Gallineta Y Merluza De Cola
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FISH LIST WISH LIST: a Case for Updating the Canadian Government’S Guidance for Common Names on Seafood
FISH LIST WISH LIST: A case for updating the Canadian government’s guidance for common names on seafood Authors: Christina Callegari, Scott Wallace, Sarah Foster and Liane Arness ISBN: 978-1-988424-60-6 © SeaChoice November 2020 TABLE OF CONTENTS GLOSSARY . 3 EXECUTIVE SUMMARY . 4 Findings . 5 Recommendations . 6 INTRODUCTION . 7 APPROACH . 8 Identification of Canadian-caught species . 9 Data processing . 9 REPORT STRUCTURE . 10 SECTION A: COMMON AND OVERLAPPING NAMES . 10 Introduction . 10 Methodology . 10 Results . 11 Snapper/rockfish/Pacific snapper/rosefish/redfish . 12 Sole/flounder . 14 Shrimp/prawn . 15 Shark/dogfish . 15 Why it matters . 15 Recommendations . 16 SECTION B: CANADIAN-CAUGHT SPECIES OF HIGHEST CONCERN . 17 Introduction . 17 Methodology . 18 Results . 20 Commonly mislabelled species . 20 Species with sustainability concerns . 21 Species linked to human health concerns . 23 Species listed under the U .S . Seafood Import Monitoring Program . 25 Combined impact assessment . 26 Why it matters . 28 Recommendations . 28 SECTION C: MISSING SPECIES, MISSING ENGLISH AND FRENCH COMMON NAMES AND GENUS-LEVEL ENTRIES . 31 Introduction . 31 Missing species and outdated scientific names . 31 Scientific names without English or French CFIA common names . 32 Genus-level entries . 33 Why it matters . 34 Recommendations . 34 CONCLUSION . 35 REFERENCES . 36 APPENDIX . 39 Appendix A . 39 Appendix B . 39 FISH LIST WISH LIST: A case for updating the Canadian government’s guidance for common names on seafood 2 GLOSSARY The terms below are defined to aid in comprehension of this report. Common name — Although species are given a standard Scientific name — The taxonomic (Latin) name for a species. common name that is readily used by the scientific In nomenclature, every scientific name consists of two parts, community, industry has adopted other widely used names the genus and the specific epithet, which is used to identify for species sold in the marketplace. -
Rockfish (Sebastes) That Are Evolutionarily Isolated Are Also
Biological Conservation 142 (2009) 1787–1796 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Rockfish (Sebastes) that are evolutionarily isolated are also large, morphologically distinctive and vulnerable to overfishing Karen Magnuson-Ford a,b, Travis Ingram c, David W. Redding a,b, Arne Ø. Mooers a,b,* a Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby BC, Canada V5A 1S6 b IRMACS, Simon Fraser University, 8888 University Drive, Burnaby BC, Canada V5A 1S6 c Department of Zoology and Biodiversity Research Centre, University of British Columbia, #2370-6270 University Blvd., Vancouver, Canada V6T 1Z4 article info abstract Article history: In an age of triage, we must prioritize species for conservation effort. Species more isolated on the tree of Received 23 September 2008 life are candidates for increased attention. The rockfish genus Sebastes is speciose (>100 spp.), morpho- Received in revised form 10 March 2009 logically and ecologically diverse and many species are heavily fished. We used a complete Sebastes phy- Accepted 18 March 2009 logeny to calculate a measure of evolutionary isolation for each species and compared this to their Available online 22 April 2009 morphology and imperilment. We found that evolutionarily isolated species in the northeast Pacific are both larger-bodied and, independent of body size, morphologically more distinctive. We examined Keywords: extinction risk within rockfish using a compound measure of each species’ intrinsic vulnerability to Phylogenetic diversity overfishing and categorizing species as commercially fished or not. Evolutionarily isolated species in Extinction risk Conservation priorities the northeast Pacific are more likely to be fished, and, due to their larger sizes and to life history traits Body size such as long lifespan and slow maturation rate, they are also intrinsically more vulnerable to overfishing. -
Fish Bulletin 161. California Marine Fish Landings for 1972 and Designated Common Names of Certain Marine Organisms of California
