University of Florida Thesis Or Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

University of Florida Thesis Or Dissertation INVESTIGATION OF THE MAULE, CHILE RUPTURE ZONE USING SEISMIC ATTENUATION TOMOGRAPHY AND SHEAR WAVE SPLITTING METHODS By MEGAN ELIZABETH TORPEY A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2016 © 2016 Megan Elizabeth Torpey To my family, for always being there for me and supporting me throughout this journey ACKNOWLEDGMENTS I would first like to express my appreciation to my advisor, Raymond Russo, who provided me with amazing opportunities throughout my graduate career. I am also thankful for his guidance and motivation in my research projects, without which it would not have been possible for me to succeed. I would like to thank my committee members Mark Panning, David Foster, Liz Screaton, James Channell, Tim Olson, and Jean Larson, who all helped me to better understand my research projects. Additionally, I would like to thank Sebastien Chevrot for hosting me at the Observatoire Midi-Pyrenees in Toulouse, France and guiding my research as part of the Chateaubriand Fellowship. I would also like to thank my fellow “seismo” group members, Christian Stanciu, Paul Bremner, Sutatcha Hongsresawat, Stephanie James, Matt Farrell, and Emily Rodriguez who were always willing to lend a helping hand, whether it was during fieldwork or in the office. I would like to especially thank the office staff of the UF Department of Geological Sciences, Pamela Haines, Nita Fahm, and Carrie Williams who made it possible for me to remain on track with academic paperwork. And lastly, I would like to thank the National Science Foundation for funding this grant (EAR-1045609). 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................. 4 LIST OF TABLES ............................................................................................................ 7 LIST OF FIGURES .......................................................................................................... 8 LIST OF ABBREVIATIONS ........................................................................................... 11 ABSTRACT ................................................................................................................... 12 CHAPTER 1 INTRODUCTION .................................................................................................... 14 1.1 Motivation for the Project .................................................................................. 14 1.2 2010 Mw 8.8 Maule, Chile Earthquake .............................................................. 16 1.3 Tectonic Setting ................................................................................................ 18 1.3.1 Tectonic Overview ................................................................................... 18 1.3.2 Convergence Rate and Nazca Age ......................................................... 20 1.3.3 Subduction Dip ........................................................................................ 20 1.3.4 Bathymetric Features .............................................................................. 22 1.3.5 Crustal Shortening ................................................................................... 23 1.3.6 Maule Rupture Zone ................................................................................ 23 2 SEISMIC ATTENUATION WITHIN THE MAULE, CHILE RUPTURE ZONE .......... 32 2.1 Introduction ....................................................................................................... 32 2.2 Seismic Attenuation Background ...................................................................... 36 2.3 Data and Methods............................................................................................. 38 2.4 Results .............................................................................................................. 44 2.5 Model Resolution .............................................................................................. 45 2.6 Discussion ........................................................................................................ 46 2.6.1 Large-Scale Subduction Structures ......................................................... 46 2.6.2 High-Qs Bodies at the Surface ................................................................. 47 2.6.3 Cobquecura Anomaly .............................................................................. 48 2.7 Conclusion ........................................................................................................ 51 3 SHEAR WAVE SPLITTING OF TELESEISMIC EVENTS ....................................... 81 3.1 Background ....................................................................................................... 81 3.2 Previous Teleseismic Shear Wave Splitting Studies in South America............. 81 3.3 Data and Methods............................................................................................. 84 3.4 Results .............................................................................................................. 88 3.5 Discussion ........................................................................................................ 88 5 3.5.1 Time Delay .............................................................................................. 88 3.5.2 Contributions from Crustal Anisotropy ..................................................... 89 3.5.3 Fossilized Lithospheric Fabrics ............................................................... 89 3.5.4 Trench Parallel Splitting and Sub-Slab Mantle Flow ................................ 