Fauna of Bryozoa from Kongsfjorden, West Spitsbergen

Total Page:16

File Type:pdf, Size:1020Kb

Fauna of Bryozoa from Kongsfjorden, West Spitsbergen vol. 23, no. 2, pp. 193–206, 2002 Fauna of Bryozoa from Kongsfjorden, West Spitsbergen Piotr KUKLIŃSKI Instytut Oceanologii, Polska Akademia Nauk, ul. Powstanców Warszawy 55, 81−712 Sopot, Poland (mailing address) < [email protected]> UNIS (The University Courses on Svalbard), P.O. Box 156, 9171 Longyearbyean, Norway ABSTRACT: Bryozoans were collected in Kongsfjorden (79°N and 12°E) in the summer seasons of 1997, 1998, and 1999. In the total of 44 grab, dredge, and SCUBA diving sam− ples 143 taxa were determined: 123 species, 17 to the generic and 3 to the family level. In the investigated material were 24% Arctic species and 66% boreal−Arctic species. This sug− gests a rather Arctic nature of the fjord. A few boreal species indicate the influence of warm water masses (West Spitsbergen Current). The majority of species (76%) have an encrust− ing life form. There were 5 species with a frequency of occurrence higher than 20%. These are Electra crustulenta var. arctica (31.82%); Cylindroporella tubulosa (27.27%); Tegella arctica (22.73%); Tegella armifera (20.45%); and Hippothoa divaricata var. arctica (20.45%). Among all identified species 23 were recorded for the first time in the area of Svalbard archipelago. Most (79%) of newly noted species have Arctic distributions. The lower sampling effort of previous researchers most likely accounts for the present enrich− ment of the list of Bryozoa of Kongsfjorden. Key words: Arctic, Spitsbergen, Kongsfjorden, Bryozoa. Introduction Bryozoa are benthic organisms, occurring mainly in marine ecosystems. The majority of species (ca. to 5000) live in the sea, but some are also found in freshwaters (Ryland 1970). In Arctic ecosystems these animals belongs to the most specious groups (Gulliksen et al. 1999). Initial investigations into Bryozoa in Svalbard waters took place at the end of the last century. These were mostly taxo− nomical works undertaken by Bidenkap (1897, 1900a, 1900b), Kluge (1906) and Nordgaard (1900, 1918). Recent papers by Różycki and Gruszczyński (1986), and Lippert (1998) were the first studies where ecology of bryozoans occurring in area Pol. Polar Res. 23 (2): 193–206, 2002 194 Piotr Kukliński o o 11 10' 20' 30' 40' 50' 12 10' 20' 30' N E Tidal glaciers 06' D 06' 50 R Grab KF 10 O 79°N J Dredge 50 F 200 100 S SCUBA diving S Kapp Guissez 04' 04' O 10 Bryozoans present R K 100 50 300 02' 11 200 02' 15°E K n g s f j o r O K o d r e n 12 300 N G n a S F 9 300 400 J O 7 79o R 79o N D 13 10 E 10 200 N 8 Blomstrandoya 50 4 50 58' 14 L 58' 200 Kvadehuken o v 300 e 6 300 n 3 o y 56' GREENLAND SEA 5 200 a 56' n e 50 100 200 100 50 54' 2 54' 400 100 1 50 52' 52' 11o 10' 20' 30' 40' 50' 12o E 10' 20' 30' Fig. 1. Area of study and sampling station. covered by the present research were published. This paper deals mainly with faunistics and is an attempt to prepare an updated list of the Bryozoa of Kongs− fjorden (West Spitsbergen). The study presented is also part of the International Project BIODAF (Biodiversity and fluxes in Arctic glaciated fiords). Area of study Kongsfjorden is situated on the western coast of Spitsbergen at 79°N and 12°E (Fig. 1). The fjord is 26.1 km long and on average 8 km wide. The whole area of the fjord is 208.8 km2. The maximum depth is 428 m while the average is 141 m. The length of coastline of the fjord is 89.6 km, with 15.9 km being covered by glaciers. The main environmental factors responsible for the conditions in the fjord are the depth, the distance from the open sea and from the glaciers, and climate. Kongs− fjorden is devoid of sill at its entrance, which causes a strong influence of oceanic waters up on the hydrological regime (Węsławski et al. 1991, Ito and Kudoh 1997). There are two main water masses which influence Kongsfjorden. The first is the West Spitsbergen Current, which is a branch of warm (4°C) and highly saline (35 PSU) Norwegian Current. This current flows along the western and northern parts of Spitsbergen (Loeng 1991). Transportation of these warm water masses causes a Fauna of Bryozoa from West Spitsbergen 195 milder climate compared to other areas at the same latitude (Gammelsrod and Rudels 1983). The second water mass influencing this area is the East Spitsbergen Current. The cold, dense, and highly saline water of this current originates from the Arctic Ocean. It flows along the eastern coast of Spitsbergen down to the southern tip of the island, where it becames the Sorkapp Current. The Sorkapp Current brings waters, with