1130227.Pdf (487.0Kb)

Total Page:16

File Type:pdf, Size:1020Kb

1130227.Pdf (487.0Kb) PROGRAMA FONDECYT INFORME FINAL ETAPA 2016 COMISIÓN NACIONAL DE INVESTIGACION CIENTÍFICA Y TECNOLÓGICA VERSION OFICIAL FECHA: 12/03/2017 Nº PROYECTO : 1130227 DURACIÓN : 4 años AÑO ETAPA : 2016 TÍTULO PROYECTO : EXTENSION AND TECTONIC SIGNIFICANCE OF DEVONIAN PLUTONISM AND METAMORPHISM IN THE NORTH PATAGONIAN ANDES DISCIPLINA PRINCIPAL : GEOLOGIA Y MINERALOGIA GRUPO DE ESTUDIO : CS. DE LA TIERRA INVESTIGADOR(A) RESPONSABLE : FRANCISCO ENRIQUE ISIDORO HERVE ALLAMAND DIRECCIÓN : COMUNA : CIUDAD : REGIÓN : METROPOLITANA FONDO NACIONAL DE DESARROLLO CIENTIFICO Y TECNOLOGICO (FONDECYT) Moneda 1375, Santiago de Chile - casilla 297-V, Santiago 21 Telefono: 2435 4350 FAX 2365 4435 Email: [email protected] INFORME FINAL PROYECTO FONDECYT REGULAR MODIFICACIONES ACADÉMICAS El informe no presenta modificaciones académicas. PROJECT RESULTS: Describe the results of your research in reference to its original and/or modified Project objectives. The maximum extension of this section is 5 pages (Arial or Verdana font, size 10). El proyecto tuvo por objetivos los siguientes: “ Conducir una inspección detallada de los complejos igneos y metamórficos de edad supuesta pre Mesozoica en los Andes entre 39 y 44° Lat Sur, con la intención de establecer su historia geológica y el ambiente en que se depositaron y evolucionaron. Par alcanzar estos objetivos se estudiará aspectos de terreno , y muestrearlas con fines petrológicos, geoquímicos y geocronológicos. Los análisis geocronológicos serán realizados mediante SHRIMP en la Australian National University , e incluirán análisis de proveniencia de rocas metasedimentarias, y edades de cristalización de las rocas plutónicas. Los circones datados serán analizados por isótopos de O y de Lu – Hf , para incrementar la posibilidad de correlacionar áreas fuentes con cuencas de depósito, así como para investigar las condiciones de generación de los magmas. Los resultados esperados son el de configurar una base de datos geológica, petrológica y geocronológica, que permita generar modelos con la evolución geotectónica de este segmento de los Andes, con información sin precedentes acerca de la edad e isotopía de los circones . Esto también podrá agregar valor a esta región turística, proveyendo conocimiento acerca de su evolución geológica antigua”. Los resultados de la investigación permitieron incrementar el conocimiento geológico de la región, confirmar y descubrir nuevos afloramientos de rocas Devónicas, asi como las características isotópicas de los circones, lo que ha permitido establecer para la región central de investigación una evolución geológica diferente de las áreas vecinas. Estos resultados se han presentado en papers publicados en revistas ISI (5 publicados, 3 enviados), en Memorias de Titulo de Geólogo (5 terminadas, 4 en curso) y una Tesis de Magister (en curso). La primera de las publicaciones (R.J. Pankhurst, F. Hervé, C. M. Fanning, M. Calderón, H. Niemeyer, S. Griem-Klee and F. Soto , 2016. The pre-Mesozoic rocks of northern Chile: U-Pb ages, and Hf and O isotopes. Earth-Science Reviews, 152, 88–105) es el resultado de la búsqueda de rocas devónicas en el Norte Grande del país, en particular en las áreas de rocas metamórficas y plutónicas. Interesante resultado fue el de no identificarse intrusivos ni (meta)volcanitas devónicas, en concordancia con Bahlburg y Hervé ( 1992), quienes habían, con la información geocronólogica de 30 años atrás, sugerido una pausa en el magmatismo durante el Devónico. Un resultado importante de esta campaña fue el reconocer rocas plutónicas de 1000 Ma en tres localidades (Limon Verde, Sierra Moreno, Cordon de Lila) que permite dar sustento a la historia de acreción del bloque continental Arica Antofalla al margen de Gondwana. Una segunda