UC Berkeley UC Berkeley Electronic Theses and Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

UC Berkeley UC Berkeley Electronic Theses and Dissertations UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Evolutionary Processes contributing to Population Structure in the Rockfishes of the Subgenus Rosicola: Implications for Fishery Management, Stock Assessment and Prioritization of Future Analyses of Structure in the Genus Sebastes. Permalink https://escholarship.org/uc/item/6034342s Author Budrick, John Edward Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Evolutionary Processes contributing to Population Structure in the Rockfishes of the Subgenus Rosicola: Implications for Fishery Management, Stock Assessment and Prioritization of Future Analyses of Structure in the Genus Sebastes. by John Edward Budrick A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy and Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Richard S. Dodd, Chair Professor George Roderick Professor Rauri C.K. Bowie Summer 2016 University of California ©Copyright by John Edward Budrick June 19, 1 2016 All Rights Reserved Abstract Evolutionary Processes contributing to Population Structure in the Rockfishes of the Subgenus Rosicola: Implications for Fishery Management, Stock Assessment and Prioritization of Future Analyses of Structure in the Genus Sebastes by John Edward Budrick Doctor of Philosophy in Environmental Science, Policy and Management University of California, Berkeley Professor Richard S. Dodd, Chair This study was undertaken to identify population structure in the three rockfish species of the subgenus Rosicola through genetic analysis of six microsatelite loci applied to individuals sampled from 13 locations across the range of each species from Vancouver, British Columbia and San Martin Island, Mexico. Sampling each species throughout their respective ranges allowed for a more comprehensive and conclusive analysis of structure to inform proper stratification of stock assessments, catch tracking and management of these stocks. In addition, modeling potential evolutionary scenarios and testing for evolutionary processes shaping the current population structure were undertaken to better understand factors contributing to population structure and speciation in the subgenus. Results of this study were compared to previous research on members of this and other subgenera within the genus Sebastes to identify concordance in the phylogeography of subgenera or consistent processes between species indicative of common mechanisms contributing to genetic variation. Patterns observed were used to infer prioritization of future testing for population structure in the genus Sebastes and research to determine whether they are predictive. No significant population structure was identified in the canary rockfish S. pinniger (Gill 1864) or the sunset rockfish S. crocotulus (Hyde et al. 2008). Three genetically distinct genetic clusters indicative of separate populations were identified in the vermilion rockfish S. miniatus (Jordan and Gilbert 1880) and population structure correlated with latitude and depth. While populations were found to overlap in their distribution to some extent, population structure was consistent with the boundary between the San Diegan and Oregonian biogeographic provinces near Point Conception, California. Additional population structure in the Southern California Bight south of Point Conception was correlated with adult depth distribution with a break around 60 m (30 fathoms (fm)). Assignment tests indicated that the young of year of each population as well as S. miniatus co-occur and reside in kelp forests before making ontogenetic migration to deeper depths with age. The deepest distributed of these clusters commonly occurs in depths of up to 100 m (50 fm), beyond which S. crocotulus was the most common species 1 (Hyde et al. 2007). This population structure related to depth poses issues for stratification of historical data used in stock assessment and allocation of catch to each population as identifying characteristics have not been identified and management is already confounded by the presence of the recently identified cryptic species S. crocotulus. Previous studies hypothesized that speciation between S. crocotulus and S. miniatus was the result of paedomorphsis in the form of concatenated migration to deeper depth isolating populations by depth arising from the greater area of nearshore habitat around the channel islands during early Pliocene glaciations when sea level falls as much as 300 ft. around 2.3 MYA (Hyde et al. 2008). Tests were conducted for repetition of such a pattern in forming population structure observed in S. miniatus. Timing of divergence in S. miniatus populations identified using assignment tests was estimated to be in the late Pleistocene only 102,429 (95% CI: 22,884 – 248,933) thousand