temperatures from –1,5 to 1°C and salinity of 34–35 PSU to the western coast of Spitsbergen (Loeng 1991, Beszczyńska et al. 1997). The amount of suspended matter close to glaciers can reach 300–500 mg/dm3, decreasing in the central and outer parts of the fjord in the summer. In the inner ba− sin the amount in the intermediate water layer may reach from 2–3 mg dm–3 to 20–25 mg dm–3 in the central part, whereas the relatively clear water in outer parts of the fjord contains only 0.5 mg dm–3 (Elverhoi et al. 1983, Zajączkowski 2000). Materials and methods Samples were taken during the 1997 and 1998 cruises of r/v Oceania and the 1999 cruise of r/v Jan Mayen. Three techniques were used to collect samples: Van Veen grab, dredge, and SCUBA diving. Among 44 samples, 13 were col− lected by SCUBA diving, 30 by grab and 1 by dredge (Table 1). Bryozoa were found on rocks, stones, shells, algae and soft sediment. The distribution of sam− pling stations is shown in Fig. 1. SCUBA diving was used to collect samples down to 25 m, while all the other samples were collected by grab and dredge. In the case of rocks, stones, and shells the collected material was dried. Algae, soft sediment samples, and bushy bryozoans were placed in 4% formaline. Some al− gae with encrusted Bryozoa were placed in the freezer. Material from the freezer was refrozen in the laboratory and, after being used, preserved in 4% formaline. Species determination was done using a stereomicroscope. The classification of the studied bryozoans and their geographical distribution were based on Kluge (1962) and Gontar and Danisienko (1989), with some updated corrections done by Hayward and Ryland (1979, 1985, 1996) and Hayward (1985, 1994). Most of the species not identified in this study were those which had been mechanically damaged. Table 1 Sampling effort. First number denotes number of samples analysed; number of samples with Bryozoa given in brackets. Depth intervals (m) 0–5 6–25 26–50 51–200 >200 SCUBA 1 (1) 12 (12) 0 0 0 Grab 0 0 13 (4) 7 (4) 10 (2) Dredge 0 0 1 (1) 0 0 196 Piotr Kukliński Frequencies of occurrence were calculated using following equation: F = n n–1 i F – frequency of given taxon [%] n – number of samples where given taxon was present i n – number of all samples Results 143 taxa have been recognized: 123 species, and 17 to the generic and 3 to the family level (Table 2). Identified taxa belong to three orders: Cyclostomata, Cteno− stomata and Cheilostomata. In the collected material the most abundant taxa were from the order of Cheilostomata (79%). The lowest number of taxa were repre− sented by the order Ctenostomata (5%). There were three species (Electra crustu− lenta var. arctica, Callopora craticula, Porella minuta) which occurred in the whole range of sampled depths. 38 species were present only in one depth interval. Based on the classification used by Gontar and Danisienko (1989) in the investi− gated material contained 24% species of Arctic, 66% species of boreal−Arctic, 3% species of amphiboreal, 2% species of high boreal, 2% species of boreal and 3% species of subtropical−boreal origin. The majority of the species (76 %) were of an encrusting life form. There were 5 species which had a frequency of occurrence higher than 20% (Table 2). These were: Electra crustulenta var. arctica (31.82%); Cylindroporella tubulosa (27.27%); Tegella arctica (22.73%); Tegella armifera (20.45%); and Hippothoa divaricata var. arctica (20.45%). Taking into account the data by Kluge (1975), Lippert (1998) and Gulliksen et al. (1999) there were 23 species (marked by + sign in Table 2) which were recorded for the first time in the investigated area. The relationship between the number of taxa and the number of samples is shown in Fig. 2. Discussion Large−scale patterns in many planktonic, nektonic, and benthic taxa distribu− tions show a marked decline in species richness from the tropics to the pole (Stevens 1989, Ormond et al. 1997) There are, however, cases to which that rule does not apply, like for example soft bottom communities (Kendall and Aschan 1993). Bryozoa are very species rich in the Arctic. Kluge (1975) recorded 187 spe− cies in the Kara Sea (101 of them found in that study as well) and 277 species in the Barents Sea (117 of them found in Kongsfjorden). But still the number of species seems to be lower than those occurring in lower latitudes: for example in the Medi− terranean Sea 370 species were found (Clarke and Lidgard 2000). Kluge (1975) found 149 species in the vicinity of Franz Joseph Land, (where conditions are Fauna of Bryozoa from West Spitsbergen 197 number of taxa number of samples Fig.
