12Th International ISSX Meeting 28‒31 July 2019 Portland, Oregon

Total Page:16

File Type:pdf, Size:1020Kb

12Th International ISSX Meeting 28‒31 July 2019 Portland, Oregon ABSTRACTS FROM THE 12TH INTERNATIONAL ISSX MEETING 28‒31 July 2019 Portland, Oregon, USA 12th International ISSX Meeting 28‒31 July 2019 Portland, Oregon, USA Contents Sunday, 28 July 2019 Short Course 1: Advances in the Role of Transporters in Drug Development 3 Abstracts: SC1.1 - SC1.5 Short Course 2: Non-P450 Enzymes in ADMET for Drug Discovery and Development 5 Abstracts: S2.1 - SC2.4 Short Course 3: State of the Art PKPD and QSP Modeling 6 Abstracts: SC3.1 - SC3.5 Short Course 4: Idiosyncratic Drug-induced Liver Injury 8 Abstracts: SC4.1 - SC4.4 Keynote Lecture: Model-Informed Precision Dosing at the Bedside: Scientific Challenges and Opportunities 10 Abstract: K1 Monday, 29 July 2019 Plenary Lecture 1: How Technology, Big Data and Systems Approaches are Transforming 21st Century Healthcare 10 Abstract: L1 Pre-doctoral/Graduate and Postdoctoral Poster Awards Finalist Poster Presentations 40 Abstracts: A1 - A12 Poster Presentation Session 1 47 Abstracts: P1 - P87 Parallel Symposium 1: Personalized Medicine: Use of Pharmacogenomics and Other Patient-specific Factors to Individualize Drug Dosing and Treatment 11 Abstracts: S1.1 - S1.4 Parallel Symposium 2: State of the Art for Organs on Chips 12 Abstracts: S2.1 - S2.4 Parallel Symposium 3: Quantitative Pharmacokinetic and Pharmacology Methods and Strategies in the Discovery and Development of Biotherapeutics 13 Abstracts: S3.1 - S3.4 Parallel Symposium 4: Microbiome-Environment-Drug Interactions: Emerging Tools and Applications 15 Abstracts: S4.1 - S4.4 Tuesday, 30 July 2019 Plenary Lecture 2: Evaluation of Disease Progression / Drug Effects by Expanding the PK Concept 16 Abstract: L2 Parallel Symposium 5: Disease Effect on Transporter Regulation and Function 17 Abstracts: S5.1 - S5.4 Parallel Symposium 6: Advances in the Study of Drug Metabolism 19 Abstracts: S6.1 - S6.4 Pre-doctoral/Graduate and Postdoctoral Poster Awards Finalist Poster Presentations 40 Abstracts: A1 - A12 Poster Presentation Session 2 90 Abstracts: P88 - P181 1 Parallel Symposium 7: Driving Asia-Inclusive Global Drug Development through Translational Science and Clinical Pharmacology: Towards Enhanced Benefit-Risk and Decreased Access Lag 20 Abstracts: S7.1 - S7.4 Parallel Symposium 8: State-of-the-Art Approaches in Drug Metabolizing Enzymes and Transporters (DMET) Biomarker Research: Path from Discovery to Validation 22 Abstracts: S8.1 - S8.4 Wednesday, 31 July 2019 Plenary Lecture 3: Drug Metabolism, Pharmacogenomics and the Quest to Personalize HIV Treatment and Prevention 23 Abstract: L3 Parallel Symposium 9: Role of Albumin in Drug Disposition Revisited 24 Abstracts: S9.1 - S9.3 Parallel Symposium 10: Ontogeny of Enzymes and Transporters and their Implications in Pediatric PBPK Modeling to Inform Pediatric Dosing 25 Abstracts: S10.1 - S10.4 Poster Presentation Session 3 134 Abstracts: P182 - P252 Symposium 11: ‘War Stories’ – ADME Issues Encountered and Addressed in Drug Discovery and Development 27 Abstracts: S11.1 - S11.4 Poster Details 29 Finalists for the Pre-doctoral/Graduate Poster Awards Competition (Monday, 29 July - Wednesday, 31 July 2019) 40 Abstracts: A1 - A6 Finalists for the Postdoctoral Poster Awards Competition (Monday, 29 July - Wednesday, 31 July 2019) 43 Abstracts: A7 - A12 Poster Presentations (Monday, 29 July - Wednesday, 31 July 2019) 47 Abstracts: P1 - P252 Author Index 171 Keyword Index 178 Notes Pages 179 2 12th International ISSX Meeting Speaker Abstracts SC1.1 - THE NEXT FRONTIER IN ADME RESEARCH: PREDICTING AND VERIFYING TISSUE DRUG CONCENTRATIONS USING A PROTEOMICS AND PET IMAGING APPROACH Jashvant D. Unadkat University of Washington, USA In the