years ago between clusters 1 and 2 and 255,141 (95% CI: 80,080 - 592,847) thousand years ago for their common ancestor and cluster 3. This is consistent with timing of glaciations, but results indicate northward expansion of a population, which may have occurred during an interglacial period. Our analyses indicate that mutation contributes significantly to population structure between species in the subgenus, but does not contribute to population structure in S. miniatus indicating that it is due to more recent drift or selection alone. Population structure in S. miniatus consistent with northward migration of S. miniatus with lower genetic diversity indicative of a founder effect and private alleles accumulated in the time since divergence. No signal of bottleneck was present in any of the species or populations, though a model reflecting a reduction in population size in the northern population was found to have a high likelihood and posterior probability in Approximate Bayesian Computation analysis of potential evolutionary scenarios. It is possible that reductions in population size occurred too many generations ago to be detected using methods based on relationships between number of alleles and heterozygosity, given expansion of the population since its initial isolation. The results of modeling evolutionary processes indicated potential for gene flow between the northern population and deeper southern population potentially resulting in the shallow southern population. This may be the result of shared alleles from incomplete lineage sorting rather than admixture, or admixture occurred in the distant past as little evidence hybridization was observed in tests for individuals of hybrid classes. The southern shallow population had higher genetic diversity indicating that it may be an older stable population, in potential glacial refugia to the south. These results are also consistent with the possibility that population structure in S. miniatus as the result of northward expansion during the interglacial period. Though the presence of a distinct deeper population in the southern California bight is consistent with paedomorphosis posed as the mechanism resulting in divergence between S. miniatus and S. crocotulus in Hyde et al. (2008), the processes leading to the division of adults on the basis of depth is still uncertain between the shallower and deeper southern population. We postulated that migration or shifts in abundance over time to 2 glacial refugia in the south during glaciations may be associated with shifts to deeper depths to align with lower temperatures experienced at higher latitudes during the interglacial. Adults of each population would be potentially isolated from the shallower distributed progenitor taking advantage of ample nearshore habitat in the Southern California Bight during glaciations (Jacobs et al. 2007, Hyde et al. 2008). Having shifted abundance to the south and taken on adaptations to deeper depths, the now more deeply distributed population may remain isolated from the southerly shallow populations. While concordance was imperfect, analogous structure in other Subgenera within the Sebastes including the Sebastosomas (Burford and Bernardi 2008), Pteropodus (Li et al. 2006) and Sebastomus (Rocha-Oliveras et al. 1999) that reflect population structure north and south of Point Conception as well as cryptic population structure with depth in cowcod (Hess et al. 2014), which we observed in the Rosicola. In other subgenera, differentiation is commonly accompanied by color variation and many of the sister species with similar indices of differentiation to populations identified in S. miniatus are identified as separate species due to their disparate coloration. This may in part be the result of sexual selection facilitated by internal fertilization (Gunderson and Vetter 2006). Commonalities provide guidance on prioritizing future research to focus on species with distributions bridging Point Conception and a broad range of depth distributions. In addition, species with variable coloration should be considered for analysis as the line between species may be blurry but somewhat visible to the eye, needing only be confirmed by genetic analysis that can detect differentiation that in this case was indicative of a relatively recently diverged sister species (Frable et al. 2015, Narum et al. 2004). Nearshore species that release their larvae in the “sticky water” closer to shore that is slower moving due to turbulence and shear forces slowing its movement in the prevailing currents (Gunderson
Recommended publications
  • Common Fishes of California
