Mb 4Q22.2Q32.3 Duplication Due to Ovarian Germinal Mosaicism

Total Page:16

File Type:pdf, Size:1020Kb

Mb 4Q22.2Q32.3 Duplication Due to Ovarian Germinal Mosaicism European Journal of Human Genetics (2010) 18, 882–888 & 2010 Macmillan Publishers Limited All rights reserved 1018-4813/10 www.nature.com/ejhg ARTICLE Recurrent 70.8 Mb 4q22.2q32.3 duplication due to ovarian germinal mosaicism Lucie Tosca*,1,2,3, Sophie Brisset1,2,4, Franc¸ois M Petit2,5, Laure Lecerf 6,7, Ghislaine Rousseau1,4,Ce´cile Bas2,3, Mireille Laroudie8, Marie-Laure Maurin1, Sylvie Tapia9, Olivier Picone10, Sophie Prevot8, Michel Goossens6,7, Philippe Labrune2,11,12 and Ge´rard Tachdjian1,2,3 A mosaicism is defined by the presence of two or more populations of cells with different genotypes in one individual. Chromosomal germinal mosaicism occurs in germ cells before the onset of meiosis. Previously, few studies have described germinal mosaicism. In this study, we report on two siblings who carried identical pure and direct interstitial 4q22.2q32.3 duplication. Procedure investigations included complete clinical description, conventional cytogenetic analysis, fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH) array experiments and microsatellite study searching for parental origin of the duplication. Microarray CGH and further FISH experiments with BAC clones showed the same 70.8 Mb direct duplication, dup(4)(q22.2q32.3). Molecular studies of the 4q duplication were consistent with maternal origin associated with mitotic or meiotic rearrangements. This structural chromosomal aberration was associated in both cases with increased nuchal translucency, growth retardation and dysmorphy. Cardiopathy and lung malformations were only evident in the first case. These clinical manifestations are similar to those previously reported in previous studies involving pure 4q trisomy of the same region, except for thumb and renal abnormalities that were not obvious in the presented cases. The amplified region included genes involved in neurological development (NEUROG2, MAB21L2, PCDH10/18 and GRIA2). The recurrent 4q duplication in these siblings is consistent with a maternal ovarian germinal mosaicism. This is the first description of germinal mosaicism for a large chromosomal duplication and highlights that genetic counselling for apparently de novo chromosome aberration should be undertaken with care. European Journal of Human Genetics (2010) 18, 882–888; doi:10.1038/ejhg.2010.46; published online 28 April 2010 Keywords: chromosome 4; duplication; recurrence; comparative genomic hybridization microarray; microsatellites; ovarian mosaicism INTRODUCTION comparative genomic hybridization (CGH) and due to ovarian A mosaicism is defined by the presence of two or more cell lines with germinal mosaicism. different genotypes in one individual, who has developed from a single fertilized egg.1 Different types of mosaicism exist, such as germinal MATERIALS AND METHODS mosaicism (restricted to germ cells) or tissue mosaicism. The most Clinical report common form of mosaicism detected through prenatal diagnosis The first pregnancy of a 24-year-old woman was marked by increased nuchal involves trisomies. Chromosomal germinal mosaicism is rare and translucency (4.5 mm) on first-trimester ultrasound examination. Parents were occurs in early germ cells (oogonia or spermatogonia) before the nonconsanguineous and both familial histories were unremarkable. Chorionic 1 onset of meiosis. These mitotic errors can be nondisjunctions villi were sampled for chromosomal analysis that showed a large long arm on (abnormality of chromosome number) or the production of structural chromosome 4. This chromosomal abnormality was confirmed on amniotic rearrangements (deletion, duplication, inversion, insertion or transloca- fluid analysis at 16 weeks. After genetic counselling and according to the French tion). Germinal mosaicism becomes evident when two siblings are born law, the pregnancy was terminated at 20 weeks of gestation. The female foetus with the same de novo chromosomal abnormality. Germinal mosaicism was hypotrophic. Weight, height, head circumference and