drug development process, predicting CYP metabolic clearance of drugs using recombinant and human liver microsomes (HLMs) has been relatively successful. However, for several reasons predicting non-CYP and transporter- based clearance of drugs remains a challenge. First, the rate-determining step in the clearance of a drug must be identified – is it metabolism or transport or both. If transport is rate-determining, using recombinant enzymes or HLMs for predicting the in vivo clearance of drugs (IVIVE) will not be successful. Vice-versa is also true, that is using transporter- expressing cell lines will not help predict metabolic clearance of drugs. If both processes are rate-determining, both need to be included in IVIVE. Second, quantification of transporters and non-CYP enzymes in various ADME tissues is needed. Such data are beginning to be available. For IVIVE of transporter-mediated clearance, the mechanism of transport, plasma membrane vs. intracellular expression of transporters, both in vitro and in vivo, should be considered. For example, the membrane potential difference, which drives OCT2 transport, appears to be different in cell lines vs. kidney epithelial cells. Third, significant challenges remain in predicting in vivo efflux transport activity, especially in the liver (e.g. MRP2) and kidneys. These challenges/gaps will be discussed. Supported by UWRAPT through funding from Biogen, Bristol-Myers Squibb, Gilead, Merck & Co., Genentech, Pfizer and Takeda. SC1.2 - ADVANCING PREDICTIONS OF TISSUE AND INTRACELLULAR DRUG CONCENTRATIONS USING IN VITRO AND PBPK MODELING APPROACHES Yingying Guo Eli Lilly and Company, USA Knowledge of unbound tissue drug concentrations is important to the understanding of efficacy, toxicity and drug-drug interactions especially for drugs with transporter-mediated drug disposition. This presentation will examine the state-of- the-art on predictions of tissue and intracellular drug concentrations based on the recent ITC3 whitepaper (1). Critical overview will be provided for the in vitro methods that determines intracellular and subcellular drug concentrations. Selected examples will be used to illustrate the utility of preclinical, clinical and pharmacodynamic data to support physiologically based pharmacokinetic (PBPK) modeling to understand disconnects between systemic and tissue drug exposure. Current best practices and practical strategies will also be discussed for selecting methods to estimate or predict tissue and intracellular concentrations and then apply to PBPK modeling for human pharmacokinetic, efficacy and safety assessment in drug development. Reference: 1. Guo Y, Chu X, Parrott NJ, Brouwer KLR, Hsu V, Nagar S, et al. Advancing Predictions of Tissue and Intracellular Drug Concentrations Using In Vitro, Imaging and Physiologically Based Pharmacokinetic Modeling Approaches. Clinical Pharmacology and Therapeutics. 2018;104(5):865-89.. SC1.3 - INFLUENCE OF TRANSPORTER POLYMORPHISMS ON DRUG DISPOSITION AND RESPONSE: A PERSPECTIVE FROM THE INTERNATIONAL TRANSPORTER CONSORTIUM Sook Wah Yee University of California San Francisco, USA Membrane transporters are critical determinants of drug disposition, toxicity and response. They are becoming increasingly important in drug development both as drug targets and sites of clinical drug-drug interactions, DDIs. In this short course, I will focus on transporters in the Solute Carrier and ATP Binding Cassette Superfamilies, that have common and reduced function polymorphisms which are considered highly influenced to drug response and disposition by the International Transporter Consortium (see Clinical Pharmacology and Therapeutics, 104, 803-817, 2018). Examples will include highly important polymorphisms in OATP1B1 and BCRP, as well as OCT1, that was recently highlighted by the International Transporter Consortium as a transporter with important polymorphisms that should be considered in drug development programs. Finally, I will highlight commonly used databases for research relevant to membrane transporters. 