90 3.5.5 Alignment with Nazca Slab Depth Contours ............................................ 91 3.6 Conclusion ........................................................................................................ 92 4 SHEAR WAVE SPLITTING OF MAULE AFTERSHOCKS ................................... 104 4.1 Background ..................................................................................................... 104 4.2 Data and Methods........................................................................................... 104 4.3 Results ............................................................................................................ 106 4.4 Discussion ...................................................................................................... 106 4.4.1 Supra-slab Entrained Mantle Flow ........................................................ 107 4.4.2 Contributions from Crustal Anisotropy ................................................... 107 4.4.3 Lateral Mantle Flow in the Forearc ........................................................ 110 4.4.4 Robustness of Multichannel Analysis Method for Local Datasets ......... 110 4.4.5 Comparison to Teleseismic Dataset ...................................................... 111 4.6 Conclusion ...................................................................................................... 112 5 SUMMARY AND CONCLUSIONS ........................................................................ 122 APPENDIX A SEISMIC ATTENUATION THEORY ..................................................................... 127 A.1 Sources of Attenuation ................................................................................... 127 A.2 Quantifying Attenuation .................................................................................. 127 B ANISOTROPY AND SHEAR WAVE SPLITTING THEORY .................................. 130 LIST OF REFERENCES ............................................................................................. 134 BIOGRAPHICAL SKETCH .......................................................................................... 151 6 LIST OF TABLES Table page 3-1 Teleseismic event locations ................................................................................ 94 3-2 Teleseismic splitting measurements ................................................................... 95 4-1 Local event locations ........................................................................................ 113 4-2 Local splitting measurements ........................................................................... 116 7 LIST OF FIGURES Figure page 1-1 Historic earthquakes from Hayes et al. (2013).................................................... 26 1-2 IRIS CHAMP temporary broadband seismic network. ........................................ 27 1-3 CHAMP stations with alphanumeric labels ......................................................... 28 1-4 From Kroner and Stern (2005), map of Gondwana at the end of the Neoproterozoic (~540 Ma) showing the arrangement of Pan-African belts.. ...... 29 1-5 Modified from Ramos (1988), terranes accreted to Southern South America and South American cratonic regions. ................................................................ 30 1-6 Modified from Hicks et al. (2014), the large-scale geologic units of the Maule rupture zone (33°S-38°S). .................................................................................. 31 2-1 Main morphostructural units in study area. ......................................................... 53 2-2 The P, S, and pre-signal noise windows are shown to demonstrate the evolving time window method for the April 5, 2010 seismic recording ................ 54 2-3 Illustration of the evolving time window method.
Recommended publications
  • Neotectonics Along the Eastern Flank of the North Patagonian Icefield, Southern Chile: Cachet and Exploradores Fault Zones
    XII Congreso Geológico Chileno Santiago, 22-26 Noviembre, 2009 S9_053 Neotectonics along the eastern flank of the North Patagonian Icefield, southern Chile: Cachet and Exploradores fault zones Melnick, D.1, Georgieva, V.1, Lagabrielle, Y.2, Jara, J.3, Scalabrino, B.2, Leidich, J.4 (1) Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany. (2) UMR 5243 Géosciences Montpellier, Université de Montpellier 2, France. (3) Departamento de Ciencias de la Tierra, Universidad de Concepción, Chile. (4) Patagonia Adventure Expeditions, Casilla 8, Cochrane, Chile. [email protected] Introduction In the southern Andes, the North Patagonian Icefield (NPI) is a poorly-known region in terms of geology and neotectonics that marks a major topographic anomaly at the transition between the Austral and Patagonian Andes. The NPI is located immediately east of the Nazca-Antarctic-South America Triple Plate Junction, where the Chile Rise collides against the margin (Fig. 1A). Since 14 Ma, this Triple Junction has migrated northward as a result of oblique plate convergence, resulting in collision and subduction of two relatively short ridge segments in the Golfo de Penas region at 6 and 3 Ma, and at present of one segment immediately north of the Taitao Peninsula [1]. Oblique plate convergence in addition to collision of these ridge segments resulted in the formation of a forearc sliver, the Chiloe block, which is decoupled from the South American foreland by the Liquiñe-Ofqui fault zone. Here we present geomorphic and structural field evidence that indicates neotectonic activity in the internal part of the orogen, along the flanks of the NPI (Fig.