publicación ( Hervé, F., Calderon, M., Fanning,C.M., Pankhurst,R.J., Fuentes,F., Rapela,C.W., Correa,J., Quezada, P. and Marambio, C., 2016. Devonian magmatism in the accretionary complex of southern Chile. Journal of the Geological Society, London) reunió el grueso de los resultados obtenidos en la zona comprendida entre los 39 y 44° S, con énfasis en los cuerpos plutónicos Devónicos. Se confirmaron las edades Devónicas de tres cuerpos en Chile, y se encontraron varios más, en general deformados y encubiertos por las rocas más modernas. En ellos se pudo determinar que fueron intruídos después de su formación por plutones Cretácicos y Miocenos, los que dificultan su reconocimiento. La principal conclusión de este estudio fue que en el segmento andino estudiado, se pueden reconocer rocas plutónicas Devonicas que se formaron en dos ambientes geotectónicos diferentes: un arco magmatico continental Devónico muy contaminado por corteza continental situado en la actual vertiente oriental de la Cordillera Andina, y otro arco contemporáneo que tuvo un origen oceánico, sin contaminación continental, situado al W del primero, en la vertiente occidental de la cordillera andina y en parte en la Cordillera de la Costa. La gran diferencia entre ambos conjuntos radica en las marcadas diferencias isotópicas encontradas en sus circones, que se interpretan como indicado. Esto viene a sugerir que el arco occidental, oceánico, constituyó un terreno oceánico que se acrecionó al margen de Gondwana, revelando así la existencia de dos arcos magmáticos y dos zonas de subducción contemporáneas en este segmento. El arco oceánico reemplaza al terreno continental Chilenia, que se extiende al N de los 40° S, que colisionó con Gondwana en el Devónico. Al arco oceánico detectado, se le bautizó como Chaitenia, en virtud que sus principales afloramientos quedan cerca de la localidad de Chaiten. Un reconstrucción paleogeográfica que es parte de Herve et al (2016) se inserta a continuación. La designacion formal del arco de islas oceánico como Chaitenia, se realizó en el 35 IGC de Cape Town, ya que en Herve et al (2016) no se mencionó como tal. Un adicional descubrimiento de importancia realizado en el contexto del desarrollo del proyecto, fue la confirmación de la existencia de un complejo metamórfico de edad Devónica, que aflora en la Cordillera de la Costa en las cercanías de la localidad de Llico, sin que su extensión areal se haya definido hasta ahora. Denominado Osorno – Llanquihue Metamorphic Complex, su presencia se detectó inicialmente en testigos provenientes de pozos de exploración de hidrocarburos realizados por ENAP, y posteriormente también en superficie mediante el uso del método de datar circones detríticos en muestras de esquistos pelíticos, asi como de ya previamente datados afloramientos de rocas subvolcánicas siliceas de Zarao de edad Devónica. Queda en espera la confirmación de la existencia de ortoanfibolitas foliadas de protolito de edad de cristalización Cretácico, obtenido en dos muestras de la Serie Occidental del Basamento Metamórfico supuestamente Paleozoico de la cordillera de la costa de la región estudiada. Dada la importancia conceptual de este presunto hallazgo, que indicaría que el prisma de acreción considerado de edad exclusivamente Paleozoico a Triásico habría estado activo hasta el Mesozoico superior, se está desarrollando en esa área la Tesis de Magister de Camilo Palape para establecer con más detalle la evolución geológica de ese sector. En Hervé et al (2017) se da cuenta de un importante descubrimiento que se obtuvo durante el desarrollo del trabajo. En Chiloe continental, hay extensos afloramientos de rocas metamórficas. Ellas aparecen en los mapas geológicos de la región como pertenecientes a complejos metamórficos de edades Paleozoico superior – Triásico. Al datar algunas