3 12th International ISSX Meeting Speaker Abstracts SC1.4 - CAN BSEP INHIBITION TESTING IN DRUG DISCOVERY AND DEVELOPMENT REDUCE LIVER INJURY RISK? AN INTERNATIONAL TRANSPORTER CONSORTIUM PERSPECTIVE Gerry Kenna Safer Medicines Trust, United Kingdom The Bile Salt Export Pump (BSEP) is a protein located in the apical plasma membrane domain of hepatocytes, which mediates ATP-dependent vectorial efflux of bile acids into bile. Inhibition of BSEP activity has emerged as one of several important mechanisms by which idiosyncratic drug induced liver injury (DILI) may arise in humans, but not in the animal species used in nonclinical drug safety studies. Recently, the International Transporter Consortium (ITC) has recommended that proactive evaluation and understanding of BSEP inhibition can aid internal decision making on DILI risk in drug discovery and development and has provided pragmatic guidance on how this can be undertaken (see: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6220754). The objective is to reduce and manage DILI risk. The reasons for these recommendations will be presented. In addition the advantages and limitations of the available methods for assessment of BSEP inhibition, and evaluation of its potential adverse functional consequences, will be discussed. Most commonly, BSEP inhibition by drugs is evaluated in vitro using inverted membrane vesicles from insect cells transiently transfected with plasmid vectors that encode the protein. When interpreting the data provided by these and other in vitro methods, it is important to assess potency by determination of an IC50. When considering potential DILI risk, the in vitro BSEP IC50 value should be compared to the maximum total plasma drug concentration at steady state. Various follow up studies can further aid the interpretation of in vitro BSEP inhibition data and
Recommended publications
  • United States July 2016 2 Table of Contents
    Deuterium Labelled Compounds United States July 2016 2 Table of Contents International Distributors 3 Corporate Overview 4 General Information 5 Pricing and Payment 5 Quotations 5 Custom Synthesis 5 Shipping 5 Quality Control 6 Quotations 6 Custom Synthesis 6 Shipping 6 Quality Control 6 Chemical Abstract Service Numbers 6 Handling Hazardous Compounds 6 Our Products are Not Intended for Use in Humans 7 Limited Warranty 7 Packaging Information 7 Alphabetical Listings 8 Stock Clearance 236 Products by Category 242 n-Alkanes 243 α-Amino Acids, N-Acyl α-Amino Acids, N-t-BOC Protected α-Amino Acid 243 and N-FMOC Protected α-Amino Acids Buffers and Reagents for NMR Studies 245 Detergents 245 Environmental Standards 246 Fatty Acids and Fatty Acid Esters 249 Flavours and Fragrances 250 Gases 253 Medical Research Products 254 Nucleic Acid Bases and Nucleosides 255 Pesticides and Pesticide Metabolites 256 Pharmaceutical Standards 257 Polyaromatic Hydrocarbons (PAHs), Alkyl-PAHs, Amino-PAHs, 260 Hydroxy-PAHs and Nitro-PAHs Polychlorinated Biphenyls (PCBs) 260 Spin Labels 261 Steroids 261 3 International Distributors C Beijng Zhenxiang H EQ Laboratories GmbH Australia K Technology Company Graf-von-Seyssel-Str. 10 Rm. 15A01, Changyin Bld. 86199 Augsburg Austria H No. 88, YongDingLu Rd. Germany Beijing 100039 Tel.: (49) 821 71058246 Belgium J China Fax: (49) 821 71058247 Tel.: (86) 10-58896805 [email protected] China C Fax: (86) 10-58896158 www.eqlabs.de Czech Republic H [email protected] Germany, Austria, China Czech Republic, Greece, Denmark I Hungary,
    [Show full text]
  • C:\Data\Ndaenjuvia\AP LTR 05-07-04
