ON the TRAIL of the CALIFORNIA PINE the Statements in Books
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Breeding Birds of Four Isolated Mountains in Southern California
WESTERN BIRDS Volume 24, Number 4, 1993 BREEDING BIRDS OF FOUR ISOLATED MOUNTAINS IN SOUTHERN CALIFORNIA JOAN EASTON LENTZ, 433 PimientoLn., Santa Barbara,California 93108 The breedingavifaunas of FigueroaMountain and Big PineMountain in SantaBarbara County and Pine Mountain and Mount Pinos in Venturaand Kern countiesare of great ornithologicalinterest. These four mountains supportislands of coniferousforest separated by otherhabitats at lower elevations. Little information on the birds of the first three has been publishedpreviously. From 1981 to 1993, I, withthe helpof a numberof observers,censused the summer residentbirds of these four mountains,paying particular attentionto the speciesrestricted to highelevations. By comparingthese avifaunaswith each other, as well as with those of the San Gabriel,San Bernardino,and San Jacinto mountains, and the southernSierra Nevada, I hopeto addto currentknowledge of thestatus and distribution of montane birds in southern California. VEGETATIO51AND GEOGRAPHY The patternof vegetationin the surveyareas is typicalof thatfound on manysouthern California mountains. Generally, the south- and west-facing slopesof the mountainsare coveredwith chaparralor pinyon-juniper woodlandalmost to the summits.On the north-facingslopes, however, coolertemperatures and more mesic conditions support coniferous forest, which often reaches far down the mountainsides. Because the climate is arid, few creeksor streamsflow at high elevations,and most water is availablein the form of seepsor smallsprings. BothFigueroa (4528 feet, 1380 m) andBig Pine (6828 feet,2081 m) mountainsare locatedin the San RafaelRange, the southernmostof the CoastRanges (Figure 1, Norrisand Webb 1990). The San RafaelMoun- tainsare borderedby the SierraMadre, a low chaparral-coveredrange, to the northand the CuyamaValley to the northeast.The SisquocRiver drains west from the San Rafael Mountains and Sierra Madre to the Santa Maria River.To the southlies the foothillgrassland of the SantaYnez Valley. -
Pinus Sabiniana) in Oregon Frank Callahan PO Box 5531, Central Point, OR 97502
Discovering Gray Pine (Pinus sabiniana) in Oregon Frank Callahan PO Box 5531, Central Point, OR 97502 “Th e tree is remarkable for its airy, widespread tropical appearance, which suggest a region of palms rather than cool pine woods. Th e sunbeams sift through even the leafi est trees with scarcely any interruption, and the weary, heated traveler fi nds little protection in their shade.” –John Muir (1894) ntil fairly recently, gray pine was believed to be restricted to UCalifornia, where John Muir encountered it. But the fi rst report of it in Oregon dates back to 1831, when David Douglas wrote to the Linnaean Society of his rediscovery of Pinus sabiniana in California. In his letter from San Juan Bautista, Douglas claimed to have collected this pine in 1826 in Oregon while looking for sugar pine (Pinus lambertiana) between the Columbia and Umpqua rivers (Griffin 1962). Unfortunately, Douglas lost most of his fi eld notes and specimens when his canoe overturned in the Santiam River (Harvey 1947). Lacking notes and specimens, he was reluctant to report his original discovery of the new pine in Oregon until he found it again in California (Griffin 1962). Despite the delay in reporting it, Douglas clearly indicated that he had seen this pine before he found it in California, and the Umpqua region has suitable habitat for gray pine. John Strong Newberry1 (1857), naturalist on the 1855 Pacifi c Railroad Survey, described an Oregon distribution for Pinus sabiniana: “It was found by our party in the valleys of the coast ranges as far north as Fort Lane in Oregon.” Fort Lane was on the eastern fl ank of Blackwell Hill (between Central Point and Gold Hill in Jackson County), so his description may also include the Th e lone gray pine at Tolo, near the old Fort Lane site, displays the characteristic architecture of multiple Applegate Valley. -
Stuart, Trees & Shrubs