metasedimentitas de estos complejos, se obtuvo como resultado sorpresivas edades del Cenozoico superior. Asociada espacialmente a estas metasedimentitas Cenozoicas se ha identificado uno o varios cuerpos de rocas ultramáficas, en parte hartzburguitas, serpentinizados parcialmente. Se asigna el metamorfismo de estas metasedimentitas, y de metabasitas asociadas, a procesos metamórficos ligados a la actividad de la Zona de Fallas Liquiñe Ofqui, lo que ha podido demostrarse también que es el caso de metamorfitas de la Cuesta Queulat en Aysen ( Quezada et al, en prep). La extensión y el grado metamórfico alcanzado en este particular ambiente geodinámico es un tema abierto para el futuro. Se investigaron también rocas metamórficas de áreas costeras del Norte Grande y Norte Chico, con la intención de verificar, o descartar, la presencia de rocas devónicas en esas áreas poco estudiadas geocronológicamente. Se obtuvieron interesantes resultados que evidencian que en esas regiones tuvo lugar un metamorfismo regional de edad Triásico, lo que ha quedado indicado en Calderón et al (sometido 2017 a Tectonophysics) en que se establece la edad Triásica y las condiciones de metamorfismo de mediana presión de las metamorfitas de Mejillones, previamente consideradas del Paleozoico inferior. También en Herve,F., Calderón, M., Fanning, M., Pankhurst, R.J., Navarro,J U-Pb SHRIMP detrital zircon dating in north-central Chile (28 – 33°S) : evidence for Triassic metamorphism.(en prep.), se informa acerca de la edad Triásica de diversas áreas de afloramiento de rocas metamórficas del Norte Chico, cuyas edades no estaban bien establecidas con anterioridad. De esta manera se ha podido documentar la amplia extensión de rocas de metamorfismo regional Triásico en el Norte de Chile, que reaparecen en el Archipielago de los Chonos, sin que se tenga evidencia de la existencia de ellas entre ambas áreas separadas por casi 1000 km de distancia. En esta misma publicación
Recommended publications
  • Crustal Faults in the Chilean Andes: Geological Constraints and Seismic Potential
    Andean Geology 46 (1): 32-65. January, 2019 Andean Geology doi: 10.5027/andgeoV46n1-3067 www.andeangeology.cl Crustal faults in the Chilean Andes: geological constraints and seismic potential *Isabel Santibáñez1, José Cembrano2, Tiaren García-Pérez1, Carlos Costa3, Gonzalo Yáñez2, Carlos Marquardt4, Gloria Arancibia2, Gabriel González5 1 Programa de Doctorado en Ciencias de la Ingeniería, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile. [email protected]; [email protected] 2 Departamento de Ingeniería Estructural y Geotécnica, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile. [email protected]; [email protected]; [email protected] 3 Departamento de Geología, Universidad de San Luis, Ejercito de Los Andes 950, D5700HHW San Luis, Argentina. [email protected] 4 Departamento de Ingeniería Estructural y Geotécnica y Departamento de Ingeniería de Minería, Pontificia Universidad Católica de Chile. Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile. [email protected] 5 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Angamos 0610, Antofagasta, Chile. [email protected] * Corresponding author: [email protected] ABSTRACT. The Chilean Andes, as a characteristic tectonic and geomorphological region, is a perfect location to unravel the geologic nature of seismic hazards. The Chilean segment of the Nazca-South American subduction zone has experienced mega-earthquakes with Moment Magnitudes (Mw) >8.5 (e.g., Mw 9.5 Valdivia, 1960; Mw 8.8 Maule, 2010) and many large earthquakes with Mw >7.5, both with recurrence times of tens to hundreds of years. By contrast, crustal faults within the overriding South American plate commonly have longer recurrence times (thousands of years) and are known to produce earthquakes with maximum Mw of 7.0 to 7.5.