    NDA 21-443 Package Insert ENJUVIA™ (synthetic conjugated estrogens, B) Tablets Rx only ESTROGENS INCREASE THE RISK OF ENDOMETRIAL CANCER Close clinical surveillance of all women taking estrogens is important. Adequate diagnostic measures, including endometrial sampling when indicated, should be undertaken to rule out malignancy in all cases of undiagnosed persistent or recurring abnormal vaginal bleeding. There is no evidence that the use of “natural” estrogens results in a different endometrial risk profile than synthetic estrogens at equivalent estrogen doses. (See WARNINGS, Malignant neoplasms, Endometrial cancer.) CARDIOVASCULAR AND OTHER RISKS Estrogens with or without progestins should not be used for the prevention of cardiovascular disease. (See WARNINGS, Cardiovascular disorders.) The Women’s Health Initiative (WHI) study reported increased risks of myocardial infarction, stroke, invasive breast cancer, pulmonary emboli, and deep vein thrombosis in postmenopausal women (50 to 79 years of age) during 5 years of treatment with oral conjugated estrogens (CE 0.625 mg) combined with medroxyprogesterone acetate (MPA 2.5 mg) relative to placebo. (See CLINICAL PHARMACOLOGY, Clinical Studies). The Women’s Health Initiative Memory Study (WHIMS), a substudy of WHI, reported increased risk of developing probable dementia in postmenopausal women 65 years of age or older during 4 years of treatment with oral conjugated estrogens plus medroxyprogesterone acetate relative to placebo. It is unknown whether this finding applies to younger postmenopausal women or to women taking estrogen alone therapy. (See CLINICAL PHARMACOLOGY, Clinical Studies.) Other doses of oral conjugated estrogens with medroxyprogesterone acetate, and other combinations and dosage forms of estrogens and progestins were not studied in the WHI clinical trials and, in the absence of comparable data, these risks should be assumed to be similar.
    [Show full text]
  • Obeticholic Acid and INT-767 Modulate Collagen Deposition in a NASH in Vitro Model Beatrice Anfuso 1, Claudio Tiribelli 1, Luciano Adorini2 & Natalia Rosso 1*
    www.nature.com/scientificreports OPEN Obeticholic acid and INT-767 modulate collagen deposition in a NASH in vitro model Beatrice Anfuso 1, Claudio Tiribelli 1, Luciano Adorini2 & Natalia Rosso 1* Pharmacological treatments for non-alcoholic steatohepatitis (NASH) are still unsatisfactory. Fibrosis is the most signifcant predictor of mortality and many anti-fbrotic agents are under evaluation. Herein, we assessed in vitro the efects of the FXR agonist obeticholic acid (OCA) and the dual FXR/TGR5 agonist INT-767 in a well-established co-culture NASH model. Co-cultures of human hepatoma and hepatic stellate (HSCs) cells were exposed to free fatty acids (FFAs) alone or in combination with OCA or INT-767. mRNA expression of HSCs activation markers and FXR engagement were evaluated at 24, 96 and 144 hours. Collagen deposition and metalloproteinase 2 and 9 (MMP2-9) activity were compared to tropifexor and selonsertib. FFAs induced collagen deposition and MMP2-9 activity reduction. Co- treatment with OCA or INT-767 did not afect ACTA2 and COL1A1 expression, but signifcantly reduced FXR and induced SHP expression, as expected. OCA induced a dose-dependent reduction of collagen and induced MMP2-9 activity. Similarly, INT-767 induced collagen reduction at 96 h and a slight increase in MMP2-9. Tropifexor and Selonsertib were also efective in collagen reduction but showed no modulation of MMP2-9. All tested compounds reduced collagen deposition. OCA exerted a more potent and long-lasting efect, mainly related to modulation of collagen turn-over and MMP2-9 activity. Obesity prevalence is booming in both hig- and low-income countries has led to a surge in non-alcoholic fatty liver disease (NAFLD), a condition characterized by liver steatosis.