    COMMON FISHES OF CALIFORNIA Updated July 2016 Blue Rockfish - SMYS Sebastes mystinus 2-4 bands around front of head; blue to black body, dark fins; anal fin slanted Size: 8-18in; Depth: 0-200’+ Common from Baja north to Canada North of Conception mixes with mostly with Olive and Black R.F.; South with Blacksmith, Kelp Bass, Halfmoons and Olives. Black Rockfish - SMEL Sebastes melanops Blue to blue-back with black dots on their dorsal fins; anal fin rounded Size: 8-18 in; Depth: 8-1200’ Common north of Point Conception Smaller eyes and a bit more oval than Blues Olive/Yellowtail Rockfish – OYT Sebastes serranoides/ flavidus Several pale spots below dorsal fins; fins greenish brown to yellow fins Size: 10-20in; Depth: 10-400’+ Midwater fish common south of Point Conception to Baja; rare north of Conception Yellowtail R.F. is a similar species are rare south of Conception, while being common north Black & Yellow Rockfish - SCHR Sebastes chrysomelas Yellow blotches of black/olive brown body;Yellow membrane between third and fourth dorsal fin spines Size: 6-12in; Depth: 0-150’ Common central to southern California Inhabits rocky areas/crevices Gopher Rockfish - SCAR Sebastes carnatus Several small white blotches on back; Pale blotch extends from dorsal spine onto back Size: 6-12 in; Depth: 8-180’ Common central California Inhabits rocky areas/crevice. Territorial Copper Rockfish - SCAU Sebastes caurinus Wide, light stripe runs along rear half on lateral line Size:: 10-16in; Depth: 10-600’ Inhabits rocky reefs, kelpbeds,
    [Show full text]
  • A Checklist of the Fishes of the Monterey Bay Area Including Elkhorn Slough, the San Lorenzo, Pajaro and Salinas Rivers
    f3/oC-4'( Contributions from the Moss Landing Marine Laboratories No. 26 Technical Publication 72-2 CASUC-MLML-TP-72-02 A CHECKLIST OF THE FISHES OF THE MONTEREY BAY AREA INCLUDING ELKHORN SLOUGH, THE SAN LORENZO, PAJARO AND SALINAS RIVERS by Gary E. Kukowski Sea Grant Research Assistant June 1972 LIBRARY Moss L8ndillg ,\:Jrine Laboratories r. O. Box 223 Moss Landing, Calif. 95039 This study was supported by National Sea Grant Program National Oceanic and Atmospheric Administration United States Department of Commerce - Grant No. 2-35137 to Moss Landing Marine Laboratories of the California State University at Fresno, Hayward, Sacramento, San Francisco, and San Jose Dr. Robert E. Arnal, Coordinator , ·./ "':., - 'I." ~:. 1"-"'00 ~~ ~~ IAbm>~toriesi Technical Publication 72-2: A GI-lliGKL.TST OF THE FISHES OF TtlE MONTEREY my Jl.REA INCLUDING mmORH SLOUGH, THE SAN LCRENZO, PAY-ARO AND SALINAS RIVERS .. 1&let~: Page 14 - A1estria§.·~iligtro1ophua - Stone cockscomb - r-m Page 17 - J:,iparis'W10pus." Ribbon' snailt'ish - HE , ,~ ~Ei 31 - AlectrlQ~iu.e,ctro1OphUfi- 87-B9 . .', . ': ". .' Page 31 - Ceb1diehtlrrs rlolaCewi - 89 , Page 35 - Liparis t!01:f-.e - 89 .Qhange: Page 11 - FmWulns parvipin¢.rl, add: Probable misidentification Page 20 - .BathopWuBt.lemin&, change to: .Mhgghilu§. llemipg+ Page 54 - Ji\mdJ11ui~~ add: Probable. misidentifioation Page 60 - Item. number 67, authOr should be .Hubbs, Clark TABLE OF CONTENTS INTRODUCTION 1 AREA OF COVERAGE 1 METHODS OF LITERATURE SEARCH 2 EXPLANATION OF CHECKLIST 2 ACKNOWLEDGEMENTS 4 TABLE 1
    [Show full text]
  • Multiscale Habitat Suitability Modeling for Canary Rockfish
    MULTISCALE HABITAT SUITABILITY MODELING FOR CANARY ROCKFISH (SEBASTES PINNIGER) ALONG THE NORTHERN CALIFORNIA COAST By Portia Naomi Saucedo A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Natural Resources: Environmental and Natural Resource Sciences Committee Membership Dr. Jim Graham, Committee Chair Dr. Brian Tissot, Committee Member Dr. Joe Tyburczy, Committee Member Dr. Alison Purcell O’Dowd, Graduate Coordinator July 2017 ABSTRACT MULTISCALE HABITAT SUITABILITY MODELING FOR CANARY ROCKFISH (SEBASTES PINNIGER) ALONG THE NORTHERN CALIFORNIA COAST Portia N. Saucedo Detailed spatially-explicit data of the potential habitat of commercially important rockfish species are a critical component for the purposes of marine conservation, evaluation, and planning. Predictive habitat modeling techniques are widely used to identify suitable habitat in un-surveyed regions. This study elucidates the predicted distribution of canary rockfish (Sebastes pinniger) along the largely un-surveyed northern California coast using data from visual underwater surveys and predictive terrain complexity covariates. I used Maximum Entropy (MaxEnt) modelling software to identify regions of suitable habitat for S. pinniger greater than nine cm in total length at two spatial scales. The results of this study indicate the most important environmental covariate was proximity to the interface between hard and soft substrate. I also examined the predicted probability of presence for each model run. MaxEnt spatial predictions varied in predicted probability for broad-scale and each of the fine-scale regions. Uncertainty in predictions was considered at several levels and spatial uncertainty was quantified and mapped. The predictive modeling efforts allowed spatial predictions outside the sampled area at both the broad- and fine-scales accessed.