    [Show full text]
  • The Cryptic Seismic Potential of Blind Faults Revealed by Off-Fault Geomorphology, Pichilemu, Chile
    The cryptic seismic potential of blind faults revealed by off-fault geomorphology, Pichilemu, Chile. Julius Jara-Muñoz ( [email protected] ) University of Potsdam Daniel Melnick Austral University of Chile https://orcid.org/0000-0001-8397-7391 Anne Socquet Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre https://orcid.org/0000- 0002-9208-7136 Joaquin Cortés-Aranda Universidad de Concepcion Dominik Brill University Koeln Manfred Strecker Universität Potsdam Article Keywords: seismic hazards, seismic potential, blind faults, off-fault geomorphology, Pichilemu, Chile Posted Date: October 7th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-86121/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License The cryptic seismic potential of blind faults revealed by off-fault geomorphology, Pichilemu, Chile. J. Jara-Muñoz1,2*, D. Melnick2,3, A. Socquet4, J. Cortés-Aranda2,5, D. Brill6, M. R. Strecker1 1Institute of Geosciences, University of Potsdam, Potsdam, Germany. 2Millennium Nucleus: The Seismic Cycle Along Subduction Zones, Valdivia, Chile. 3Instituto de Ciencias de la Tierra, TAQUACh, Universidad Austral de Chile, Valdivia, Chile. 4 Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, France. 5Departamento de Ciencias de la Tierra, Universidad de Concepción, Concepción, Chile. 6 Institute of Geography, University of Cologne, Germany. email: [email protected] Abstract In seismically-active regions, mapping capable faults and estimating their recurrence time is the first step to assess seismic hazards. Fault maps are commonly based on geologic and geomorphic features evident at the surface; however, mapping blind faults and estimating their seismic potential is challenging because on-fault diagnostic features are absent.
    [Show full text]
  • Geophysical Journal International
    Geophysical Journal International Geophys. J. Int. (2015) 203, 776–791 doi: 10.1093/gji/ggv309 GJI Geodynamics and tectonics Structure and tectonics of the central Chilean margin (31◦–33◦S): implications for subduction erosion and shallow crustal seismicity Eduardo Contreras-Reyes,1 Javier A. Ruiz,1 Juan Becerra,2 Heidrun Kopp,3 Christian Reichert,4 Andrei Maksymowicz1 and Cesar´ Arriagada2 1Departamento de Geof´ısica, Facultad de Ciencias F´ısicas y Matematicas,´ Universidad de Chile, Blanco Encalada 2002, Santiago, Chile. E-mail: [email protected] 2Laboratorio de Tectonica´ y Paleomagnetismo, Departamento de Geolog´ıa, Facultad de Ciencias F´ısicas y Matematicas,´ Santiago, Chile 3GEOMAR Helmholtz Zentrum fur¨ Ozeanforschung Kiel and Christian-Albrechts-Universitat¨ zu Kiel, Kiel, Germany Downloaded from 4Bundesanstalt fur¨ Geowissenschaften und Rohstoffe (BGR), Hannover, Germany Accepted 2015 July 22. Received 2015 June 23; in original form 2015 January 16 http://gji.oxfordjournals.org/ SUMMARY The pre- and current collision of the Juan Fernandez´ Ridge with the central Chilean margin at 31◦–33◦S is characterized by large-scale crustal thinning and long-term subsidence of the submarine forearc caused by subduction erosion processes. Here, we study the structure of the central Chilean margin in the ridge–trench collision zone by using wide-angle and multichannel seismic data. The transition from the upper to middle continental slope is defined by a trenchward dipping normal scarp with variable offsets of 500–2000 m height. Beneath − the scarp, the 2-D velocity–depth models show a prominent lateral velocity contrast of >1s 1 at Leibniz-Institut fur Meereswissenschaften on September 10, 2015 that propagates deep into the continental crust defining a major lateral seismic discontinuity.