    [Show full text]
  • Could Mycolactone Inspire New Potent Analgesics? Perspectives and Pitfalls
    toxins Review Could Mycolactone Inspire New Potent Analgesics? Perspectives and Pitfalls 1 2 3, 4, , Marie-Line Reynaert , Denis Dupoiron , Edouard Yeramian y, Laurent Marsollier * y and 1, , Priscille Brodin * y 1 France Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France 2 Institut de Cancérologie de l’Ouest Paul Papin, 15 rue André Boquel-49055 Angers, France 3 Unité de Microbiologie Structurale, Institut Pasteur, CNRS, Univ. Paris, F-75015 Paris, France 4 Equipe ATIP AVENIR, CRCINA, INSERM, Univ. Nantes, Univ. Angers, 4 rue Larrey, F-49933 Angers, France * Correspondence: [email protected] (L.M.); [email protected] (P.B.) These three authors contribute equally to this work. y Received: 29 June 2019; Accepted: 3 September 2019; Published: 4 September 2019 Abstract: Pain currently represents the most common symptom for which medical attention is sought by patients. The available treatments have limited effectiveness and significant side-effects. In addition, most often, the duration of analgesia is short. Today, the handling of pain remains a major challenge. One promising alternative for the discovery of novel potent analgesics is to take inspiration from Mother Nature; in this context, the detailed investigation of the intriguing analgesia implemented in Buruli ulcer, an infectious disease caused by the bacterium Mycobacterium ulcerans and characterized by painless ulcerative lesions, seems particularly promising. More precisely, in this disease, the painless skin ulcers are caused by mycolactone, a polyketide lactone exotoxin. In fact, mycolactone exerts a wide range of effects on the host, besides being responsible for analgesia, as it has been shown notably to modulate the immune response or to provoke apoptosis.
    [Show full text]
  • Systems and Chemical Biology Approaches to Study Cell Function and Response to Toxins
    Dissertation submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences Presented by MSc. Yingying Jiang born in Shandong, China Oral-examination: Systems and chemical biology approaches to study cell function and response to toxins Referees: Prof. Dr. Rob Russell Prof. Dr. Stefan Wölfl CONTRIBUTIONS The chapter III of this thesis was submitted for publishing under the title “Drug mechanism predominates over toxicity mechanisms in drug induced gene expression” by Yingying Jiang, Tobias C. Fuchs, Kristina Erdeljan, Bojana Lazerevic, Philip Hewitt, Gordana Apic & Robert B. Russell. For chapter III, text phrases, selected tables, figures are based on this submitted manuscript that has been originally written by myself. i ABSTRACT Toxicity is one of the main causes of failure during drug discovery, and of withdrawal once drugs reached the market. Prediction of potential toxicities in the early stage of drug development has thus become of great interest to reduce such costly failures. Since toxicity results from chemical perturbation of biological systems, we combined biological and chemical strategies to help understand and ultimately predict drug toxicities. First, we proposed a systematic strategy to predict and understand the mechanistic interpretation of drug toxicities based on chemical fragments. Fragments frequently found in chemicals with certain toxicities were defined as structural alerts for use in prediction. Some of the predictions were supported with mechanistic interpretation by integrating fragment- chemical, chemical-protein, protein-protein interactions and gene expression data. Next, we systematically deciphered the mechanisms of drug actions and toxicities by analyzing the associations of drugs’ chemical features, biological features and their gene expression profiles from the TG-GATEs database.