    [Show full text]
  • 4 Three-Dimensional Density Model of the Nazca Plate and the Andean Continental Margin
    76 4 Three-dimensional density model of the Nazca plate and the Andean continental margin Authors: Andrés Tassara, Hans-Jürgen Götze, Sabine Schmidt and Ron Hackney Paper under review (September 27th, 2005) by the Journal of Geophysical Research Abstract We forward modelled the Bouguer anomaly in a region encompassing the Pacific ocean (east of 85°W) and the Andean margin (west of 60°W) between northern Peru (5°S) and Patagonia (45°S). The three-dimensional density structure used to accurately reproduce the gravity field is simple. The oceanic Nazca plate is formed by one crustal body and one mantle lithosphere body overlying a sub-lithospheric mantle, but fracture zones divide the plate into seven along-strike segments. The subducted slab was modelled to a depth of 410 km, has the same structure as the oceanic plate, but it is subdivided into four segments with depth. The continental margin consists of one upper-crustal and one lower-crustal body without lateral subdivision, whereas the mantle has two bodies for the lithosphere and two bodies for the asthenosphere that are separated across-strike by the downward prolongation of the eastern limit of active volcanism. We predefined the density for each body after studying its dependency on composition of crustal and mantle materials and pressure-temperature conditions appropriate for the Andean setting. A database containing independent geophysical information constrains the geometry of the subducted slab, locally the Moho of the oceanic and continental crusts, and indirectly the lithosphere-asthenosphere boundary (LAB) underneath the continental plate. Other geometries, especially that of the intracrustal density discontinuity (ICD) in the continental margin, were not constrained and are the result of fitting the observed and calculated Bouguer anomaly during the forward modelling.
    [Show full text]
  • Crustal Faults in the Chilean Andes: Geological Constraints and Seismic Potential
    Andean Geology 46 (1): 32-65. January, 2019 Andean Geology doi: 10.5027/andgeoV46n1-3067 www.andeangeology.cl Crustal faults in the Chilean Andes: geological constraints and seismic potential *Isabel Santibáñez1, José Cembrano2, Tiaren García-Pérez1, Carlos Costa3, Gonzalo Yáñez2, Carlos Marquardt4, Gloria Arancibia2, Gabriel González5 1 Programa de Doctorado en Ciencias de la Ingeniería, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile. [email protected]; [email protected] 2 Departamento de Ingeniería Estructural y Geotécnica, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile. [email protected]; [email protected]; [email protected] 3 Departamento de Geología, Universidad de San Luis, Ejercito de Los Andes 950, D5700HHW San Luis, Argentina. [email protected] 4 Departamento de Ingeniería Estructural y Geotécnica y Departamento de Ingeniería de Minería, Pontificia Universidad Católica de Chile. Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile. [email protected] 5 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Angamos 0610, Antofagasta, Chile. [email protected] * Corresponding author: [email protected] ABSTRACT. The Chilean Andes, as a characteristic tectonic and geomorphological region, is a perfect location to unravel the geologic nature of seismic hazards. The Chilean segment of the Nazca-South American subduction zone has experienced mega-earthquakes with Moment Magnitudes (Mw) >8.5 (e.g., Mw 9.5 Valdivia, 1960; Mw 8.8 Maule, 2010) and many large earthquakes with Mw >7.5, both with recurrence times of tens to hundreds of years. By contrast, crustal faults within the overriding South American plate commonly have longer recurrence times (thousands of years) and are known to produce earthquakes with maximum Mw of 7.0 to 7.5.
    [Show full text]
  • A Comparison Based on 3D Regional Traveltime Tomography
    1 Flat vs. Normal Subduction Zones: A Comparison Based on 3D 2 Regional Traveltime Tomography & Petrological Modeling of 3 Central Chile & Western Argentina (29°-35°S) 4 5 M. Marot(1), T. Monfret(1), M. Gerbault(1), G. Nolet(1), G. Ranalli(2), M. Pardo(3) 6 (1) Géoazur, UNSA, IRD, CNRS, OCA, (UMR 7329), 250 Albert Einstein, 06560 Valbonne, France 7 (2) Department of Earth Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B, Canada 8 (3) Departamento de Geofísica, Universidad de Chile, Blanco Encalada 2002, Santiago, Chile 9 10 Abstract 11 Beneath central Chile and western Argentina, the subducting oceanic Nazca lithosphere 12 drastically changes geometry from dipping at an angle of 27-35° to horizontal, along the inferred 13 subduction path of the Juan Fernandez seamount Ridge (JFR). The aim of our study is to assess the 14 differences in the seismic properties of the overriding lithosphere in these two regions, in order to 15 better understand its deep structure and the links between its surface deformations and the geometry of 16 the slab. In comparison with previous studies, we show the most complete 3D regional seismic 17 tomography images for this region, whereby we use (1) a larger seismic dataset compiled from several 18 short-term seismic catalogs, (2) a denser seismic array enabling us to better resolve the subduction 19 zone from the trench to the backarc and into the upper ~ 30 km of the slab, and (3) a starting 1D 20 background velocity model specifically calculated for this region and refined over the years.