UC San Diego Fish Bulletin Title Fish Bulletin 161. California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California Permalink https://escholarship.org/uc/item/93g734v0 Authors Pinkas, Leo Gates, Doyle E Frey, Herbert W Publication Date 1974 eScholarship.org Powered by the California Digital Library University of California STATE OF CALIFORNIA THE RESOURCES AGENCY OF CALIFORNIA DEPARTMENT OF FISH AND GAME FISH BULLETIN 161 California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California By Leo Pinkas Marine Resources Region and By Doyle E. Gates and Herbert W. Frey > Marine Resources Region 1974 1 Figure 1. Geographical areas used to summarize California Fisheries statistics. 2 3 1. CALIFORNIA MARINE FISH LANDINGS FOR 1972 LEO PINKAS Marine Resources Region 1.1. INTRODUCTION The protection, propagation, and wise utilization of California's living marine resources (established as common property by statute, Section 1600, Fish and Game Code) is dependent upon the welding of biological, environment- al, economic, and sociological factors. Fundamental to each of these factors, as well as the entire management pro- cess, are harvest records. The California Department of Fish and Game began gathering commercial fisheries land- ing data in 1916. Commercial fish catches were first published in 1929 for the years 1926 and 1927. This report, the 32nd in the landing series, is for the calendar year 1972. It summarizes commercial fishing activities in marine as well as fresh waters and includes the catches of the sportfishing partyboat fleet. Preliminary landing data are published annually in the circular series which also enumerates certain fishery products produced from the catch. -
Common Fishes of California
COMMON FISHES OF CALIFORNIA Updated July 2016 Blue Rockfish - SMYS Sebastes mystinus 2-4 bands around front of head; blue to black body, dark fins; anal fin slanted Size: 8-18in; Depth: 0-200’+ Common from Baja north to Canada North of Conception mixes with mostly with Olive and Black R.F.; South with Blacksmith, Kelp Bass, Halfmoons and Olives. Black Rockfish - SMEL Sebastes melanops Blue to blue-back with black dots on their dorsal fins; anal fin rounded Size: 8-18 in; Depth: 8-1200’ Common north of Point Conception Smaller eyes and a bit more oval than Blues Olive/Yellowtail Rockfish – OYT Sebastes serranoides/ flavidus Several pale spots below dorsal fins; fins greenish brown to yellow fins Size: 10-20in; Depth: 10-400’+ Midwater fish common south of Point Conception to Baja; rare north of Conception Yellowtail R.F. is a similar species are rare south of Conception, while being common north Black & Yellow Rockfish - SCHR Sebastes chrysomelas Yellow blotches of black/olive brown body;Yellow membrane between third and fourth dorsal fin spines Size: 6-12in; Depth: 0-150’ Common central to southern California Inhabits rocky areas/crevices Gopher Rockfish - SCAR Sebastes carnatus Several small white blotches on back; Pale blotch extends from dorsal spine onto back Size: 6-12 in; Depth: 8-180’ Common central California Inhabits rocky areas/crevice. Territorial Copper Rockfish - SCAU Sebastes caurinus Wide, light stripe runs along rear half on lateral line Size:: 10-16in; Depth: 10-600’ Inhabits rocky reefs, kelpbeds, -
A Checklist of the Fishes of the Monterey Bay Area Including Elkhorn Slough, the San Lorenzo, Pajaro and Salinas Rivers
f3/oC-4'( Contributions from the Moss Landing Marine Laboratories No. 26 Technical Publication 72-2 CASUC-MLML-TP-72-02 A CHECKLIST OF THE FISHES OF THE MONTEREY BAY AREA INCLUDING ELKHORN SLOUGH, THE SAN LORENZO, PAJARO AND SALINAS RIVERS by Gary E. Kukowski Sea Grant Research Assistant June 1972 LIBRARY Moss L8ndillg ,\:Jrine Laboratories r. O. Box 223 Moss Landing, Calif. 95039 This study was supported by National Sea Grant Program National Oceanic and Atmospheric Administration United States Department of Commerce - Grant No. 2-35137 to Moss Landing Marine Laboratories of the California State University at Fresno, Hayward, Sacramento, San Francisco, and San Jose Dr. Robert E. Arnal, Coordinator , ·./ "':., - 'I." ~:. 1"-"'00 ~~ ~~ IAbm>~toriesi Technical Publication 72-2: A GI-lliGKL.TST OF THE FISHES OF TtlE MONTEREY my Jl.REA INCLUDING mmORH SLOUGH, THE SAN LCRENZO, PAY-ARO AND SALINAS RIVERS .. 1&let~: Page 14 - A1estria§.·~iligtro1ophua - Stone cockscomb - r-m Page 17 - J:,iparis'W10pus." Ribbon' snailt'ish - HE , ,~ ~Ei 31 - AlectrlQ~iu.e,ctro1OphUfi- 87-B9 . .', . ': ". .' Page 31 - Ceb1diehtlrrs rlolaCewi - 89 , Page 35 - Liparis t!01:f-.e - 89 .Qhange: Page 11 - FmWulns parvipin¢.rl, add: Probable misidentification Page 20 - .BathopWuBt.lemin&, change to: .Mhgghilu§. llemipg+ Page 54 - Ji\mdJ11ui~~ add: Probable. misidentifioation Page 60 - Item. number 67, authOr should be .Hubbs, Clark TABLE OF CONTENTS INTRODUCTION 1 AREA OF COVERAGE 1 METHODS OF LITERATURE SEARCH 2 EXPLANATION OF CHECKLIST 2 ACKNOWLEDGEMENTS 4 TABLE 1 -