biparietal diameter is independent of maternal age.2 Few studies in literature have described measurements were 221.6 g (o5th percentile), 15 cm (5th percentile), 25 cm (25th percentile) and 14 cm ( 25th percentile), respectively. Physical germinal mosaicism corresponding essentially to aneuploidies and o examination showed cranio-facial dysmorphism with elongated skull, large structural chromosomal aberrations including mostly isochromosomes 3–19 20 nose, long philtrum, large mouth with self-effacing cupidon arc, badly hemmed and deletions (for review, see Ro¨thlisberger and Kotzot ). ears and neck oedema (Supplementary Figure 1). Internal examination revealed In this study, we report two siblings carrying the same pure and pulmonary lobulation defect with two lobes in the right lung and a single one direct 4q22.2q32.3 duplication characterized using microarray in the left lung. Interauricular communication was also noted. The placenta was 1AP-HP, Histologie, Embryologie et Cytoge´ ne´ tique, Hoˆpital Antoine Be´cle` re, Clamart, France; 2Universite´ Paris Sud, Le Kremlin-Biceˆtre, France; 3INSERM U935, Villejuif, France; 4INSERM U782, Clamart, France; 5AP-HP, Biochimie, Hormonologie et Ge´ne´ tique, Hoˆ pital Antoine Be´ cle`re, Clamart, France; 6Universite´ Paris Val de Marne, Cre´teil, France; 7AP-HP, Plateforme de Ge´nomique IMRB 955, Hoˆ pital Henri Mondor, Cre´teil, France; 8AP-HP, Anatomie Pathologique, Hoˆ pital Antoine Be´cle` re, Clamart, France; 9Laboratoire Pasteur Cerba, Cytoge´ne´tique, Cergy Pontoise, France; 10AP-HP, Gyne´cologie Obste´trique, Hoˆpital Antoine Be´cle`re, Clamart, France; 11AP-HP, Pe´ diatrie, Hoˆpital Antoine Be´cle`re, Clamart, France; 12INSERM U948, Nantes, France *Correspondence: Dr L Tosca, Unite´ Fonctionnelle de Cytoge´ ne´tique, Service d’Histologie, Embryologie et Cytoge´ne´tique, Hoˆpital Antoine Be´cle`re, 157, rue de la Porte de Trivaux, Clamart Cedex 92141, France. Tel: +33 1 45 37 49 23; Fax: +33 1 45 37 42 07; E-mail: [email protected] Received 21 January 2010; revised 10 March 2010; accepted 17 March 2010; published online 28 April 2010 Duplication 4q and ovarian germinal mosaicism L Tosca et al 883 hypotrophic (86.8 g versus approximately 160 g for normal controls at the same Array comparative genomic hybridization (aCGH) term) but with normal aspect. The genomic imbalances of placenta and trophoblast cells were analysed by During the second pregnancy, increased nuchal translucency was again aCGH using 105K oligonucleotide arrays (Hu-105A, Agilent Technologies, detected (5 mm) on first-trimester ultrasound examination. Chorionic villi Massy, France). All array hybridizations were performed according to the were sampled and chromosomal analysis showed an abnormal long arm on manufacturer’s recommended protocols. In brief, 3 mg of genomic DNA was chromosome 4 similar to that observed in the first foetus. Regular foetus digested with AluI (5 units) and RsaI (5 units) for 2 h at 37 1C and fluorescently ultrasound examinations showed normal amniotic fluid volume and no labelled with the Agilent Genomic DNA labelling kit PLUS (Agilent Technol- malformations were detected in the foetus whose growth was normal. After ogies). A male or female human genomic DNA (Promega, Charbonnie`re, several discussions, both parents decided to continue the pregnancy. At 38 France) was used as reference. Experiments were conducted in dye-swap. weeks of gestation, a boy was vaginally delivered. His weight was 3040 g (o25th Cy5-dUTP patient DNA and its gender-matched reference labelled with percentile). Physical examination showed general hypotonia and facial dys- Cy3-dUTP were denatured and preannealed with Cot-1 DNA and Agilent morphism with narrow and horizontal palpebral fissures, prominent nose and blocking reagent before hybridization for 40 h at 20 r.p.m. in a 65 1C rotating moderate microretrognatia. At 6 weeks of age, his weight, height and head hybridization oven (Agilent Technologies). After washing, the slides were circumference were 4400 g (o25th percentile), 55.5 cm (o50th percentile) and scanned on an Agilent Microarray Scanner. Captured images were processed 37.5 cm (o25th percentile), respectively. The smile response was acquired, axial with Feature Extraction 9.1 (Agilent Technologies) software and data analysis tonus was correct and no other abnormality was specified. Facial dysmorphic was performed with CGH Analytics 3.5 (Agilent Technologies). Copy number features were stable. At the age of 6 months, the boy had no specific medical variations (CNVs) were considered significant if they were defined by three or treatment. His weight, height and head circumference were 7070 g (À1SD), more oligonucleotides spanning at least 50 Kb and contained at least one gene 64 cm (À1 SD) and 42 cm (À1 SD), respectively. He was able to catch close and were not identified in the Database of Genomic Variants. objects but not distant ones. He was able to burst into laughter. The seating position was not completely acquired and axial hypotonia was still present. At Fluorescence in situ hybridization (FISH) the age of 1 year, his weight, height and head circumference were 8900 g (À1 FISH analyses were performed on trophoblast cells and metaphase spreads SD), 70 cm (À1SD)and46cm(À1 SD), respectively. Axial hypotonia was still from both parental and propositus lymphocytes. The whole-chromosome marked, resulting in mild kyphosis when seating and in the absence of any painting (WCP) probe specific for chromosome 4 was used according to the possibility to stand
Recommended publications
  • Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-Like Mouse Models: Tracking the Role of the Hairless Gene
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2006 Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene Yutao Liu University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Life Sciences Commons Recommended Citation Liu, Yutao, "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino- like Mouse Models: Tracking the Role of the Hairless Gene. " PhD diss., University of Tennessee, 2006. https://trace.tennessee.edu/utk_graddiss/1824 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Yutao Liu entitled "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences. Brynn H. Voy, Major Professor We have read this dissertation and recommend its acceptance: Naima Moustaid-Moussa, Yisong Wang, Rogert Hettich Accepted for the Council: Carolyn R.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Learning from Cadherin Structures and Sequences: Affinity Determinants and Protein Architecture
    Learning from cadherin structures and sequences: affinity determinants and protein architecture Klára Fels ıvályi Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Klara Felsovalyi All rights reserved ABSTRACT Learning from cadherin structures and sequences: affinity determinants and protein architecture Klara Felsovalyi Cadherins are a family of cell-surface proteins mediating adhesion that are important in development and maintenance of tissues. The family is defined by the repeating cadherin domain (EC) in their extracellular region, but they are diverse in terms of protein size, architecture and cellular function. The best-understood subfamily is the type I classical cadherins, which are found in vertebrates and have five EC domains. Among the five different type I classical cadherins, the binding interactions are highly specific in their homo- and heterophilic binding affinities, though their sequences are very similar. As previously shown, E- and N-cadherins, two prototypic members of the subfamily, differ in their homophilic K D by about an order of magnitude, while their heterophilic affinity is intermediate. To examine the source of the binding affinity differences among type I cadherins, we used crystal structures, analytical ultracentrifugation (AUC), surface plasmon resonance (SPR), and electron paramagnetic resonance (EPR) studies. Phylogenetic analysis and binding affinity behavior show that the type I cadherins can be further divided into two subgroups, with E- and N-cadherin representing each. In addition to the affinity differences in their wild-type binding through the strand-swapped interface, a second interface also shows an affinity difference between E- and N-cadherin.