Recommended publications
  • Bryozoan Studies 2019
    BRYOZOAN STUDIES 2019 Edited by Patrick Wyse Jackson & Kamil Zágoršek Czech Geological Survey 1 BRYOZOAN STUDIES 2019 2 Dedication This volume is dedicated with deep gratitude to Paul Taylor. Throughout his career Paul has worked at the Natural History Museum, London which he joined soon after completing post-doctoral studies in Swansea which in turn followed his completion of a PhD in Durham. Paul’s research interests are polymatic within the sphere of bryozoology – he has studied fossil bryozoans from all of the geological periods, and modern bryozoans from all oceanic basins. His interests include taxonomy, biodiversity, skeletal structure, ecology, evolution, history to name a few subject areas; in fact there are probably none in bryozoology that have not been the subject of his many publications. His office in the Natural History Museum quickly became a magnet for visiting bryozoological colleagues whom he always welcomed: he has always been highly encouraging of the research efforts of others, quick to collaborate, and generous with advice and information. A long-standing member of the International Bryozoology Association, Paul presided over the conference held in Boone in 2007. 3 BRYOZOAN STUDIES 2019 Contents Kamil Zágoršek and Patrick N. Wyse Jackson Foreword ...................................................................................................................................................... 6 Caroline J. Buttler and Paul D. Taylor Review of symbioses between bryozoans and primary and secondary occupants of gastropod
    [Show full text]
  • Grischenko Annals 1
    Paper in: Patrick N. Wyse Jackson & Mary E. Spencer Jones (eds) (2002) Annals of Bryozoology: aspects of the history of research on bryozoans. International Bryozoology Association, Dublin, pp. viii+381. BRYOZOAN STUDIES IN THE BERING SEA 97 History of investigations and current state of knowledge of bryozoan species diversity in the Bering Sea Andrei V. Grischenko Systematics and Evolution, Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, 060–0810, Japan 1. Introduction 2. Investigations of the American bryozoological school 3. Investigations of the Russian bryozoological school 4. Current knowledge on the bryozoans of the Bering Sea 4.1. Total diversity 4.2 Regional diversity 5. Discussion 6. Acknowledgements 1. Introduction The Bryozoa are one of the most abundant and widely distributed groups of macrobenthos in the Bering Sea. Although investigations of the phylum have taken place over a century, knowledge of species diversity in this sea is still very incomplete. The coastal waters of the Bering Sea belong territorially to Russia and the United States of America and, accordingly, study of the bryofauna has been achieved generally by the efforts of the Russian and American bryozoological schools. For a number of reasons, their investigations were conducted independently and, because the investigators identified specimens collected within their “national” sea areas, species occurring in the eastern and southeastern shelves of the sea were generally studied by American scientists and those in western coastal waters by Russians. Therefore the history of bryozoan investigations of the Bering Sea is most usefully presented according to the two lines of research. 2. Investigations of the American bryozoological school The first reliable data about bryozoans in the Bering Sea were connected with biological investigations of the Alaskan shelf and reported by Alice Robertson.1 She recorded three species – Membranipora membranacea (L.), Bugula purpurotincta (later changed to B.