    [Show full text]
  • Guide to the Coastal Marine Fishes of California
    STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF FISH AND GAME FISH BULLETIN 157 GUIDE TO THE COASTAL MARINE FISHES OF CALIFORNIA by DANIEL J. MILLER and ROBERT N. LEA Marine Resources Region 1972 ABSTRACT This is a comprehensive identification guide encompassing all shallow marine fishes within California waters. Geographic range limits, maximum size, depth range, a brief color description, and some meristic counts including, if available: fin ray counts, lateral line pores, lateral line scales, gill rakers, and vertebrae are given. Body proportions and shapes are used in the keys and a state- ment concerning the rarity or commonness in California is given for each species. In all, 554 species are described. Three of these have not been re- corded or confirmed as occurring in California waters but are included since they are apt to appear. The remainder have been recorded as occurring in an area between the Mexican and Oregon borders and offshore to at least 50 miles. Five of California species as yet have not been named or described, and ichthyologists studying these new forms have given information on identification to enable inclusion here. A dichotomous key to 144 families includes an outline figure of a repre- sentative for all but two families. Keys are presented for all larger families, and diagnostic features are pointed out on most of the figures. Illustrations are presented for all but eight species. Of the 554 species, 439 are found primarily in depths less than 400 ft., 48 are meso- or bathypelagic species, and 67 are deepwater bottom dwelling forms rarely taken in less than 400 ft.
    [Show full text]
  • Fishes-Of-The-Salish-Sea-Pp18.Pdf
    NOAA Professional Paper NMFS 18 Fishes of the Salish Sea: a compilation and distributional analysis Theodore W. Pietsch James W. Orr September 2015 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce Papers NMFS National Oceanic and Atmospheric Administration Kathryn D. Sullivan Scientifi c Editor Administrator Richard Langton National Marine Fisheries Service National Marine Northeast Fisheries Science Center Fisheries Service Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Offi ce of Science and Technology Fisheries Research and Monitoring Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientifi c Publications Offi ce 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service - The NOAA Professional Paper NMFS (ISSN 1931-4590) series is published by the Scientifi c Publications Offi ce, National Marine Fisheries Service, The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original NOAA, 7600 Sand Point Way NE, research reports, taxonomic keys, species synopses, fl ora and fauna studies, and data- Seattle, WA 98115. intensive reports on investigations in fi shery science, engineering, and economics. The Secretary of Commerce has Copies of the NOAA Professional Paper NMFS series are available free in limited determined that the publication of numbers to government agencies, both federal and state. They are also available in this series is necessary in the transac- exchange for other scientifi c and technical publications in the marine sciences.
    [Show full text]
  • Guide to Rockfishes (Scorpaenidae) of the Genera Sebastes, Sebastolobus, and Adelosebastes of the Northeast Pacific Ocean, Second Edition
    NOAA Technical Memorandum NMFS-AFSC-117 Guide to Rockfishes (Scorpaenidae) of the Genera Sebastes, Sebastolobus, and Adelosebastes of the Northeast Pacific Ocean, Second Edition by James Wilder Orr, Michael A. Brown, and David C. Baker U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center August 2000 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The new NMFS-NWFSC series will be used by the Northwest Fisheries Science Center. This document should be cited as follows: Orr, J. W., M. A. Brown, and D. C. Baker. 2000. Guide to rockfishes (Scorpaenidae) of the genera Sebastes, Sebastolobus, and Adelosebastes of the Northeast Pacific Ocean, second edition. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-117, 47 p. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-117 Guide to Rockfishes (Scorpaenidae) of the Genera Sebastes, Sebastolobus, and Adelosebastes of the Northeast Pacific Ocean, Second Edition by J. W. Orr,1 M. A. Brown, 2 and D. C. Baker 2 1 Resource Assessment and Conservation Engineering Division Alaska Fisheries Science Center 7600 Sand Point Way N.E.