    [Show full text]
  • The Cryptic Seismic Potential of Blind Faults Revealed by Off-Fault Geomorphology, Pichilemu, Chile
    The cryptic seismic potential of blind faults revealed by off-fault geomorphology, Pichilemu, Chile. Julius Jara-Muñoz ( [email protected] ) University of Potsdam Daniel Melnick Austral University of Chile https://orcid.org/0000-0001-8397-7391 Anne Socquet Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre https://orcid.org/0000- 0002-9208-7136 Joaquin Cortés-Aranda Universidad de Concepcion Dominik Brill University Koeln Manfred Strecker Universität Potsdam Article Keywords: seismic hazards, seismic potential, blind faults, off-fault geomorphology, Pichilemu, Chile Posted Date: October 7th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-86121/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License The cryptic seismic potential of blind faults revealed by off-fault geomorphology, Pichilemu, Chile. J. Jara-Muñoz1,2*, D. Melnick2,3, A. Socquet4, J. Cortés-Aranda2,5, D. Brill6, M. R. Strecker1 1Institute of Geosciences, University of Potsdam, Potsdam, Germany. 2Millennium Nucleus: The Seismic Cycle Along Subduction Zones, Valdivia, Chile. 3Instituto de Ciencias de la Tierra, TAQUACh, Universidad Austral de Chile, Valdivia, Chile. 4 Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, France. 5Departamento de Ciencias de la Tierra, Universidad de Concepción, Concepción, Chile. 6 Institute of Geography, University of Cologne, Germany. email: [email protected] Abstract In seismically-active regions, mapping capable faults and estimating their recurrence time is the first step to assess seismic hazards. Fault maps are commonly based on geologic and geomorphic features evident at the surface; however, mapping blind faults and estimating their seismic potential is challenging because on-fault diagnostic features are absent.
    [Show full text]
  • The South Chilean Subduction Zone Between 41 and 43.5 S
    Institut fur Geowissenschaften Mathematisch-Naturwissenschaftliche Fakultät Universität Potsdam The South Chilean Subduction Zone between 41◦ and 43.5◦S: Seismicity, Structure and State of Stress Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) in der Wissenschaftsdisziplin Geophysik eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam von Dietrich Lange Potsdam, Mai 2008 Online published at the Institutional Repository of the Potsdam University: http://opus.kobv.de/ubp/volltexte/2008/1894/ urn:nbn:de:kobv:517-opus-18948 [http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18948] Abstract While the northern and central part of the South American subduction zone has been in- tensively studied, the southern part has attracted less attention, which maybe due to itsdif- ficult accessibility and lower seismic activity. However, the southern part exhibits strong seismic and tsunamogenic potential with the prominent example of the Mw=9.5 May 22, 1960 Valdivia earthquake. In this study data from an amphibious seismic array (Project TIPTEQ) is presented. The network reached from the trench to the active magmatic arc incorporating the Island of Chiloé and the north-south trending Liquiñe-Ofqui fault zone (LOFZ). 364 local events were observed in an 11-month period from November 2004 until October 2005. The observed seismicity allows to constrain for the first time the current state of stress of the subducting plate and magmatic arc, as well as the local seismic velocity structure. The downgoing Benioff zone is readily identifiable as an eastward dipping plane with an inclination of 30◦. Main seismic activity occurred predominantly in a belt parallel to the ∼ coast of Chiloé Island in a depth range of 12–30 km, which is presumably related to the plate interface.