    [Show full text]
  • Individual Autozooidal Behaviour and Feeding in Marine Bryozoans
    Individual autozooidal behaviour and feeding in marine bryozoans Natalia Nickolaevna Shunatova, Andrew Nickolaevitch Ostrovsky Shunatova NN, Ostrovsky AN. 2001. Individual autozooidal behaviour and feeding in marine SARSIA bryozoans. Sarsia 86:113-142. The article is devoted to individual behaviour of autozooids (mainly connected with feeding and cleaning) in 40 species and subspecies of marine bryozoans from the White Sea and the Barents Sea. We present comparative descriptions of the observations and for the first time describe some of autozooidal activities (e.g. cleaning of the colony surface by a reversal of tentacular ciliature beating, variants of testing-position, and particle capture and rejection). Non-contradictory aspects from the main hypotheses on bryozoan feeding have been used to create a model of feeding mechanism. Flick- ing activity in the absence of previous mechanical contact between tentacle and particle leads to the inference that polypides in some species can detect particles at some distance. The discussion deals with both normal and “spontaneous” reactions, as well as differences and similarities in autozooidal behaviour and their probable causes. Approaches to classification of the diversity of bryozoan behav- iour (functional and morphological) are considered. Behavioural reactions recorded are classified using a morphological approach based on the structure (tentacular ciliature, tentacles and entire polypide) performing the reaction. We suggest that polypide protrusion and retraction might be the basis of the origin of some other individual activities. Individual autozooidal behaviour is considered to be a flexible and sensitive system of reactions in which the activities can be performed in different combinations and successions and can be switched depending on the situation.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Marine Flora and Fauna of the Northeastern United States Erect Bryozoa
    NOAA Technical Report NMFS 99 February 1991 Marine Flora and Fauna of the Northeastern United States Erect Bryozoa John S. Ryland Peter J. Hayward U.S. Department of Commerce NOAA Technical Report NMFS _ The major responsibilities of the National Marine Fisheries Service (NMFS) are to monitor and assess the abundance and geographic distribution of fishery resources, to understand and predict fluctuations in the quantity and distribution of these resources, and to establish levels for their optimum use. NMFS i also charged with the development and implementation of policies for managing national fishing grounds, development and enforcement of domestic fisheries regulations, urveillance of foreign fishing off nited States coastal waters, and the development and enforcement of international fishery agreements and policies. NMFS also assists the fishing industry through marketing service and economic analysis programs, and mortgage in­ surance and ve sel construction subsidies. It collects, analyzes, and publishes statistics on various phases of the industry. The NOAA Technical Report NMFS series was established in 1983 to replace two subcategories of the Technical Reports series: "Special Scientific Report-Fisheries" and "Circular." The series contains the following types of reports: Scientific investigations that document long-term continuing programs of NMFS; intensive scientific report on studies of restricted scope; papers on applied fishery problems; technical reports of general interest intended to aid conservation and management; reports that review in considerable detail and at a high technical level certain broad areas of research; and technical papers originating in economics studies and from management investigations. Since this is a formal series, all submitted papers receive peer review and those accepted receive professional editing before publication.