    [Show full text]
  • Universidad Católica Del Norte
    UNIVERSIDAD CATÓLICA DEL NORTE FACULTAD DE INGENIERÍA Y CIENCIAS GEOLÓGICAS Departamento de Ciencias Geológicas TÉCNICAS DE DATACIÓN POR LUMINISCENCIA EN EL NORTE DE CHILE: IMPLICACIÓN PARA LA EVOLUCIÓN TECTÓNICA Y GEOMORFOLÓGICA DE LA PENÍNSULA DE MEJILLONES DURANTE EL CUATERNARIO Tesis para la obtención del título de Doctor en Ciencias mención Geología IAN AITOR DEL RÍO GARCÍA Director de Tesis: Prof. Dr. Gabriel González Co-Director de Tesis: Prof. Dr. André O. Sawakuchi Antofagasta, Chile 2019 UNIVERSIDAD CATÓLICA DEL NORTE FACULTAD DE INGENIERÍA Y CIENCIAS GEOLÓGICAS Departamento de Ciencias Geológicas TÉCNICAS DE DATACIÓN POR LUMINISCENCIA EN EL NORTE DE CHILE: IMPLICACIÓN PARA LA EVOLUCIÓN TECTÓNICA Y GEOMORFOLÓGICA DE LA PENÍNSULA DE MEJILLONES DURANTE EL CUATERNARIO Tesis para la obtención del título de Doctor en Ciencias mención Geología IAN AITOR DEL RÍO GARCÍA Antofagasta, Chile 2019 Comisión de Calificación Dr. Mahesh Shrivastava (presidente de la comisión) Dr. José Luque (evaluador) Dr. Pablo Salazar (evaluador) Dr. Gabriel Vargas (evaluador externo) Dr. Gabriel González (Director de Tesis) Dr. André O. Sawakuchi (Co-Director de Tesis) “An expert is a person who has found out by his own painful experience all the mistakes that one can make in a very narrow field” – Niels Bohr. A Zoraida, mi madre A Sheila, mi hermana A Ana, mi compañera iii Resumen La geomorfología de la Península de Mejillones, en el norte de Chile evidencia un proceso de alzamiento tectónico y fallamiento normal ocurrido durante el Cuaternario. Las fallas de la placa superior más próximas a dicha península muestran asimismo actividad cuaternaria indiferenciada. Sin embargo, aún no existe consenso sobre la tasa de alzamiento de la Península de Mejillones y son escasas las edades que permitan establecer la historia geológica más reciente de las fallas de la placa superior.
    [Show full text]
  • Marine Terraces of the Last Interglacial Period Along the Pacific Coast of South America
    1 Marine terraces of the last interglacial period along the Pacific 2 coast of South America (1°N-40°S) 3 Roland Freisleben1, Julius Jara-Muñoz1, Daniel Melnick2,3, José Miguel Martínez2,3, Manfred R. 4 Strecker1 5 1 Institut für Geowissenschaften, Universität Potsdam, 14476 Potsdam, Germany 6 2 Instituto de Ciencias de la Tierra, TAQUACH, Universidad Austral de Chile, Valdivia, Chile 7 3 Millennium Nucleus The Seismic Cycle Along Subduction Zones, Valdivia, Chile 8 Correspondence to: Roland Freisleben ([email protected]) 9 Abstract. Tectonically active coasts are dynamic environments characterized by the presence of multiple marine 10 terraces formed by the combined effects of wave-erosion, tectonic uplift, and sea-level oscillations at glacial-cycle 11 timescales. Well-preserved erosional terraces from the last interglacial sea-level highstand are ideal marker horizons 12 for reconstructing past sea-level positions and calculating vertical displacement rates. We carried out an almost 13 continuous mapping of the last interglacial marine terrace along ~5,000 km of the western coast of South America 14 between 1°N and 40°S. We used quantitatively replicable approaches constrained by published terrace-age estimates 15 to ultimately compare elevations and patterns of uplifted terraces with tectonic and climatic parameters in order to 16 evaluate the controlling mechanisms for the formation and preservation of marine terraces, and crustal deformation. 17 Uncertainties were estimated on the basis of measurement errors and the distance from referencing points. Overall, 18 our results indicate a median elevation of 30.1 m, which would imply a median uplift rate of 0.22 m/ka averaged over 19 the past ~125 ka.