    [Show full text]
  • Genetic and Morphological Identification of Pelagic Juvenile
    NOAA Professional Paper NMFS 9 U.S. Department of Commerce December 2007 Genetic and morphological identification of pelagic juvenile rockfish collected from the Gulf of Alaska Arthur W. Kendall Jr. Christine Kondzela Zhuozhuo Li David Clausen Anthony J. Gharrett U.S. Department of Commerce NOAA Professional Carlos M. Gutierrez Secretary National Oceanic Papers NMFS and Atmospheric Administration Vice Admiral Scientific Editor Conrad C. Lautenbacher Jr., Dr. Adam Moles USN (ret.) Under Secretary for Associate Editor Oceans and Atmosphere Elizabeth Calvert National Marine Fisheries Service, NOAA National Marine 17109 Point Lena Loop Road Fisheries Service Juneau, Alaska 99801-8626 James W. Balsiger Acting Assistant Administrator for Fisheries Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Dr. Ann C. Matarese National Marine Fisheries Service Dr. James W. Orr National Marine Fisheries Service Dr. Bruce L. Wing National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is published by the Scientific Publications Office, National Marine Fisheries Service, The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original NOAA, 7600 Sand Point Way NE, research reports, taxonomic keys, species synopses, flora and fauna studies, and data-in- Seattle, WA 98115. tensive reports on investigations in fishery science, engineering, and economics. Copies The Secretary of Commerce has of the NOAA Professional Paper NMFS series are available free in limited numbers to determined that the publication of government agencies, both federal and state. They are also available in exchange for this series is necessary in the transac- tion of the public business required by other scientific and technical publications in the marine sciences.
    [Show full text]
  • ASFIS ISSCAAP Fish List February 2007 Sorted on Scientific Name
    ASFIS ISSCAAP Fish List Sorted on Scientific Name February 2007 Scientific name English Name French name Spanish Name Code Abalistes stellaris (Bloch & Schneider 1801) Starry triggerfish AJS Abbottina rivularis (Basilewsky 1855) Chinese false gudgeon ABB Ablabys binotatus (Peters 1855) Redskinfish ABW Ablennes hians (Valenciennes 1846) Flat needlefish Orphie plate Agujón sable BAF Aborichthys elongatus Hora 1921 ABE Abralia andamanika Goodrich 1898 BLK Abralia veranyi (Rüppell 1844) Verany's enope squid Encornet de Verany Enoploluria de Verany BLJ Abraliopsis pfefferi (Verany 1837) Pfeffer's enope squid Encornet de Pfeffer Enoploluria de Pfeffer BJF Abramis brama (Linnaeus 1758) Freshwater bream Brème d'eau douce Brema común FBM Abramis spp Freshwater breams nei Brèmes d'eau douce nca Bremas nep FBR Abramites eques (Steindachner 1878) ABQ Abudefduf luridus (Cuvier 1830) Canary damsel AUU Abudefduf saxatilis (Linnaeus 1758) Sergeant-major ABU Abyssobrotula galatheae Nielsen 1977 OAG Abyssocottus elochini Taliev 1955 AEZ Abythites lepidogenys (Smith & Radcliffe 1913) AHD Acanella spp Branched bamboo coral KQL Acanthacaris caeca (A. Milne Edwards 1881) Atlantic deep-sea lobster Langoustine arganelle Cigala de fondo NTK Acanthacaris tenuimana Bate 1888 Prickly deep-sea lobster Langoustine spinuleuse Cigala raspa NHI Acanthalburnus microlepis (De Filippi 1861) Blackbrow bleak AHL Acanthaphritis barbata (Okamura & Kishida 1963) NHT Acantharchus pomotis (Baird 1855) Mud sunfish AKP Acanthaxius caespitosa (Squires 1979) Deepwater mud lobster Langouste