    [Show full text]
  • Comparative Anatomy of Internal Incubational Sacs in Cupuladriid Bryozoans and the Evolution of Brooding in Free-Living Cheilostomes
    JMOR-Cover 1 Spine_sample2.qxd 10/26/09 6:24 PM Page 1 Journal of Morphology Volume 270, Number 12, Month 2009 JOURNAL OF ISSN 0362-2525 Volume 270, Number 12, Month 2009 Volume Pages 1413–0000 Editor: J. Matthias Starck JOURNAL OF MORPHOLOGY 270:1413–1430 (2009) Comparative Anatomy of Internal Incubational Sacs in Cupuladriid Bryozoans and the Evolution of Brooding in Free-Living Cheilostomes Andrew N. Ostrovsky,1,2* Aaron O’Dea3 and Felix Rodrı´guez3 1Department of Invertebrate Zoology, Faculty of Biology and Soil Science, St. Petersburg State University, St. Petersburg 199034, Russia 2Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, Geozentrum, University of Vienna, Vienna A-1090, Austria 3Smithsonian Tropical Research Institute, Center for Tropical Paleoecology and Archeology, PO Box 2072, Balboa, Republic of Panama ABSTRACT Numerous gross morphological attributes Cretaceous (Taylor, 1988, 2000; Jablonski et al., are shared among unrelated free-living bryozoans 1997). The vast majority of living cheilostomes revealing convergent evolution associated with func- brood embryos in externally prominent protective tional demands of living on soft sediments. Here, we chambers with well-developed calcified walls show that the reproductive structures across free-living (hyperstomial ovicells), in which all or at least half groups evolved convergently. The most prominent con- vergent traits are the collective reduction of external of the brooding cavity is above the colony surface. brood chambers (ovicells) and the acquisition of internal Some taxa, however, incubate internally in the brooding. Anatomical studies of four species from the brooding cavity below the colony surface. In this cheilostome genera Cupuladria and Discoporella (Cupu- case, embryos develop in either 1) modified ovicells ladriidae) show that these species incubate their with a reduced ooecium (protective calcified fold of embryos in internal brooding sacs located in the coelom of the ovicell)—endozooidal (brooding cavity is placed the maternal nonpolymorphic autozooids.
    [Show full text]
  • Diversity and Zoogeography of South African Bryozoa
    Diversity and Zoogeography of South African Bryozoa Melissa Kay Boonzaaier Thesis presented for the Degree of Doctor of Philosophy Department of Biodiversity and Conservation Biology University of the Western Cape July 2017 DECLARATION I declare that Diversity and Zoogeography of South African Bryozoa is my own work, that it has not been submitted for any degree or examination in any other university, and that all the sources I have used or quoted have been indicated and acknowledged by complete references. Full name: Melissa Kay Boonzaaier Date: 25 July 2017 Signed: ............... Research outputs from this dissertation Accredited Research Outputs: Manuscript: “Historical review of South African bryozoology: a legacy of European endeavour” (December 2014) Annals of Bryozoology 4: aspects of the history of research on bryozoans, Patrick N. Wyse Jackson and Mary E. Spencer Jones (eds). M.K. Boonzaaier1,2, W.K. Florence1, M.E. Spencer-Jones3 1Natural History Department, Iziko South African Museum, Cape Town, 8000, South Africa 2Biodiversity and Conservation Biology Department, University of the Western Cape, Bellville 7535, South Africa 3Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom Conference Proceedings: Conference name and date: 15th Southern African Marine Science Symposium (SAMSS), 15-18 July 2014, The Konservatorium, University of Stellenbosch, Western Cape, South Africa. Talk title: Species richness and biogeography of cheilostomatous South African Bryozoa – a preliminary study. M.K. Boonzaaier, W.K. Florence and M.J. Gibbons Conference name and date: 6th Annual SAEON GSN Indibano Student Conference, 19-22 August 2013, Kirstenbosch, Cape Town, Western Cape, South Africa. Talk title: “In-depth” investigation of South African bryozoans - diversity of the known and discovery of the unknown.
    [Show full text]
  • The Lophophorate Phyla of British Columbia: Entoprocts,Bryozoans
    The Lophophorate phyla of British Columbia: Entoprocts, Bryozoans, Phoronids, and Brachiopods by Aaron Baldwin, PhD Candidate School of Fisheries and Ocean Science University of Alaska, Fairbanks Questions and comments can be directed to Aaron Baldwin at [email protected] In older metazoan classifications it was customary to group the phyla which bear a lophophore together into a superphylum (sometimes a phylum) called the Lophophorata or Spiralia. In more recent classifications based on morphology, paleontology, and molecular work it become clear that this grouping is artificial. There is strong support for a classification of a group called the Lophotrochozoa, which includes the traditional lophophorates as well as the mollusks, annelids, nemerteans, and a few other phyla. It is likely that the lophophore (an unusual feeding appendage) is primitive in the group and has been lost in some surviving taxa while retained in others. The list of Entoprocta and Bryozoa was taken from O’Donghue & O’Donoghue (1923, 1926) and Osburn (1950, 1952, 1953). More recent changes to the taxonomy were taken from the Bryozoa Home page (www.bryozoa.net), the Integrated Taxonomic Information System (ITIS, www.itis.gov), and the World register of marine species (WoRMS, www.marinespecies.org). It is highly likely that I have missed some changes in classification. With the species list I attempted to err on the side of caution so there are undoubtedly species missing from the list that have been named since 1953 or were subsequently discovered in BC since my last comprehensive source. The freshwater taxa are certainly incomplete (see note at end of checklist).