Excerpted from ©2001 by the Regents of the University of California. All rights reserved. May not be copied or reused without express written permission of the publisher. click here to BUY THIS BOOK INTRODUCTION HOW THE BOOK IS ORGANIZED Conifers and broadleaved trees and shrubs are treated separately in this book. Each group has its own set of keys to genera and species, as well as plant descriptions. Plant descriptions are or- ganized alphabetically by genus and then by species. In a few cases, we have included separate subspecies or varieties. Gen- era in which we include more than one species have short generic descriptions and species keys. Detailed species descrip- tions follow the generic descriptions. A species description in- cludes growth habit, distinctive characteristics, habitat, range (including a map), and remarks. Most species descriptions have an illustration showing leaves and either cones, flowers, or fruits. Illustrations were drawn from fresh specimens with the intent of showing diagnostic characteristics. Plant rarity is based on rankings derived from the California Native Plant Society and federal and state lists (Skinner and Pavlik 1994). Two lists are presented in the appendixes. The first is a list of species grouped by distinctive morphological features. The second is a checklist of trees and shrubs indexed alphabetically by family, genus, species, and common name. CLASSIFICATION To classify is a natural human trait. It is our nature to place ob- jects into similar groups and to place those groups into a hier- 1 TABLE 1 CLASSIFICATION HIERARCHY OF A CONIFER AND A BROADLEAVED TREE Taxonomic rank Conifer Broadleaved tree Kingdom Plantae Plantae Division Pinophyta Magnoliophyta Class Pinopsida Magnoliopsida Order Pinales Sapindales Family Pinaceae Aceraceae Genus Abies Acer Species epithet magnifica glabrum Variety shastensis torreyi Common name Shasta red fir mountain maple archy. -
Disturbances Influence Trait Evolution in Pinus
Master's Thesis Diversify or specialize: Disturbances influence trait evolution in Pinus Supervision by: Prof. Dr. Elena Conti & Dr. Niklaus E. Zimmermann University of Zurich, Institute of Systematic Botany & Swiss Federal Research Institute WSL Birmensdorf Landscape Dynamics Bianca Saladin October 2013 Front page: Forest of Pinus taeda, northern Florida, 1/2013 Table of content 1 STRONG PHYLOGENETIC SIGNAL IN PINE TRAITS 5 1.1 ABSTRACT 5 1.2 INTRODUCTION 5 1.3 MATERIAL AND METHODS 8 1.3.1 PHYLOGENETIC INFERENCE 8 1.3.2 TRAIT DATA 9 1.3.3 PHYLOGENETIC SIGNAL 9 1.4 RESULTS 11 1.4.1 PHYLOGENETIC INFERENCE 11 1.4.2 PHYLOGENETIC SIGNAL 12 1.5 DISCUSSION 14 1.5.1 PHYLOGENETIC INFERENCE 14 1.5.2 PHYLOGENETIC SIGNAL 16 1.6 CONCLUSION 17 1.7 ACKNOWLEDGEMENTS 17 1.8 REFERENCES 19 2 THE ROLE OF FIRE IN TRIGGERING DIVERSIFICATION RATES IN PINE SPECIES 21 2.1 ABSTRACT 21 2.2 INTRODUCTION 21 2.3 MATERIAL AND METHODS 24 2.3.1 PHYLOGENETIC INFERENCE 24 2.3.2 DIVERSIFICATION RATE 24 2.4 RESULTS 25 2.4.1 PHYLOGENETIC INFERENCE 25 2.4.2 DIVERSIFICATION RATE 25 2.5 DISCUSSION 29 2.5.1 DIVERSIFICATION RATE IN RESPONSE TO FIRE ADAPTATIONS 29 2.5.2 DIVERSIFICATION RATE IN RESPONSE TO DISTURBANCE, STRESS AND PLEIOTROPIC COSTS 30 2.5.3 CRITICAL EVALUATION OF THE ANALYSIS PATHWAY 33 2.5.4 PHYLOGENETIC INFERENCE 34 2.6 CONCLUSIONS AND OUTLOOK 34 2.7 ACKNOWLEDGEMENTS 35 2.8 REFERENCES 36 3 SUPPLEMENTARY MATERIAL 39 3.1 S1 - ACCESSION NUMBERS OF GENE SEQUENCES 40 3.2 S2 - TRAIT DATABASE 44 3.3 S3 - SPECIES DISTRIBUTION MAPS 58 3.4 S4 - DISTRIBUTION OF TRAITS OVER PHYLOGENY 81 3.5 S5 - PHYLOGENETIC SIGNAL OF 19 BIOCLIM VARIABLES 84 3.6 S6 – COMPLETE LIST OF REFERENCES 85 2 Introduction to the Master's thesis The aim of my master's thesis was to assess trait and niche evolution in pines within a phylogenetic comparative framework. -
North American Pinyon-Juniper Woodlands: Ecological Composition, Dynamics, and Future Trends
North American Pinyon–Juniper Woodlands: Ecological Composition, Dynamics, and Future Trends Esteban Muldavin and F Jack Triepke, University of New Mexico, Albuquerque, NM, United States © 2019 Elsevier Inc. All rights reserved. Introduction 1 Types of Pinyon–Juniper Woodlands 3 Detailed Pinyon–Juniper Woodland Descriptions 4 G198 Californian Conifer Forest & Woodland Group 4 G487 Madrean Juniper Open Woodland Group 5 G200 Madrean Pinyon–Juniper Woodland Group 5 G900 Colorado Plateau Pinyon–Juniper Woodland Group 5 G248 Columbia Plateau Western Juniper Open Woodland Group 6 G899 Great Basin Pinyon–Juniper Woodland Group 6 G249 Intermountain Basins