    [Show full text]
  • Status of Vermilion Rockfish (Sebastes Miniatus) Along the US West - Washington State Coast in 2021
    Agenda Item C.6 Attachment 7 September 2021 Status of Vermilion rockfish Sebastes( miniatus) along the US West - Washington State coast in 2021 by Jason M. Cope1 Tien-Shui Tsou2 Kristen Hinton2 Corey Niles2 1Northwest Fisheries Science Center, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 2725 Montlake Boulevard East, Seattle, Washington 98112 2Washington Department of Fish and Wildlife, 600 Capital Way North, Olympia, Washington 98501 August 2021 © Pacific Fishery Management Council, 2021 Correct citation for this publication: Cope, J.M., T.-. Tsou, K. Hinton, C. Niles. 2021. Status of Vermilion rockfish (Sebastes miniatus) along the US West - Washington State coast in 2021. Pacific Fishery Management Council, Portland, Oregon. 99 p. Contents Disclaimer 1 Executive Summary i Stock ........................................... i Landings . i Data and Assessment . iii Stock Biomass . iii Recruitment . vi Exploitation Status . viii Ecosystem Considerations . x Reference Points . x Management Performance . xiii Unresolved Problems and Major Uncertainties . xiii Scientific Uncertainty . xiv Harvest Projections and Decision Table . xiv Research and Data Needs . xviii 1 Introduction 1 1.1 Basic Information . 1 1.2 Life History . 1 1.3 Ecosystem Considerations . 2 1.4 Historical and Current Fishery Information . 3 1.5 Summary of Management History and Performance . 4 2 Data and Model Inputs 4 2.1 Fishery-Dependent Data . 4 2.1.1 Recreational . 4 2.2 Fishery-Independent Data . 6 2.2.1 Washington Nearshore Survey . 6 2.3 Biological Parameters . 6 2.3.1 Growth (Length-at-Age) . 6 2.3.2 Ageing Precision and Bias . 6 2.3.3 Natural Mortality . 7 2021 iii 2.3.4 Maturation and Fecundity .
    [Show full text]
  • Miscellaneous Demersal Fishes
    203 Miscellaneous demersal fishes Capture production by species, fishing areas and countries or areas B-34 Poissons démersaux divers Captures par espèces, zones de pêche et pays ou zones Peces demersales diversos Capturas por especies, áreas de pesca y países o áreas Species, Fishing area Espèce, Zone de pêche 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Especie, Área de pesca t t t t t t t t t t Greater argentine Grande argentine ...C Argentina silus 1,23(05)015,03 ARU 27 Germany 30 - - 538 417 1 223 1 066 306 584 1 068 Netherlands ... 2 903 1 562 1 785 1 430 4 267 2 119 2 501 3 438 2 913 Norway 864 664 217 32 258 190 60 146 10 1 27 Fishing area total 894 3 567 1 779 2 355 2 105 5 680 3 245 2 953 4 032 3 982 Species total 894 3 567 1 779 2 355 2 105 5 680 3 245 2 953 4 032 3 982 Argentine Petite argentine Pez plata Argentina sphyraena 1,23(05)015,04 ARY 27 Germany 85 - - 1 143 309 172 1 035 763 790 243 Netherlands 698 248 787 1 662 ... 2 - 1 872 0 Norway 784 671 361 327 996 2 520 3 180 5 830 5 370 7 787 27 Fishing area total 1 567 919 1 148 3 132 1 305 2 694 4 215 6 594 7 032 8 030 Species total 1 567 919 1 148 3 132 1 305 2 694 4 215 6 594 7 032 8 030 Argentines Argentines Argentinas Argentina spp 1,23(05)015,XX ARG 21 Canada 0 2 - - - - - - 2 ..