    [Show full text]
  • A Temporal and Spatial Study of Invertebrate Communities Associated with Hard-Bottom Habitats in the South Atlantic Bight
    18 NOAA Technical Report NMFS 18 A Temporal and Spatial Study of Invertebrate Communities Associated With Hard-Bottom Habitats in the South Atlantic Bight E. L. Wenner, P. Hinde, D. M. Knott, and R. F. Van Dolah November 1984 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service NOAA TECHNICAL REPORTS NMFS The major responsibilities of the National Marine Fisheries Service (NMFS) are to monitor and assess the abundance and geographic distribution of fishery resources, to understand and predict fluctuations in the quantity and distribution of these resources, and to establish levels for optimum use of the resources. NMFS is also charged with the development and implemen­ tation of policies for managing national fishing grounds, development and enforcement of domestic fisheries regulations, surveillance of foreign fishing off United States coastal waters, and the development and enforcement of international fishery agreements and policies. NMFS also assists the fishing industry through marketing service and economic analysis programs, and mortgage insurance and vessel construction subsidies. It collects, analyzes, and publishes statistics on various phases of the industry. The NOAA Technical Report NMFS series was established in 1983 to replace two subcategories of the Technical Reports series: "Special Scientific Report-Fisheries" and "Circular." The series contains the following types of reports: Scientific investigations that document long-term continuing programs of NMFS, intensive scientific reports on studies of restricted scope, papers on applied fishery problems, technical reports of general interest intended to aid conservation and management, reports that review in considerable detail and at a high technical level certain broad areas of research, and technical papers originating in economics studies and from management investigations.
    [Show full text]
  • Compendium of Marine Species from New Caledonia
    fnstitut de recherche pour le developpement CENTRE DE NOUMEA DOCUMENTS SCIENTIFIQUES et TECHNIQUES Publication editee par: Centre IRD de Noumea Instltut de recherche BP A5, 98848 Noumea CEDEX pour le d'veloppement Nouvelle-Caledonie Telephone: (687) 26 10 00 Fax: (687) 26 43 26 L'IRD propose des programmes regroupes en 5 departements pluridisciplinaires: I DME Departement milieux et environnement 11 DRV Departement ressources vivantes III DSS Departement societes et sante IV DEV Departement expertise et valorisation V DSF Departement du soutien et de la formation des communautes scientifiques du Sud Modele de reference bibliographique it cette revue: Adjeroud M. et al., 2000. Premiers resultats concernant le benthos et les poissons au cours des missions TYPATOLL. Doe. Sei. Teeh.1I 3,125 p. ISSN 1297-9635 Numero 117 - Octobre 2006 ©IRD2006 Distribue pour le Pacifique par le Centre de Noumea. Premiere de couverture : Recifcorallien (Cote Quest, NC) © IRD/C.Oeoffray Vignettes: voir les planches photographiques Quatrieme de couverture . Platygyra sinensis © IRD/C GeoITray Matt~riel de plongee L'Aldric, moyen sous-marine naviguant de I'IRD © IRD/C.Geoffray © IRD/l.-M. Bore Recoltes et photographies Trailement des reeoHes sous-marines en en laboratoire seaphandre autonome © IRD/l.-L. Menou © IRDIL. Mallio CONCEPTIONIMAQUETIElMISE EN PAGE JEAN PIERRE MERMOUD MAQUETIE DE COUVERTURE CATHY GEOFFRAY/ MINA VILAYLECK I'LANCHES PHOTOGRAPHIQUES CATHY GEOFFRAY/JEAN-LoUIS MENOU/GEORGES BARGIBANT TRAlTEMENT DES PHOTOGRAPHIES NOEL GALAUD La traduction en anglais des textes d'introduction, des Ascidies et des Echinoderrnes a ete assuree par EMMA ROCHELLE-NEwALL, la preface par MINA VILAYLECK. Ce document a ete produit par le Service ISC, imprime par le Service de Reprographie du Centre IRD de Noumea et relie avec l'aimable autorisation de la CPS, finance par le Ministere de la Recherche et de la Technologie.