UC Berkeley UC Berkeley Electronic Theses and Dissertations
UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Evolutionary Processes contributing to Population Structure in the Rockfishes of the Subgenus Rosicola: Implications for Fishery Management, Stock Assessment and Prioritization of Future Analyses of Structure in the Genus Sebastes. Permalink https://escholarship.org/uc/item/6034342s Author Budrick, John Edward Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Evolutionary Processes contributing to Population Structure in the Rockfishes of the Subgenus Rosicola: Implications for Fishery Management, Stock Assessment and Prioritization of Future Analyses of Structure in the Genus Sebastes. by John Edward Budrick A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy and Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Richard S. Dodd, Chair Professor George Roderick Professor Rauri C.K. Bowie Summer 2016 University of California ©Copyright by John Edward Budrick June 19, 1 2016 All Rights Reserved Abstract Evolutionary Processes contributing to Population Structure in the Rockfishes of the Subgenus Rosicola: Implications for Fishery Management, Stock Assessment and Prioritization of Future Analyses of Structure in the Genus Sebastes by John Edward Budrick Doctor of Philosophy in Environmental Science, Policy and Management University of California, Berkeley Professor Richard S. Dodd, Chair This study was undertaken to identify population structure in the three rockfish species of the subgenus Rosicola through genetic analysis of six microsatelite loci applied to individuals sampled from 13 locations across the range of each species from Vancouver, British Columbia and San Martin Island, Mexico. -
Multiscale Habitat Suitability Modeling for Canary Rockfish
MULTISCALE HABITAT SUITABILITY MODELING FOR CANARY ROCKFISH (SEBASTES PINNIGER) ALONG THE NORTHERN CALIFORNIA COAST By Portia Naomi Saucedo A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Natural Resources: Environmental and Natural Resource Sciences Committee Membership Dr. Jim Graham, Committee Chair Dr. Brian Tissot, Committee Member Dr. Joe Tyburczy, Committee Member Dr. Alison Purcell O’Dowd, Graduate Coordinator July 2017 ABSTRACT MULTISCALE HABITAT SUITABILITY MODELING FOR CANARY ROCKFISH (SEBASTES PINNIGER) ALONG THE NORTHERN CALIFORNIA COAST Portia N. Saucedo Detailed spatially-explicit data of the potential habitat of commercially important rockfish species are a critical component for the purposes of marine conservation, evaluation, and planning. Predictive habitat modeling techniques are widely used to identify suitable habitat in un-surveyed regions. This study elucidates the predicted distribution of canary rockfish (Sebastes pinniger) along the largely un-surveyed northern California coast using data from visual underwater surveys and predictive terrain complexity covariates. I used Maximum Entropy (MaxEnt) modelling software to identify regions of suitable habitat for S. pinniger greater than nine cm in total length at two spatial scales. The results of this study indicate the most important environmental covariate was proximity to the interface between hard and soft substrate. I also examined the predicted probability of presence for each model run. MaxEnt spatial predictions varied in predicted probability for broad-scale and each of the fine-scale regions. Uncertainty in predictions was considered at several levels and spatial uncertainty was quantified and mapped. The predictive modeling efforts allowed spatial predictions outside the sampled area at both the broad- and fine-scales accessed. -