    [Show full text]
  • Segmentation in Continental Forearcs Links Between Large-Scale
    Tectonophysics 767 (2019) 228164 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Segmentation in continental forearcs: Links between large-scale overriding T plate structure and seismogenic behavior associated with the 2010 Mw 8.8 Maule, Chile earthquake ⁎ Brandon T. Bishopa, , Susan L. Beckb, George Zandtb a Department of Earth and Atmospheric Sciences, Saint Louis University, 3642 Lindell Boulevard, Saint Louis, MO 63108, USA b Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, AZ 85721, USA ARTICLE INFO ABSTRACT Keywords: Subduction along the active margin of a continental plate occurs in a context where the overriding plate's crust Subduction and lithospheric mantle may contain inherited structures significantly predating the present tectonic conditions Megathrust of the margin. These structures are persistent over very long-term time scales (> 105 to > 106 years) and are Forearc thought to play an important role in both seismogenic processes on the megathrust and development of topo- Chilean Trench graphy along coastlines. We use receiver functions calculated from broadband seismic data collected along the Maule Earthquake Chilean forearc between ~33°S and 38.5°S in the vicinity of the 2010 M 8.8 Maule earthquake to determine the Receiver Function w structure of the overriding South American continental plate and subducting Nazca oceanic plate along and inboard of the seismogenic portion of the megathrust. We show that the Chilean forearc is divided
    [Show full text]
  • Seismo-Tectonic Implications for the Southern Andes Volcanic Zone, Chile
    Intra-arc Crustal Seismicity: Seismo-tectonic Implications for the Southern Andes Volcanic Zone, Chile Gerd Sielfeld1,2, Dietrich Lange3, and José Cembrano1,2 1Pontificia Universidad Católica de Chile, Chile. 2Centro de Excelencia en Geotermia de Los Andes, CEGA, Chile. 3GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany. Corresponding author: Gerd Sielfeld ([email protected]) †alternative email [email protected] Key Points: Crustal seismicity in the SVZ of the Andes reveals the nature of active upper crustal faulting consistent with long-term arc tectonics Strain partitioning is compartmentalized into arc-parallel (LOFS) and Andean transverse faults (ATF) Crustal seismicity occurs at all depths down to 40 km depth in the forearc, but shallower than 12 km along the volcanic chain This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1029/2018TC004985 © 2019 American Geophysical Union. All rights reserved. Abstract We examine the intra-arc crustal seismicity of the Southern Andes Volcanic Zone (SVZ). Our aim is to resolve inter-seismic deformation in an active magmatic arc dominated by both margin-parallel (Liquiñe-Ofqui fault system, (LOFS)) and Andean transverse faults (ATF). Crustal seismicity provides information about the schizosphere tectonic state, delineating the geometry and kinematics of high strain domains driven by oblique-subduction. Here, we present local seismicity based on 16-months data collected from 34 seismometers monitoring a ~200 km long section of the Southern Volcanic Zone, including the Lonquimay and Villarrica volcanoes.
    [Show full text]
  • The Piuquencillo Fault System
    The Piuquencillo Fault System: a long-lived, Andean-transverse fault system and its relationship with magmatic and hydrothermal activity José Piquer1, Orlando Rivera2, Gonzalo Yáñez3,4, Nicolás Oyarzún1 1Instituto de Ciencias de la Tierra, Universidad Austral de Chile, Valdivia, 5090000, Chile 5 2Minera Peñoles de Chile, Santiago, 8320000, Chile 3Departamento de Ingeniería Estructural y Geotécnica, Pontificia Universidad Católica de Chile, Santiago, 8320000, Chile 4Núcleo Milenio Trazadores de Metales (NMTM), Santiago, 8320000, Chile Correspondence to: José Piquer ([email protected]) Abstract. Lithospheric-scale fault systems control the large-scale permeability in the Earth’s crust and lithospheric mantle, 10 and its proper recognition is fundamental to understand the geometry and distribution of mineral deposits, volcanic and plutonic complexes and geothermal systems. However, their manifestations at the current surface can be very subtle, as in many cases they are oriented oblique to the current continental margin and to the axis of the magmatic arc, can be partially obliterated by younger, arc-parallel faults, and can also be covered by volcanic and sedimentary deposits, through which the fault might propagate vertically. 15 The Piuquencillo Fault System (PFS) is a proposed lithospheric-scale fault system, located in the Main Cordillera of Central Chile. Here we present the results of the first detailed field study of the PFS, based on structural data collected at 82 structural stations distributed across all the Western Main Cordillera. The first published U-Pb zircon ages for the La Obra batholith, which is bounded to the south by the PFS but it is also affected by younger reactivations of it, were obtained.