Curl-leaf Mountain-mahogany Woodland & Scrub 6 G252 Southern Rocky Mountain Juniper Open Woodland Group 6 G253 Southern Rocky Mountain Pinyon–Juniper Woodland Group 6 Ecological Dynamics in Pinyon–Juniper Woodlands 7 Fire Regimes 7 Insect Pathogens 8 Ecosystem Services and the Changing Land Use of Pinyon–Juniper Woodlands 9 History and Land Use Impacts (e.g., Involving Herbivory, Changes in Fire Regime) 10 Pinyon nuts 10 Livestock use 10 Fuelwood 11 Pinyon–Juniper Woodlands and Climate 12 Tree Mortality and Plant Composition Changes 12 Carbon Storage as an Ecosystem Service 13 Conclusion—Climate and Carbon 13 Future Trends and Conservation 14 References 14 Abstract Pinyon and juniper woodland is a major biome type centered on the Basin and Range and Colorado Plateau physiographic regions of interior western North America. It covers over 40 million ha from western Oregon in the northwest United States, eastward to Wyoming and southward to northern Chihuahua in Mexico, then westward to Baja California. Climatically, these woodlands lie within both the warm and cold temperate zones of North America but at the wetter and cooler portion of the semiarid realm where precipitation seldom exceeds 400 mm. -
California Partners in Flight the USDA Forest Service Klamath Bird Observatory and PRBO Conservation Science
The Coniferous Forest Bird Conservation Plan A Strategy for Protecting and Managing Coniferous Forest Habitats and Associated Birds in California Version 1.1 March 2002 A project of California Partners in Flight The USDA Forest Service Klamath Bird Observatory and PRBO Conservation Science Conservation Plan Lead Authors: John C. Robinson, USDA Forest Service John Alexander, Klamath Bird Observatory Conservation Plan Supporting Authors, PRBO Conservation Science: Sue Abbott Diana Humple Grant Ballard Melissa Pitkin Dan Barton Sandy Scoggin Gregg Elliott Diana Stralberg Sacha Heath Focal Species Account Authors: Black-backed Woodpecker – Kerry Farris Black-throated Gray Warbler – Tina Mark, USDA Forest Service Brown Creeper – Danielle LeFer, San Francisco Bay Bird Observatory Dark-eyed Junco – Jim DeStaebler, PRBO Conservation Science Flammulated Owl – Susan Yasuda, USDA Forest Service Fox Sparrow – Anne King, EDAW, Inc. Golden-crowned Kinglet – John C. Robinson, USDA Forest Service MacGillivray's Warbler – Chris Otahal, USDA Forest Service Olive-sided Flycatcher – Paul Brandy, Endangered Species Recovery Program Pileated Woodpecker – John C. Robinson, USDA Forest Service Red-breasted Nuthatch – Tina Mark and John C. Robinson, USDA Forest Service Vaux's Swift – John Sterling, Jones and Stokes Associates Western Tanager – Cory Davis, USDA Forest Service Financial Contributors: USDA Forest Service Packard Foundation National Fish and Wildlife Foundation PRBO Conservation Science Klamath Bird Observatory Acknowledgements: California Partners in Flight wishes to thank everyone who helped write, promote, and produce this document. Special thanks to Laurie Fenwood, Geoffrey Geupel, Aaron Holmes, Genny Wilson, Ryan Burnett, and Doug Wallace, and to Sophie Webb for her cover illustration. Recommended Citation: CalPIF (California Partners in Flight). 2002. -
State of the World's Forest Genetic Resources Part 1
Forests and trees enhance and protect landscapes, ecosystems and production systems. They provide goods and services which are essential to the survival and well-being of all humanity. Forest genetic resources – the heritable materials maintained within and among tree and other woody plant species that are of actual or potential economic, environmental, scientific or societal value – are essential for the continued productivity, services, adaptation and evolutionary processes of forests and trees. This first volume of The State of the World’s Forest Genetic Resources constitutes a major step in building the information and knowledge base required for action towards better conservation and sustainable management of forest genetic resources at the national, regional and international levels. The publication was prepared based on information provided by 86 countries, outcomes from regional and subregional consultations and commissioned thematic studies. It presents definitions and concepts related to forest genetic resources and a FOREST GENETIC RESOURCES review of their value; the main drivers of changes and the trends affecting these vital resources; and key emerging technologies. The central section analyses the current status of conservation and use of forest genetic resources on the basis of reports provided by the countries. The book concludes with recommendations for ensuring that present and future generations continue to benefit from forests and trees, both through innovations in practices and technologies and through enhanced attention -