    [Show full text]
  • Addyi Generic Name: Flibanserin Manufacturer
    Brand Name: Addyi Generic Name: Flibanserin Manufacturer: Sprout Pharmaceuticals Drug Class: Central Nervous System Agent, Serotonin Agonist, Dopamine antagonist Uses: Labeled Uses: Indicated for the treatment of premenopausal women with acquired, generalized hypoactive sexual desire disorder (HSDD) as characterized by low sexual desire that causes marked distress or interpersonal difficulty and is NOT due to: A co-existing medical or psychiatric condition, problems within the relationship, or the effects of a medication or other drug substance. Unlabeled Uses: none. Mechanism of Action: The mechanism of action for flibanserin in the treatment of hypoactive sexual desire disorder is unknown. Flibanserin has high affinity for serotonin (5-hydroxytryptamine or 5-HT) 1A receptors, as an agonist, and 5-HT2A receptors, as an antagonist, and moderate affinity for 5- HT2B, 5-HT2C, and dopamine D4 receptors as an antagonist Pharmacokinetics: Absorption: Tmax 0.75 hours Vd 50L t ½ 11 hours Clearance Not reported Protein binding 98% (albumin) Bioavailability 33% Metabolism: Flibanserin is extensively metabolized primarily by CYP3A4 and, to a lesser extent, CYP2C19 to at least 35 metabolites, with most of the metabolites occurring in low concentrations in plasma. Elimination: Flibanserin is primarily excreted through the kidneys in to urine (44%) and feces (51%). Two metabolites could be characterized that showed plasma concentration similar to that achieved with flibanserin: 6,21-dihydroxy-flibanserin-6,21-disulfate and 6- hydroxy-flibanserin-6-sulfate. These two metabolites are inactive. Efficacy: Katz M, DeRogatis LR, Ackerman R, et al. Efficacy of flibanserin in women with hypoactive sexual desire disorder: results from the BEGONIA trial. J Sex Med.
    [Show full text]
  • Philip M. Cox January 27, 2017
    CURRICULUM VITAE Philip M. Cox January 27, 2017 Educational History: Ph.D. 2016 Program in Pharmacology Johns Hopkins University School of Medicine Mentor: Namandjé N. Bumpus, Ph.D. B.S. 2010 Biology-Chemistry Southern Nazarene University Professional Experience Assistant Professor 2017 - Azusa Pacific University, Azusa, CA Department of Biology and Chemistry Graduate Student 2012-2016 Lab of Namandje Bumpus, Ph.D. Johns Hopkins University School of Medicine, Baltimore, MD Research Technician 2010-2012 Lab of Darise Farris, Ph.D. Oklahoma Medical Research Foundation, OKC, OK Summer Student 2009 Lab of Kenneth Kaye, Ph.D. Harvard Medical School, Boston, MA Summer Student 2008 Lab of John Iandolo, Ph.D. University of Oklahoma Health Sciences Center, OKC, OK Summer Student 2007 Lab of Swapan Nath, Ph.D. Oklahoma Medical Research Foundation, OKC, OK External Funding: National Science Foundation Graduate Research Fellowship, September 2013-December 2016 Peer-Reviewed Publications: Cox PM, Bumpus NN. (2016) Single Heteroatom Substitutions in the Efavirenz Oxazinone Ring Impact Metabolism by CYP2B6. ChemMedChem. doi:10.1002/cmdc.201600519 Cox PM, Bumpus NN. (2014) Structure-Activity Studies Reveal the Oxazinone Ring Is a Determinant of Cytochrome P450 2B6 Activity Toward Efavirenz. ACS Med Chem Lett. 10:1156- 1161. PMCID: PMC4191608 Dumas EK, Nguyen ML, Cox PM, Rodgers H, Peterson JL, James JA, Farris AD. (2013) Stochastic humoral immunity to Bacillus anthracis protective antigen: identification of anti-peptide IgG correlating with seroconversion to Lethal Toxin neutralization. Vaccine. 14:1856-63. PMCID: PMC3614092 Garman L, Dumas EK, Kurella S, Hunt JJ, Crowe SR, Nguyen ML, Cox PM, James JA, Farris AD. (2012) MHC class II and non-MHC class II genes differentially influence humoral immunity to Bacillus anthracis lethal factor and protective antigen.
