of Fish and Wildlife, Newport, OR, USA the Oregon coast. Fish from the three sample sites exhibited small but statistically significant differences based on genetic variation at >15,000 neutral loci, whether Correspondence Felix Vaux, State Fisheries Genomics Lab, analyzed independently or classified into nearshore and offshore groups. Male and Coastal Oregon Marine Experiment Station, females were readily distinguished using genetic data and 92 outlier loci were as‐ Department of Fisheries and Wildlife, Hatfield Marine Science Center, Oregon sociated with sex, potentially indicating differential selection between males and fe‐ State University, 2030 SE Marine Science males. Morphometric results indicated that there was significant secondary sexual Drive, Newport, OR, USA. Email: [email protected] dimorphism in otolith shape, but further sampling is required to disentangle potential confounding influence of age.
    [Show full text]
  • The Natural Resources of Monterey Bay National Marine Sanctuary
    Marine Sanctuaries Conservation Series ONMS-13-05 The Natural Resources of Monterey Bay National Marine Sanctuary: A Focus on Federal Waters Final Report June 2013 U.S. Department of Commerce National Oceanic and Atmospheric Administration National Ocean Service Office of National Marine Sanctuaries June 2013 About the Marine Sanctuaries Conservation Series The National Oceanic and Atmospheric Administration’s National Ocean Service (NOS) administers the Office of National Marine Sanctuaries (ONMS). Its mission is to identify, designate, protect and manage the ecological, recreational, research, educational, historical, and aesthetic resources and qualities of nationally significant coastal and marine areas. The existing marine sanctuaries differ widely in their natural and historical resources and include nearshore and open ocean areas ranging in size from less than one to over 5,000 square miles. Protected habitats include rocky coasts, kelp forests, coral reefs, sea grass beds, estuarine habitats, hard and soft bottom habitats, segments of whale migration routes, and shipwrecks. Because of considerable differences in settings, resources, and threats, each marine sanctuary has a tailored management plan. Conservation, education, research, monitoring and enforcement programs vary accordingly. The integration of these programs is fundamental to marine protected area management. The Marine Sanctuaries Conservation Series reflects and supports this integration by providing a forum for publication and discussion of the complex issues currently facing the sanctuary system. Topics of published reports vary substantially and may include descriptions of educational programs, discussions on resource management issues, and results of scientific research and monitoring projects. The series facilitates integration of natural sciences, socioeconomic and cultural sciences, education, and policy development to accomplish the diverse needs of NOAA’s resource protection mandate.
    [Show full text]