122.5 Sierran
Sierran Montane Conifer Forest Item Type Article Authors Pase, Charles P. Publisher University of Arizona (Tucson, AZ) Journal Desert Plants Rights Copyright © Arizona Board of Regents. The University of Arizona. Download date 25/09/2021 11:11:12 Link to Item http://hdl.handle.net/10150/550950 Pase Sierran Montane Forest 49 In the higher Transverse and Peninsular Ranges, this 122.5 Sierran forest is characterized by a well defined zone of pines above the chaparral, evergreen woodlands, mixed evergreen forest and grassland of the Californian Biotic Province. Especially Montane Conifer well developed stands occur above 1,500 m elevation in the San Gabriel, San Bernardino, San Jacinto, Santa Rosa, Palomar, Forest Cuyamaca, Laguna Juarez and San Pedro Martir Mountains. While now isolated from each other and from their ecological metropolis in the Sierra Nevada by broad areas of low elevation chaparral, grassland, and desertscrub, these stands Charles P. Pase share many floristic and faunal constituents. They are, in a number of Sierran and USDA Forest Service nonetheless, depauperate plants animals. Annual precipatation averages more than 635 m per year (Table 31, but because of the high elevations and winter rainfall pattern much of this precipitation falls as snow. These forests, therefore, must depend on snowmelt, and at least in some years the growing season is shortened by the lack of available moisture in late summer. Two closely related yellow pines, Jeffrey Pine and Ponderosa Pine (Pinus ;effreyi and P. ponderosal are the usual dominants over much of the lower elevation Sierran montane conifer forest.' Ponderosa Pine is most common on the wetter cismontane (Pacific side] mountain slopes, where it usually occurs between 1,300 and 2,140 m. -
Conservation Genetics of High Elevation Five-Needle White Pines
Conservation Genetics of High Elevation Five-Needle White Pines Conservation Genetics of High Elevation Five-Needle White Pines Andrew D. Bower, USDA Forest Service, Olympic National Forest, Olympia, WA; Sierra C. McLane, University of British Columbia, Dept. of Forest Sciences, Vancouver, BC; Andrew Eckert, University of California Davis, Section of Plenary Paper Evolution and Ecology, Davis, CA; Stacy Jorgensen, University of Hawaii at Manoa, Department of Geography, Manoa, HI; Anna Schoettle, USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO; Sally Aitken, University of British Columbia, Dept. of Forest Sciences, Vancouver, BC Abstract—Conservation genetics examines the biophysical factors population structure using molecular markers and quanti- influencing genetic processes and uses that information to conserve tative traits and assessing how these measures are affected and maintain the evolutionary potential of species and popula- by ecological changes. Genetic diversity is influenced by the tions. Here we review published and unpublished literature on the evolutionary forces of mutation, selection, migration, and conservation genetics of seven North American high-elevation drift, which impact within- and among-population genetic five-needle pines. Although these species are widely distributed across much of western North America, many face considerable diversity in differing ways. Discussions of how these forces conservation challenges: they are not valued for timber, yet they impact genetic diversity can be found in many genetics texts have high ecological value; they are susceptible to the introduced (for example Frankham and others 2002; Hartl and Clark disease white pine blister rust (caused by the fungus Cronartium 1989) and will not be discussed here. ribicola) and endemic-turned-epidemic pests; and some are affect- ed by habitat fragmentation and successional replacement by other Why Is Genetic Diversity Important? species. -
(FIA) Annual Inventory Answers the Question: What Is Happening to Pinyon-Juniper Woodlands?