    [Show full text]
  • Long-Term Administration of Tolvaptan to Patients with Decompensated
    Int. J. Med. Sci. 2020, Vol. 17 874 Ivyspring International Publisher International Journal of Medical Sciences 2020; 17(7): 874-880. doi: 10.7150/ijms.41454 Research Paper Long-term administration of Tolvaptan to patients with decompensated cirrhosis Kengo Kanayama1, Tetsuhiro Chiba1, Kazufumi Kobayashi1, Keisuke Koroki1, Susumu Maruta1, Hiroaki Kanzaki1, Yuko Kusakabe1, Tomoko Saito1, Soichiro Kiyono1, Masato Nakamura1, Sadahisa Ogasawara1, Eiichiro Suzuki1, Yoshihiko Ooka1, Shingo Nakamoto1, Shin Yasui1, Tatsuo Kanda2, Hitoshi Maruyama3, Jun Kato1, Naoya Kato1 1. Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan. 2. Department of Gastroenterology and Hepatology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo 173-8610, Japan. 3. Department of Gastroenterology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan. Corresponding author: Tetsuhiro Chiba, M.D., Ph.D. Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan. Telephone: +81-43-2262083, Fax: +81-43-2262088, E-mail: [email protected]. © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2019.10.24; Accepted: 2020.02.20; Published: 2020.03.15 Abstract Aim: Tolvaptan, an oral vasopressin-2 antagonist, sometimes improves hepatic edema including ascites in patients with decompensated cirrhosis. In this study, we examined the effectiveness and survival advantage in patients with the long-term administration of tolvaptan.
    [Show full text]
  • DOCTORAL THESIS Effects of Glucocorticoid Overload on Central
    DOCTORAL THESIS Effects of glucocorticoid overload on central regulatory systems involved in responses to stress – preclinical investigations into putative molecular targets in neuroimaging of stress-related mood disorders Ahmad, Rabia Award date: 2013 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 07. Oct. 2021 “Effects of glucocorticoid overload on central regulatory systems involved in responses to stress – preclinical investigations into putative molecular targets in neuroimaging of stress-related mood disorders” By Rabia Ahmad, BSc (Hons). A thesis submitted in partial fulfilment of the requirements for the degree of PhD Department of Life Sciences University of Roehampton 2013 Abstract Irregularities of the Hypothalamic Pituitary Adrenal (HPA) axis are implicated in stress-related mood disorders. The ensuing long-term elevations in circulating glucocorticoids are associated with neurobiological changes seen in depression. This thesis aims to identify some of the brain mechanisms by which exposure to chronic stress may lead to depression using a preclinical experimental approach.
    [Show full text]
  • Supplementary Materials
    Supplementary Materials Table S1. The significant drug pairs in potential DDIs examined by the two databases. Micromedex Drugs.com List of drugs paired PK-PD Mechanism details 1. Amiodarone— PD Additive QT-interval prolongation Dronedarone 2. Amiodarone— PK CYP3A inhibition by Ketoconazole Ketoconazole 3. Ciprofloxacin— PD Additive QT-interval prolongation Dronedarone 4. Cyclosporine— PK CYP3A inhibition by Cyclosporine Dronedarone 5. Dronedarone— PK CYP3A inhibition by Erythromycin Erythromycin 6. Dronedarone— PD Additive QT-interval prolongation Flecainide 7. Dronedarone— PK CYP3A4 inhibition by Itraconazole Itraconazole 8. Dronedarone— PK Contraindication Major CYP3A inhibition by Ketoconazole Ketoconazole 9. Dronedarone— PD Additive QT-interval prolongation Procainamide PD 10. Dronedarone—Sotalol Additive QT-interval prolongation 11. Felodipine— PK CYP3A inhibition by Itraconazole Itraconazole 12. Felodipine— PK CYP3A inhibition by Ketoconazole Ketoconazole 13. Itraconazole— PK CYP3A inhibition by Itraconazole Nisoldipine 14. Ketoconazole— PK CYP3A inhibition by Ketoconazole Nisoldipine 15. Praziquantel— PK CYP induction by Rifampin Rifampin PD 1. Amikacin—Furosemide Additive or synergistic toxicity 2. Aminophylline— Decreased clearance of PK Ciprofloxacin Theophylline by Ciprofloxacin 3. Aminophylline— PK Decreased hepatic metabolism Mexiletine 4. Amiodarone— PD Additive effects on QT interval Ciprofloxacin 5. Amiodarone—Digoxin PK P-glycoprotein inhibition by Amiodarone 6. Amiodarone— PD, PK Major Major Additive effects on QT Erythromycin prolongation, CYP3A inhibition by Erythromycin 7. Amiodarone— PD, PK Flecainide Antiarrhythmic inhibition by Amiodarone, CYP2D inhibition by Amiodarone 8. Amiodarone— PK CYP3A inhibition by Itraconazole Itraconazole 9. Amiodarone— PD Antiarrhythmic inhibition by Procainamide Amiodarone 10. Amiodarone— PK CYP induction by Rifampin Rifampin PD Additive effects on refractory 11. Amiodarone—Sotalol potential 12. Amiodarone— PK CYP3A inhibition by Verapamil Verapamil 13.