    [Show full text]
  • Gallineta Y Merluza De Cola
    Proyecto de Estudio de mercado de especies con posibilidades de expansión en caladeros y mercados: gallineta y merluza de cola 2 Edición: Organización de Productores de Buques Congeladores de Merlúcidos, Cefalópodos y Especies Varias – OPPC-3 – Elaboración: SINERXIA Plus Consultora S.L. Antía Lourido Rocío Rolle Belén Váquez Impresión: Nino Centro de Impresión Digital Vigo, diciembre de 2017 ÍNDICE Pág. 3 INTRODUCCIÓN 04 ESTUDIO DEL CONSUMIDOR 07 . Investigación cuantitativa: encuesta 08 . Comportamiento de los/as consumidores/as 26 . Método delphi: expertos/as 38 . Investigación cualitativa: grupos de discusión 62 ESTUDIO DE LA COMPETENCIA 77 . Productos alternativos 78 . Análisis de las especies competencia 102 . Benchmarking 129 ESTUDIO DE CANAL Y FORMAS DE DISTRIBUCIÓN 144 . Análisis de canales de distribución y venta 145 . Test de producto(s) 164 ESTRATEGIA DE INTRODUCCIÓN 182 . Definición de estrategia 183 . Selección de técnicas de venta 198 4 INTRODUCCIÓN INTRODUCCIÓN 5 La OPPC-3 (Organización de Productores de Buques Congeladores de Merlúcidos, Cefalópodos y Especies Varias ) ha manifestado su interés en la realización y desarrollo del Proyecto de Estudio de mercado de especies con posibilidades de expansión en caladeros y mercados: gallineta y merluza de cola. La finalidad de este Proyecto es realizar un análisis profundo del conocimiento, la percepción y la actitud de los y las responsables de las compras del hogar en relación a las dos especies de pescado mencionadas y objeto del presente estudio. A través del diseño y uso de diferentes técnicas de investigación cuantitativa y cualitativa, desde SINERXIA Plus Consultora se ha indagado en las valoraciones y motivaciones que manifiestan las personas responsables de la introducción de un producto alimentario en los hogares españoles, es decir las que son responsables de la compra y las tareas del hogar y por lo tanto las facilitadoras de que el consumo de pescado congelado aumente entre los miembros del hogar.
    [Show full text]
  • Are the Subgenera of Sebastes Monophyletic? Z
    Biology, Assessment, and Management of North Pacific Rockfishes 185 Alaska Sea Grant College Program • AK-SG-07-01, 2007 Are the Subgenera of Sebastes Monophyletic? Z. Li and A.K. Gray1 University of Alaska Fairbanks, School of Fisheries and Ocean Sciences, Fisheries Division, Juneau, Alaska M.S. Love University of California, Marine Science Institute, Santa Barbara, California A. Goto Hokkaido University, Graduate School of Fisheries Sciences, Hokkaido, Japan A.J. Gharrett University of Alaska Fairbanks, School of Fisheries and Ocean Sciences, Fisheries Division, Juneau, Alaska Abstract We examined genetic relationships among Sebastes rockfishes to evalu- ate the subgeneric relationships within Sebastes. We analyzed restric- tion site variation (12S and 16S rRNA and NADH dehydrogenase-3 and -4 genes) by using parsimony and distance analyses. Seventy-one Sebastes species representing 16 subgenera were included. Thirteen subgenera were represented by more than one species, and three subgenera were monotypic. We also evaluated three currently unassigned species. The only monophyletic subgenus was Sebastomus, although some consistent groups were formed by species from different subgenera. The north- eastern Pacific species of Pteropodus clustered with one northeastern Pacific species of the subgenus Mebarus (S. atrovirens) and two north- eastern Pacific species of the subgenusAuctospina (S. auriculatus and S. dalli) forming a monophyletic group distinct from northwestern Pacific 1Present address: National Marine Fisheries Service, Auke Bay Laboratory, 11305 Glacier Highway, Juneau, Alaska 99801 186 Li et al.—Are the Subgenera of Sebastes Monophyletic? Pteropodus species. The subgenera Acutomentum and Allosebastes were polyphyletic, although subsets of each were monophyletic. Sebastes polyspinis and S. reedi, which have not yet been assigned to subgen- era, are closely related to two other northern species, S.
    [Show full text]