    [Show full text]
  • Acceleration in the DNA Methylation Age in Breast Cancer Tumours from Very Young Women Sara S
    www.nature.com/scientificreports OPEN Acceleration in the DNA methylation age in breast cancer tumours from very young women Sara S. Oltra1, Maria Peña-Chilet1, Kirsty Flower2, María Teresa Martinez1, Elisa Alonso3, Octavio Burgues3, Ana Lluch1,4, James M. Flanagan 2 & Gloria Ribas1,4* Breast cancer in very young women (≤35 years; BCVY) presents more aggressive and complex biological features than their older counterparts (BCO). Our aim was to evaluate methylation diferences between BCVY and BCO and their DNA epigenetic age. EPIC and 450k Illumina methylation arrays were used in 67 breast cancer tumours, including 32 from BCVY, for methylation study and additionally we analysed their epigenetic age. We identifed 2 219 CpG sites diferently-methylated in BCVY vs. BCO (FDR < 0.05; β-value diference ± 0.1). The signature showed a general hypomethylation profle with a selective small hypermethylation profle located in open-sea regions in BCVY against BCO and normal tissue. Strikingly, BCVY presented a signifcant increased epigenetic age-acceleration compared with older women. The afected genes were enriched for pathways in neuronal-system pathways, cell communication, and matrix organisation. Validation in an independent sample highlighted consistent higher expression of HOXD9, and PCDH10 genes in BCVY. Regions implicated in the hypermethylation profle were involved in Notch signalling pathways, the immune system or DNA repair. We further validated HDAC5 expression in BCVY. We have identifed a DNA methylation signature that is specifc to BCVY and have shown that epigenetic age-acceleration is increased in BCVY. Breast cancer (BC) is the most common malignancy in women worldwide1. Approximately 6.6% of BCs are diag- nosed in women aged 40 or younger, and of all cancers diagnosed in this age group, 40% are BCs; the average risk of developing BC by age 40 is one in 1732 and unfortunately, they are not included in mammography screening programmes.
    [Show full text]
  • BMC Cell Biology Biomed Central
    BMC Cell Biology BioMed Central Research article Open Access MAB21L2, a vertebrate member of the Male-abnormal 21 family, modulates BMP signaling and interacts with SMAD1 Danila Baldessari†1, Aurora Badaloni†1,2, Renato Longhi4, Vincenzo Zappavigna3 and G Giacomo Consalez*1,2 Address: 1Dept. Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy, 2Stem Cell Research Institute, San Raffaele Scientific Institute, 20132 Milan, Italy, 3Dept. Molecular Biology and Functional Genomics, San Raffaele Scientific Institute, 20132 Milan, Italy and 4National Research Center, Institute of Chemistry of Molecular Recognition, 20131 Milan, Italy Email: Danila Baldessari - [email protected]; Aurora Badaloni - [email protected]; Renato Longhi - [email protected]; Vincenzo Zappavigna - [email protected]; G Giacomo Consalez* - [email protected] * Corresponding author †Equal contributors Published: 21 December 2004 Received: 28 August 2004 Accepted: 21 December 2004 BMC Cell Biology 2004, 5:48 doi:10.1186/1471-2121-5-48 This article is available from: http://www.biomedcentral.com/1471-2121/5/48 © 2004 Baldessari et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Through in vivo loss-of-function studies, vertebrate members of the Male abnormal 21 (mab-21) gene family have been implicated in gastrulation, neural tube formation and eye morphogenesis. Despite mounting evidence of their considerable importance in development, the biochemical properties and nature of MAB-21 proteins have remained strikingly elusive.
    [Show full text]
  • Detection of Somatic Variants from Genomic Data and Their Role in Neurodegenerative Diseases
    Detection of somatic variants from genomic data and their role in neurodegenerative diseases Irene Lobón García Aquesta tesi doctoral està subjecta a la llicència Reconeixement 4.0. Espanya de Creative Commons. Esta tesis doctoral está sujeta a la licencia Reconocimiento 4.0. España de Creative Commons. This doctoral thesis is licensed under the Creative Commons Attribution 4.0. Spain License. Memoria presentada por Irene Lobón García para optar al grado de doctora por la Universidad de Barcelona Programa de Doctorado en Biomedicina Tesis realizada en el Instituto de Biología Evolutiva (CSIC-UPF) Detection oF somatic variants From genomic data and their role in neurodegenerative diseases Irene Lobón García Eduardo Soriano García Tomàs Marquès Bonet A mi Familia, “La paciencia es la madre de la ciencia” ReFranero español Acknowledgements De estos cinco años me llevo innumerables enseñanzas. Por supuesto muchas en lo profesional, pero incluso más en lo personal. Esta tesis ha sido un trabajo en grupo y sin el apoyo y ayuda de mucha gente hubiese sido imposible. En primer lugar, quiero agradecer a Eduardo su conFianza todos estos años y sobre todo el haberme introducido con sus proyectos en el tema que ahora me apasiona. También a Tomàs por aceptarme en su grupo como estudiante de máster y después hacer lo posible para que me quedase de alguna manera en el grupo. También por introducirme en el consorcio que ha sido fundamental para mi trabajo y porque nunca hubiese salido de mí pedir una estancia en Harvard. Esta experiencia solo ha sido posible gracias a vosotros. Los comienzos Fueron duros, después de tantos años de aprendizaje guiado el salto a la investigación es diFícil.