    [Show full text]
  • Inferring Seismic Hazards from a New 1:25,000 Scale Map of Active and Potentially-Active Continental Faults in Chile
    EGU2020-10399 https://doi.org/10.5194/egusphere-egu2020-10399 EGU General Assembly 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Inferring seismic hazards from a new 1:25,000 scale map of active and potentially-active continental faults in Chile Daniel Melnick1,2, Valentina Maldonado1,2, Martin Contreras1, Julius Jara-Muñoz3, Joaquín Cortés- Aranda2,4, Luis Astudillo2,4, José Miguel Martínez1,2, Andrés Tassara2,4, and Manfred Strecker3 1Universidad Austral de Chile, Valdivia, Chile ([email protected]) 2Millennium Nucleus CYCLO, Valdivia, Chile 3University of Potsdam, Potsdam, Germany 4Universidad de Concepción, Concepción, Chile Most of the seismic hazard along subduction zones is posed by great tsunamigenic earthquakes associated with the interplate megathrust fault. However, crustal faults are ubiquitous along overriding continental plates, some of which have been triggered during recent megathrust earthquakes. In Chile, the 2010 Maule earthquake (M8.8) triggered a shallow M7 earthquake on the Pichilemu fault, which had not been mapped and was unknown. In fact, M~7 earthquakes have recently occurred along unknown faults in California and New Zealand, emphasizing the need for better and more detailed mapping initiatives. A first step towards a synoptic assessment of seismic hazards posed by continental faults at the national level is mapping at a homogeneous scale to allow for a systematic comparison of faults and fault systems. Here, we present the first map of active and potentially-active faults in Chile at 1:25,000 scale, which includes published studies and newly-identified faults. All the published faults have been re-mapped using LiDAR and TanDEM-X topography, where available.
    [Show full text]
  • Permanent Forearc Extension and Seismic Segmentation: Insights from the 2010 Maule Earthquake, Chile Felipe Aron & Richard W
    Permanent Forearc Extension and Seismic Segmentation: Insights from the 2010 Maule Earthquake, Chile Felipe Aron & Richard W. Allmendinger Earth and Atmospheric Sciences José Cembrano & Gonzalo Yáñez Departamento de Ingeniería Estructural y Geotécnica Gabriel González Departamento de Ciencias Geológicas Cornell University Pontificia Universidad Católica de Chile Universidad Católica del Norte [email protected], [email protected] Ithaca, NY, USA [email protected], [email protected], Chile [email protected] Antofagasta, Chile INTRODUCTION Structural Geology of the Pichilemu Region R E S U L T S Regional coseismic infinitesimal strain On February 27, 2010, approximately 600 km of the Nazca-South America plate boundary ruptured to generate * Elastic Vs Permanent: GPS coseismic extension and the strain due to the Pichilemu earth- field above the Maule segment the Mw 8.8 Maule earthquake on the subduction megathrust in south-central Chile (Figures 1 and 2). Curiously, the quakes have very similar orientations and are well within an order of magnitude of each two largest aftershocks were intraplate normal fault earthquakes with magnitudes of Mw 7.4 and Mw 7.0, one Fault plane of the struc- other. in the outer rise of the down-going oceanic slab and the other within the basement rocks of the forearc, the ture that bounds the * By varying the model inputs we obtained positive CSI averaged across the Pichilemu fault Pichilemu sequence (Farías et al., 2011). A close examination of the length of the Chilean forearc, especially that southern side of the To- that range from 0.4 to 2.3 MPa. part which overlies the zone of subduction interseismic coupling, shows that Neogene normal faults are one of pocalma graben.