Temporal and Spatial Management Tools for Marine Ecosystems: Case Studies from Northern Brazil and Northeastern United States
University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses October 2019 TEMPORAL AND SPATIAL MANAGEMENT TOOLS FOR MARINE ECOSYSTEMS: CASE STUDIES FROM NORTHERN BRAZIL AND NORTHEASTERN UNITED STATES Beatriz dos Santos Dias University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Aquaculture and Fisheries Commons, and the Marine Biology Commons Recommended Citation dos Santos Dias, Beatriz, "TEMPORAL AND SPATIAL MANAGEMENT TOOLS FOR MARINE ECOSYSTEMS: CASE STUDIES FROM NORTHERN BRAZIL AND NORTHEASTERN UNITED STATES" (2019). Doctoral Dissertations. 1714. https://doi.org/10.7275/15232062 https://scholarworks.umass.edu/dissertations_2/1714 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. TEMPORAL AND SPATIAL MANAGEMENT TOOLS FOR MARINE ECOSYSTEMS: CASE STUDIES FROM NORTHERN BRAZIL AND NORTHEASTERN UNITED STATES A Dissertation Presented by BEATRIZ DOS SANTOS DIAS Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment Of the requirement for the degree of DOCTOR OF PHILOSOPHY September 2019 Department of Environmental Conservation Wildlife, Fish, and Conservation Biology © Copyright by Beatriz dos Santos Dias 2019 All Rights Reserved TEMPORAL AND SPATIAL MANAGEMENT TOOLS FOR MARINE ECOSYSTEMS: CASE STUDIES FROM NORTHERN BRAZIL AND NORTHEASTERN UNITED STATES A Dissertation Presented By BEATRIZ DOS SANTOS DIAS Approved as to style and content by: ____________________________________________ Adrian Jordaan, Chair ____________________________________________ John T. Finn, Member ____________________________________________ Michael G. -
Guide to the Parasites of Fishes of Canada Part V: Nematoda
Wilfrid Laurier University Scholars Commons @ Laurier Biology Faculty Publications Biology 2016 ZOOTAXA: Guide to the Parasites of Fishes of Canada Part V: Nematoda Hisao P. Arai Pacific Biological Station John W. Smith Wilfrid Laurier University Follow this and additional works at: https://scholars.wlu.ca/biol_faculty Part of the Biology Commons, and the Marine Biology Commons Recommended Citation Arai, Hisao P., and John W. Smith. Zootaxa: Guide to the Parasites of Fishes of Canada Part V: Nematoda. Magnolia Press, 2016. This Book is brought to you for free and open access by the Biology at Scholars Commons @ Laurier. It has been accepted for inclusion in Biology Faculty Publications by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact [email protected]. Zootaxa 4185 (1): 001–274 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Monograph ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4185.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:0D054EDD-9CDC-4D16-A8B2-F1EBBDAD6E09 ZOOTAXA 4185 Guide to the Parasites of Fishes of Canada Part V: Nematoda HISAO P. ARAI3, 5 & JOHN W. SMITH4 3Pacific Biological Station, Nanaimo, British Columbia V9R 5K6 4Department of Biology, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5. E-mail: [email protected] 5Deceased Magnolia Press Auckland, New Zealand Accepted by K. DAVIES (Initially edited by M.D.B. BURT & D.F. McALPINE): 5 Apr. 2016; published: 8 Nov. 2016 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 HISAO P. ARAI & JOHN W. -
Guide to the Coastal Marine Fishes of California
STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF FISH AND GAME FISH BULLETIN 157 GUIDE TO THE COASTAL MARINE FISHES OF CALIFORNIA by DANIEL J. MILLER and ROBERT N. LEA Marine Resources Region 1972 ABSTRACT This is a comprehensive identification guide encompassing all shallow marine fishes within California waters. Geographic range limits, maximum size, depth range, a brief color description, and some meristic counts including, if available: fin ray counts, lateral line pores, lateral line scales, gill rakers, and vertebrae are given. Body proportions and shapes are used in the keys and a state- ment concerning the rarity or commonness in California is given for each species. In all, 554 species are described. Three of these have not been re- corded or confirmed as occurring in California waters but are included since they are apt to appear. The remainder have been recorded as occurring in an area between the Mexican and Oregon borders and offshore to at