    [Show full text]
  • Discovery of an O-Mannosylation Pathway Selectively Serving Cadherins and Protocadherins
    Discovery of an O-mannosylation pathway selectively serving cadherins and protocadherins Ida Signe Bohse Larsena,1, Yoshiki Narimatsua,1, Hiren Jitendra Joshia,1, Lina Siukstaitea, Oliver J. Harrisonb, Julia Braschb, Kerry M. Goodmanb, Lars Hansena, Lawrence Shapirob,c,d, Barry Honigb,c,d,e, Sergey Y. Vakhrusheva, Henrik Clausena, and Adnan Halima,2,3 aDepartment of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, DK-2200 Copenhagen, Denmark; bDepartment of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032; cZuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032; dDepartment of Systems Biology, Columbia University, New York, NY 10032; and eHoward Hughes Medical Institute, Columbia University, New York, NY 10032 Edited by Stuart A. Kornfeld, Washington University School of Medicine, St. Louis, MO, and approved September 6, 2017 (received for review May 22, 2017) The cadherin (cdh) superfamily of adhesion molecules carry muscular dystrophies that have been designated α-dystroglyca- O-linked mannose (O-Man) glycans at highly conserved sites nopathies because deficient O-Man glycosylation of α-DG dis- localized to specific β-strands of their extracellular cdh (EC) domains. rupts the interaction between the dystrophin glycoprotein complex These O-Man glycans do not appear to be elongated like O-Man and the ECM (7–9). Several studies have also implicated de- glycans found on α-dystroglycan (α-DG), and we recently demon- ficiency of POMT2 with E-cdh dysfunction (10–12), although di- strated that initiation of cdh/protocadherin (pcdh) O-Man glycosyl- rect evidence for a role in glycosylation of cdhs and pcdhs is ation is not dependent on the evolutionary conserved POMT1/ missing.
    [Show full text]
  • MAB21L1 Loss of Function Causes a Syndromic Neurodevelopmental Disorder with Distinctive Cerebellar, Ocular, Craniofacial and Ge
    Developmental defects J Med Genet: first published as 10.1136/jmedgenet-2018-105623 on 28 November 2018. Downloaded from ORIGINAL ARTICLE MAB21L1 loss of function causes a syndromic neurodevelopmental disorder with distinctive cerebellar, ocular, craniofacial and genital features (COFG syndrome) Abolfazl Rad,1,2 Umut Altunoglu,3 Rebecca Miller,4 Reza Maroofian,5 Kiely N James,6 Ahmet Okay Çağlayan,7,8 Maryam Najafi,1 Valentina Stanley,6 Rose-Mary Boustany,9,10 Gözde Yeşil,11 Afsaneh Sahebzamani,12 Gülhan Ercan-Sencicek,7 Kolsoum Saeidi,13,14 Kaman Wu,1 Peter Bauer,15 Zeineb Bakey,1,16 Joseph G Gleeson,6 Natalie Hauser,4 Murat Gunel,7 Hulya Kayserili,3,17 Miriam Schmidts 1,16 ► Additional material is ABSTRact role in embryonic development but gene expression published online only. To view Background Putative nucleotidyltransferase MAB21L1 extends beyond the developmental period well into please visit the journal online 2 (http:// dx. doi. org/ 10. 1136/ is a member of an evolutionarily well-conserved family adulthood. Molecular explorations in C. elegans, jmedgenet- 2018- 105623). of the male abnormal 21 (MAB21)-like proteins. Little Danio rerio, Xenopus tropicalis and mice indicate a is known about the biochemical function of the protein; crucial role for Mab21 family members in diverse, For numbered affiliations see however, prior studies have shown essential roles for developmentally important cell signalling path- end of article. several aspects of embryonic development including the ways, including TGF-B/BMP, JNK1/MKK4, PAX6. eye,