    [Show full text]
  • Preclinical Evaluation of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma by Andrea Shergalis
    Preclinical Evaluation of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma By Andrea Shergalis A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Medicinal Chemistry) in the University of Michigan 2020 Doctoral Committee: Professor Nouri Neamati, Chair Professor George A. Garcia Professor Peter J. H. Scott Professor Shaomeng Wang Andrea G. Shergalis [email protected] ORCID 0000-0002-1155-1583 © Andrea Shergalis 2020 All Rights Reserved ACKNOWLEDGEMENTS So many people have been involved in bringing this project to life and making this dissertation possible. First, I want to thank my advisor, Prof. Nouri Neamati, for his guidance, encouragement, and patience. Prof. Neamati instilled an enthusiasm in me for science and drug discovery, while allowing me the space to independently explore complex biochemical problems, and I am grateful for his kind and patient mentorship. I also thank my committee members, Profs. George Garcia, Peter Scott, and Shaomeng Wang, for their patience, guidance, and support throughout my graduate career. I am thankful to them for taking time to meet with me and have thoughtful conversations about medicinal chemistry and science in general. From the Neamati lab, I would like to thank so many. First and foremost, I have to thank Shuzo Tamara for being an incredible, kind, and patient teacher and mentor. Shuzo is one of the hardest workers I know. In addition to a strong work ethic, he taught me pretty much everything I know and laid the foundation for the article published as Chapter 3 of this dissertation. The work published in this dissertation really began with the initial identification of PDI as a target by Shili Xu, and I am grateful for his advice and guidance (from afar!).
    [Show full text]
  • Classification Decisions Taken by the Harmonized System Committee from the 47Th to 60Th Sessions (2011
    CLASSIFICATION DECISIONS TAKEN BY THE HARMONIZED SYSTEM COMMITTEE FROM THE 47TH TO 60TH SESSIONS (2011 - 2018) WORLD CUSTOMS ORGANIZATION Rue du Marché 30 B-1210 Brussels Belgium November 2011 Copyright © 2011 World Customs Organization. All rights reserved. Requests and inquiries concerning translation, reproduction and adaptation rights should be addressed to [email protected]. D/2011/0448/25 The following list contains the classification decisions (other than those subject to a reservation) taken by the Harmonized System Committee ( 47th Session – March 2011) on specific products, together with their related Harmonized System code numbers and, in certain cases, the classification rationale. Advice Parties seeking to import or export merchandise covered by a decision are advised to verify the implementation of the decision by the importing or exporting country, as the case may be. HS codes Classification No Product description Classification considered rationale 1. Preparation, in the form of a powder, consisting of 92 % sugar, 6 % 2106.90 GRIs 1 and 6 black currant powder, anticaking agent, citric acid and black currant flavouring, put up for retail sale in 32-gram sachets, intended to be consumed as a beverage after mixing with hot water. 2. Vanutide cridificar (INN List 100). 3002.20 3. Certain INN products. Chapters 28, 29 (See “INN List 101” at the end of this publication.) and 30 4. Certain INN products. Chapters 13, 29 (See “INN List 102” at the end of this publication.) and 30 5. Certain INN products. Chapters 28, 29, (See “INN List 103” at the end of this publication.) 30, 35 and 39 6. Re-classification of INN products.
    [Show full text]