Forest Inventory and Analysis (FIA) Annual Inventory Answers the Question: What Is Happening to Pinyon-Juniper Woodlands? John D. Shaw, Brytten E. Steed, and Larry T. DeBlander Widespread mortality in the pinyon-juniper forest type is associated with several years of drought in Pinus monophylla Torr.&Frem.)—and one the southwestern United States. A complex of drought, insects, and disease is responsible for pinyon or more juniper species (Juniperus spp.); mortality rates approaching 100% in some areas, while other areas have experienced little or no pure stands of pinyon usually are not con- mortality. Implementation of the Forest Inventory and Analysis (FIA) annual inventory in several states sidered a separate type. Pinyon nuts were a coincided with the onset of elevated mortality rates. Adjunct inventories provided supplemental data on staple food for Native Americans of the damaging agents. Preliminary analysis reveals the status and trends of mortality in pinyon-juniper Southwest for thousands of years, and the woodlands. harvest of this valuable resource continues ABSTRACT today (Lanner 1981). There also are many Keywords: forest inventory, FIA, pinyon pines, pinyon-juniper woodlands, drought, mortality, Ips traditional and modern uses for pinyon and confusus, bark beetles, southwestern United States juniper wood. The extensive range and vol- ume of the resource has generated interest in intensive use, such as an energy-producing biomass crop. However, pinyon-juniper he Forest Inventory and Analysis same systematic sample grid as was used for woodland is seen as a weedy invader of pro- (FIA) is a national USDA Forest periodic inventories, but the plots are evenly ductive grasslands by some. -
The Spanish and Mexican Baseline of California Tree and Shrubland Distributions Since the Late 18Th Century
Aliso: A Journal of Systematic and Evolutionary Botany Volume 33 | Issue 1 Article 4 2015 The pS anish and Mexican Baseline of California Tree and Shrubland Distributions Since the Late 18th Century Richard A. Minnich University of California, Riverside Brett R. Goforth California State University, San Bernardino Richard Minnich Dept. of Earth Sciences, University of California, Riverside, [email protected] Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Forest Sciences Commons Recommended Citation Minnich, Richard A.; Goforth, Brett R.; and Minnich, Richard (2015) "The pS anish and Mexican Baseline of California Tree and Shrubland Distributions Since the Late 18th Century," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 33: Iss. 1, Article 4. Available at: http://scholarship.claremont.edu/aliso/vol33/iss1/4 Aliso, 33(1), pp. 5–76 ISSN 0065-6275 (print), 2327-2929 (online) THE SPANISH AND MEXICAN BASELINE OF CALIFORNIA TREE AND SHRUBLAND DISTRIBUTIONS SINCE THE LATE 18TH CENTURY RICHARD A. MINNICH1,3 AND BRETT R. GOFORTH2 1Department of Earth Sciences, University of California, Riverside, California 92521; 2Department of Geography and Environmental Studies, California State University, San Bernardino, California 92407 3Corresponding author ([email protected]) ABSTRACT Historical distributions of 31 tree species, chaparral, and coastal sage scrub described by Spanish land explorers in the late eighteenth and early nineteenth centuries (1769–1806) and in land grant disen˜os (1784– 1846) are reconstructed at 634 localities across central and southern California. This baseline predates most formal botanical surveys by nearly a century, allowing for assessment of vegetation change over the broadest time frame for comparison with pre-historical evidences and future distributions. -
Part 2 Los Padres National R5-MB-078 Forest Strategy September 2005
United States Department of Agriculture Land Management Plan Forest Service Pacific Southwest Region Part 2 Los Padres National R5-MB-078 Forest Strategy September 2005 The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, Write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Land Management Plan Part 2 Los Padres National Forest Strategy R5-MB-078 September 2005 Table of Contents Tables ....................................................................................................................................................v Document Format Protocols................................................................................................................ vi LAND MANAGEMENT PLAN STRATEGY..................................................................................1