    [Show full text]
  • Giant Earthquakes and Their Tsunamis
    Giant earthquakes and their tsunamis Tsunami Sand spit American Geophysical Union Chapman Conference Valparaíso, Viña del Mar, and Valdivia, Chile 16–24 May 2010 Chapman Conference on Giant Earthquakes and Their Tsunamis Valparaíso, Viña del Mar, and Valdivia, Chile 16–24 May 2010 Conveners Brian Atwater, U.S. Geological Survey Sergio Barrientos, Universidad de Chile Marco Cisternas, Universidad Católica de Valparaíso Kelin Wang, Geological Survey of Canada The conveners thank Nicolás Gorigoitia, Lynn Hayes, Mario Pino, Rob Wesson, and Cynthia Wilcox for helping to organize the conference. Sponsors The American Geophysical Union and the conference organizers acknowledge financial support from Universidad Católica de Valparaíso, Universidad de Chile, UNESCO/IOC, U.S. Geological Survey, and the municipalities of Viña del Mar and Valparaiso. 1 Chapman Conference on Giant Earthquakes and Their Tsunamis May 16 Sun Talks, posters, and discussion — Hotel Marina del Rey*, Viña del Mar 17 Mon Public presentations — P. Universidad Católica de Valparaíso, Valparaíso 18-20 Tue-Thu Talks, posters, and discussion — Hotel Marina del Rey*, Viña del Mar 20-24 Thu-Mon Field trips — Maullín and Cocotué; Valdivia * Linda Andreani Room SUNDAY, 16 MAY Session 16A Overviews 0900–0930 Welcome 0930–0945 George PLAFKER Overview of the mechanism of the giant 1960 Chile earthquake and near-field tsunami with comparisons to the 1964 Alaska and 2004 Sumatra events 0945-1000 Onno ONCKEN Chile’s seismogenic coupling zones – geophysical and neotectonic observations from
    [Show full text]
  • Marine Terraces of the Last Interglacial Period Along the Pacific
    1 Marine terraces of the last interglacial period along the Pacific 2 coast of South America (1°N-40°S) 3 Roland Freisleben1, Julius Jara-Muñoz1, Daniel Melnick2,3, José Miguel Martínez2,3, Manfred R. 4 Strecker1 5 1 Institut für Geowissenschaften, Universität Potsdam, 14476 Potsdam, Germany 6 2 Instituto de Ciencias de la Tierra, TAQUACH, Universidad Austral de Chile, Valdivia, Chile 7 3 Millennium Nucleus The Seismic Cycle Along Subduction Zones, Valdivia, Chile 8 Correspondence to: Roland Freisleben ([email protected]) 9 Abstract. Tectonically active coasts are dynamic environments characterized by the presence of multiple marine 10 terraces formed by the combined effects of wave-erosion, tectonic uplift, and sea-level oscillations at glacial-cycle 11 timescales. Well-preserved erosional terraces from the last interglacial sea-level highstand are ideal marker horizons 12 for reconstructing past sea-level positions and calculating vertical displacement rates. We carried out an almost 13 continuous mapping of the last interglacial marine terrace along ~5,000 km of the western coast of South America 14 between 1°N and 40°S. We used quantitatively replicable approaches constrained by published terrace-age estimates 15 to ultimately compare elevations and patterns of uplifted terraces with tectonic and climatic parameters in order to 16 evaluate the controlling mechanisms for the formation and preservation of marine terraces, and crustal deformation. 17 Uncertainties were estimated on the basis of measurement errors and the distance from referencing points. Overall, 18 our results indicate a median elevation of 30.1 m, which would imply a median uplift rate of 0.22 m/ka averaged over 19 the past ~125 ka.
    [Show full text]