    [Show full text]
  • A Protocol for Constructing Gene Targeting Vectors: Generating Knockout Mice for the Cadherin Family and Beyond
    PROTOCOL A protocol for constructing gene targeting vectors: generating knockout mice for the cadherin family and beyond Sen Wu1, Guoxin Ying2, Qiang Wu2 & Mario R Capecchi1,2 1Howard Hughes Medical Institute and 2Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA. Correspondence should be addressed to M.R.C. ([email protected]). Published online 29 May 2008; doi:10.1038/nprot.2008.70 s We describe here a streamlined procedure for targeting vector construction, which often is a limiting factor for gene targeting (knockout) technology. This procedure combines various highly efficient recombination-based cloning methods in bacteria, consisting of three steps. First step is the use of Red-pathway-mediated recombination (recombineering) to capture a genomic fragment into a Gateway-compatible vector. Second, the vector is modified by recombineering to include a positive selection gene neo,fromavariety natureprotocol / of modular reagents. Finally, through a simple in vitro Gateway recombination, the modified genomic fragment is switched into a m o c vector that contains negative selection cassettes, as well as unique sites for linearization. To demonstrate the usefulness of this . e r protocol, we report targeted disruptions of members of the cadherin gene family, focusing on those that have not been previously u t B a studied at the molecular genetic level. This protocol needs 2 weeks to construct a targeting vector, and several vectors can be n . easily handled simultaneously using common laboratory setup. w w w / / : p t INTRODUCTION t h Gene targeting, the use of homologous recombination in mouse this procedure is reduced when used for generating large DNA p 1–5 19,20 u embryonic stem (ES) cells to modify mouse genes precisely , constructs, required for gene targeting vector construction .
    [Show full text]
  • Foraging Shifts and Visual Pre Adaptation in Ecologically Diverse Bats
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/340654059 Foraging shifts and visual preadaptation in ecologically diverse bats Article in Molecular Ecology · April 2020 DOI: 10.1111/mec.15445 CITATIONS READS 0 153 9 authors, including: Kalina T. J. Davies Laurel R Yohe Queen Mary, University of London Yale University 40 PUBLICATIONS 254 CITATIONS 24 PUBLICATIONS 93 CITATIONS SEE PROFILE SEE PROFILE Edgardo M. Rengifo Elizabeth R Dumont University of São Paulo University of California, Merced 13 PUBLICATIONS 28 CITATIONS 115 PUBLICATIONS 3,143 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Ecology of the Greater horseshoe bat View project BAT 1K View project All content following this page was uploaded by Liliana M. Davalos on 14 May 2020. The user has requested enhancement of the downloaded file. Received: 17 October 2019 | Revised: 28 February 2020 | Accepted: 31 March 2020 DOI: 10.1111/mec.15445 ORIGINAL ARTICLE Foraging shifts and visual pre adaptation in ecologically diverse bats Kalina T. J. Davies1 | Laurel R. Yohe2,3 | Jesus Almonte4 | Miluska K. R. Sánchez5 | Edgardo M. Rengifo6,7 | Elizabeth R. Dumont8 | Karen E. Sears9 | Liliana M. Dávalos2,10 | Stephen J. Rossiter1 1School of Biological and Chemical Sciences, Queen Mary University of London, London, UK 2Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, USA 3Department of Geology & Geophysics, Yale University,