least 50 miles. Five of California species as yet have not been named or described, and ichthyologists studying these new forms have given information on identification to enable inclusion here. A dichotomous key to 144 families includes an outline figure of a repre- sentative for all but two families. Keys are presented for all larger families, and diagnostic features are pointed out on most of the figures. Illustrations are presented for all but eight species. Of the 554 species, 439 are found primarily in depths less than 400 ft., 48 are meso- or bathypelagic species, and 67 are deepwater bottom dwelling forms rarely taken in less than 400 ft. -
Localized Depletion of Three Alaska Rockfish Species Dana Hanselman NOAA Fisheries, Alaska Fisheries Science Center, Auke Bay Laboratory, Juneau, Alaska
Biology, Assessment, and Management of North Pacific Rockfishes 493 Alaska Sea Grant College Program • AK-SG-07-01, 2007 Localized Depletion of Three Alaska Rockfish Species Dana Hanselman NOAA Fisheries, Alaska Fisheries Science Center, Auke Bay Laboratory, Juneau, Alaska Paul Spencer NOAA Fisheries, Alaska Fisheries Science Center, Resource Ecology and Fisheries Management (REFM) Division, Seattle, Washington Kalei Shotwell NOAA Fisheries, Alaska Fisheries Science Center, Auke Bay Laboratory, Juneau, Alaska Rebecca Reuter NOAA Fisheries, Alaska Fisheries Science Center, REFM Division, Seattle, Washington Abstract The distributions of some rockfish species in Alaska are clustered. Their distribution and relatively sedentary movement patterns could make localized depletion of rockfish an ecological or conservation concern. Alaska rockfish have varying and little-known genetic stock structures. Rockfish fishing seasons are short and intense and usually confined to small areas. If allowable catches are set for large management areas, the genetic, age, and size structures of the population could change if the majority of catch is harvested from small concentrated areas. In this study, we analyzed data collected by the North Pacific Observer Program from 1991 to 2004 to assess localized depletion of Pacific ocean perch (Sebastes alutus), northern rockfish S.( polyspinis), and dusky rockfish (S. variabilis). The data were divided into blocks with areas of approxi- mately 10,000 km2 and 5,000 km2 of consistent, intense fishing. We used two different block sizes to consider the size for which localized deple- tion could be detected. For each year, the Leslie depletion estimator was used to determine whether catch-per-unit-effort (CPUE) values in each 494 Hanselman et al.—Three Alaska Rockfish Species block declined as a function of cumulative catch. -
U.S. Acadian Redfish, Pollock and Haddock Otter Trawl Fishery
MRAG-MSC-F13-v1.2 October 2020 8950 Martin Luther King Jr. Street N. #202 St. Petersburg, Florida 33702-2211 Tel: (727) 563-9070 Fax: (727) 563-0207 Email: [email protected] President: Andrew A. Rosenberg, Ph.D. U.S. Acadian Redfish, Pollock and Haddock Otter Trawl Fishery Announcement Comment Draft Report March 31st, 2021 Conformity Assessment Body (CAB) MRAG Americas, Inc. Amanda Stern-Pirlot (team leader), Erin Wilson, Giuseppe Scarcella, Blanka Assessment team Lederer Fishery client The Sustainable Groundfish Association, Inc. Assessment type Reassessment Date March 31st, 2020 1 MRAG Americas, Inc. US2749 US Acadian redfish, pollock and haddock fishery ACDR MRAG-MSC-F13-v1.2 October 2020 Document Control Record Document Draft Submitted By Date Reviewed By Date ACDR EW, ASP, GS, BL March 28, 2021 ASP March 30, 2021 2 MRAG Americas, Inc. US2749 US Acadian redfish, pollock and haddock fishery ACDR MRAG-MSC-F13-v1.2 October 2020 1 Contents 1 Contents .......................................................................................................... 3 2 Glossary .......................................................................................................... 5 3 Executive summary ......................................................................................... 7 4 Report details .................................................................................................. 8 4.1 Authorship and peer review details ......................................................................... 8 4.2 Version