    [Show full text]
  • Investigations Into the Skeletal Mineralogy of Temperate and Polar Bryozoans
    INVESTIGATIONS INTO THE SKELETAL MINERALOGY OF TEMPERATE AND POLAR BRYOZOANS JENNIFER L LOXTON, BSC MSC SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN MARINE BIOLOGY TO HERIOT WATT UNIVERSITY, SCHOOL OF LIFE SCIENCES MARCH, 2014 The copyright in this thesis is owned by the author. Any quotation from the thesis or use of any of the information contained in it must acknowledge this thesis as the source of the quotation or information. Abstract This study aims to explore the skeletal mineralogy of temperate and Polar bryozoans, investigating variability within and between species in relation to methodological, biological and environmental factors. Oceans are becoming warmer and more acidic and it is becoming increasingly important to increase our knowledge about the responses of marine calcifiers to environmental conditions. Bryozoans are important components of the benthic community globally, however prior to this study relatively little was known about their skeleton composition. This study has contributed over 1700 new mineralogical analyses to the field and provided new skeletal profiles for 115 bryozoan species. The study represents by far the most comprehensive regional profile of bryozoan mineralogy to date with 79% of Scottish species analysed. Targeted experiments have resulted in the documentation of impacts of curational procedures on skeletal mineralogy, resulting in recommendations which are pertinent across taxa in the wider fields of both curation and palaeoclimatography. Evidence is presented of mineral localization in specific skeletal features in bryozoan skeletons which adds to the growing body of data showing MgCO3 localization for mechanical and ecological advantage in marine invertebrates. Prior to this study it was proposed that both “active” biological and “passive” environmental controls influence bryozoan skeletal mineralogy.
    [Show full text]
  • Borror's Species Checklist for the Isles of Shoals Archipelago
    Borror’s Species Checklist for the Isles of Shoals Archipelago May 2009 Edition Meg N. Eastwood, Kipp Quinby, Robin Hadlock Seeley, Christine Bogdanowicz, Hal Weeks, and William E. Bemis Borror’s Species Checklist for Shoals Marine Laboratory May 2009 Edition Meg Eastwood, Kipp Quinby, Christine Bogdanowicz, Robin Hadlock Seeley, Hal Weeks, and William E. Bemis Shoals Marine Laboratory Morse Hall, Suite 113 8 College Road Durham, NH, 03824 Send suggestions for improvements to: [email protected] File Name: SML_Checklist_05_2009.docx Last Saved Date: 5/15/09 12:38 PM TABLE OF CONTENTS TABLE OF CONTENTS i INTRODUCTION TO 2009 REVISION 1 PREFACE TO THE 1995 EDITION BY ARTHUR C. BORROR 3 CYANOBACTERIA 5 Phylum Cyanophyta 5 Class Cyanophyceae 5 Order Chroococcales 5 Order Nostocales 5 Order Oscillatoriales 5 DINOFLAGELLATES 5 Phylum Pyrrophyta 5 Class Dinophyceae 5 Order Dinophysiales 5 Order Gymnodiniales 5 Order Peridiniales 5 DIATOMS 5 Phylum Bacillariophyta 5 Class Bacillariophyceae 5 Order Bacillariales 5 Class Coscinodiscophyceae 5 Order Achnanthales 5 Order Biddulphiales 5 Order Chaetocerotales 5 Order Coscinodiscales 6 Order Lithodesmidales 6 Order Naviculales 6 Order Rhizosoleniales 6 Order Thalassiosirales 6 Class Fragilariophyceae 6 Order Fragilariales 6 Order Rhabdonematales 6 ALGAE 6 Phylum Heterokontophyta 6 Class Phaeophyceae 6 Order Chordariales 6 Order Desmarestiales 6 Order Dictyosiphonales 6 Order Ectocarpales 7 Order Fucales 7 Order Laminariales 7 Order Scytosiphonales 8 Order Sphacelariales 8 Phylum Rhodophyta 8 Class Rhodophyceae
    [Show full text]