    [Show full text]
  • A Radiation Hybrid Map of Chicken Chromosome 4
    A radiation hybrid map of chicken Chromosome 4 Tarik S.K.M. Rabie,1* Richard P.M.A. Crooijmans,1 Mireille Morisson,2 Joanna Andryszkiewicz,1 Jan J. van der Poel,1 Alain Vignal,2 Martien A.M. Groenen1 1Wageningen Institute of Animal Sciences, Animal Breeding and Genetics Group, Wageningen University, Marijkeweg 40, 6709 PG Wageningen, The Netherlands 2Laboratoire de ge´ne´tique cellulaire, Institut national de la recherche agronomique, 31326 Castanet-Tolosan, France Received: 15 December 2003 / Accepted: 16 March 2004 Comparative genomics plays an important role in Abstract the understanding of genome dynamics during ev- The mapping resolution of the physical map for olution and as a tool for the transfer of mapping chicken Chromosome 4 (GGA4) was improved by a information from species with gene-dense maps to combination of radiation hybrid (RH) mapping and species whose maps are less well developed (O‘Bri- bacterial artificial chromosome (BAC) mapping. The en et al. 1993, 1999). For farm animals, therefore, ChickRH6 hybrid panel was used to construct an RH the human and mouse have been the logical choice map of GGA4. Eleven microsatellites known to be as the model species used for this comparison. located on GGA4 were included as anchors to the Medium-resolution comparative maps have been genetic linkage map for this chromosome. Based on published for many of the livestock species, in- the known conserved synteny between GGA4 and cluding pig, cattle, sheep, and horse, identifying human Chromosomes 4 and X, sequences were large regions of conserved synteny between these identified for the orthologous chicken genes from species and man and mouse.
    [Show full text]
  • Supplementary Table 1 Double Treatment Vs Single Treatment
    Supplementary table 1 Double treatment vs single treatment Probe ID Symbol Gene name P value Fold change TC0500007292.hg.1 NIM1K NIM1 serine/threonine protein kinase 1.05E-04 5.02 HTA2-neg-47424007_st NA NA 3.44E-03 4.11 HTA2-pos-3475282_st NA NA 3.30E-03 3.24 TC0X00007013.hg.1 MPC1L mitochondrial pyruvate carrier 1-like 5.22E-03 3.21 TC0200010447.hg.1 CASP8 caspase 8, apoptosis-related cysteine peptidase 3.54E-03 2.46 TC0400008390.hg.1 LRIT3 leucine-rich repeat, immunoglobulin-like and transmembrane domains 3 1.86E-03 2.41 TC1700011905.hg.1 DNAH17 dynein, axonemal, heavy chain 17 1.81E-04 2.40 TC0600012064.hg.1 GCM1 glial cells missing homolog 1 (Drosophila) 2.81E-03 2.39 TC0100015789.hg.1 POGZ Transcript Identified by AceView, Entrez Gene ID(s) 23126 3.64E-04 2.38 TC1300010039.hg.1 NEK5 NIMA-related kinase 5 3.39E-03 2.36 TC0900008222.hg.1 STX17 syntaxin 17 1.08E-03 2.29 TC1700012355.hg.1 KRBA2 KRAB-A domain containing 2 5.98E-03 2.28 HTA2-neg-47424044_st NA NA 5.94E-03 2.24 HTA2-neg-47424360_st NA NA 2.12E-03 2.22 TC0800010802.hg.1 C8orf89 chromosome 8 open reading frame 89 6.51E-04 2.20 TC1500010745.hg.1 POLR2M polymerase (RNA) II (DNA directed) polypeptide M 5.19E-03 2.20 TC1500007409.hg.1 GCNT3 glucosaminyl (N-acetyl) transferase 3, mucin type 6.48E-03 2.17 TC2200007132.hg.1 RFPL3 ret finger protein-like 3 5.91E-05 2.17 HTA2-neg-47424024_st NA NA 2.45E-03 2.16 TC0200010474.hg.1 KIAA2012 KIAA2012 5.20E-03 2.16 TC1100007216.hg.1 PRRG4 proline rich Gla (G-carboxyglutamic acid) 4 (transmembrane) 7.43E-03 2.15 TC0400012977.hg.1 SH3D19
    [Show full text]