    [Show full text]
  • Geological Society of America Bulletin
    Downloaded from gsabulletin.gsapubs.org on 20 November 2009 Geological Society of America Bulletin Coastal deformation and great subduction earthquakes, Isla Santa María, Chile (37°S) Daniel Melnick, Bodo Bookhagen, Helmut P. Echtler and Manfred R. Strecker Geological Society of America Bulletin 2006;118;1463-1480 doi: 10.1130/B25865.1 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geological Society of America Bulletin Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions
    [Show full text]
  • Redalyc.Cooling Histories and Deformation of Plutonic Rocks Along the Liquiñe-Ofqui Fault Zone, Southern Chile (41°-42°15'
    Andean Geology ISSN: 0718-7092 [email protected] Servicio Nacional de Geología y Minería Chile Adriasola, Alberto C.; Stöckhert, Bernhard Cooling histories and deformation of plutonic rocks along the Liquiñe-Ofqui Fault Zone, Southern Chile (41°-42°15'S) Andean Geology, vol. 35, núm. 1, enero, 2008, pp. 39-61 Servicio Nacional de Geología y Minería Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=173918418002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Geológica de Chile 35 (1): 39-61. January, 2008 Revista Geológica de Chile www.scielo.cl/rgch.htm Cooling histories and deformation of plutonic rocks along the Liquiñe-Ofqui Fault Zone, Southern Chile (41°-42°15’S) Alberto C. Adriasola1, Bernhard Stöckhert2 1 Fugro-Robertson Limited, Llandudno, LL30 1SA, United Kingdom. [email protected]; [email protected] 2 Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität, Bochum, 44780 Bochum, Germany. [email protected]; [email protected] ABSTRACT. Structural and microstructural observations combined with apatite and zircon fi ssion-track thermochronology within two sectors of the Main Andean Range in the Los Lagos Region of Chile reveal an episodic history of intrusion and deformation in the North Patagonian Batholith (NPB). A dextral displacement of ~30 km along the Liquiñe-Ofqui fault zone (LOFZ) is inferred from the correlation of corresponding Cretaceous intrusions of the NPB across the fault zone at Reloncaví.
    [Show full text]
  • Geophysical Journal International
    Geophysical Journal International Geophys. J. Int. (2015) 203, 776–791 doi: 10.1093/gji/ggv309 GJI Geodynamics and tectonics Structure and tectonics of the central Chilean margin (31◦–33◦S): implications for subduction erosion and shallow crustal seismicity Eduardo Contreras-Reyes,1 Javier A. Ruiz,1 Juan Becerra,2 Heidrun Kopp,3 Christian Reichert,4 Andrei Maksymowicz1 and Cesar´ Arriagada2 1Departamento de Geof´ısica, Facultad de Ciencias F´ısicas y Matematicas,´ Universidad de Chile, Blanco Encalada 2002, Santiago, Chile. E-mail: [email protected] 2Laboratorio de Tectonica´ y Paleomagnetismo, Departamento de Geolog´ıa, Facultad de Ciencias F´ısicas y Matematicas,´ Santiago, Chile 3GEOMAR Helmholtz Zentrum fur¨ Ozeanforschung Kiel and Christian-Albrechts-Universitat¨ zu Kiel, Kiel, Germany Downloaded from 4Bundesanstalt fur¨ Geowissenschaften und Rohstoffe (BGR), Hannover, Germany Accepted 2015 July 22. Received 2015 June 23; in original form 2015 January 16 http://gji.oxfordjournals.org/ SUMMARY The pre- and current collision of the Juan Fernandez´ Ridge with the central Chilean margin at 31◦–33◦S is characterized by large-scale crustal thinning and long-term subsidence of the submarine forearc caused by subduction erosion processes. Here, we study the structure of the central Chilean margin in the ridge–trench collision zone by using wide-angle and multichannel seismic data. The transition from the upper to middle continental slope is defined by a trenchward dipping normal scarp with variable offsets of 500–2000 m height. Beneath − the scarp, the 2-D velocity–depth models show a prominent lateral velocity contrast of >1s 1 at Leibniz-Institut fur Meereswissenschaften on September 10, 2015 that propagates deep into the continental crust defining a major lateral seismic discontinuity.
    [Show full text]
  • Technical Memorandum 86160 ANDEAN TECTONICS
    NASA Technical Memorandum 86160 ANDEAN TECTONICS: IMPLICATIONS FOR SATELLITE GEODESY R. J. Allenby SEPTEMBER 1984 National Aeronautics and Space Administration Goddard Space Right Center Greenbelt, Maryland 20771 ANDEAN TECTONICS: IMPLICATIONS FOR SATELLITE GEODESY by R. J. Allenby September, 1984 Goddard Space Flight Center Greenbelt, Maryland 20771 ABSTRACT This paper summarizes current knowledge and theories of large scale Andean tectonics as they relate to site planning for the NASA Crustal -Dynamics Program's proposed high-precision geodetic measurements of relative motions between the Nazca and South American plates. The Nazca Plate and its eastern margin, the Peru-Chile Trench, is considered a prototype plate marked by rapid motion, strong seismlcity and well- defined boundaries. Tectonic activity across the Andes results from the Nazca Plate subducting under the South American plate In a series of discrete platelets with different widths and dip angles. This, in turn, is reflected in the tectonic complexity of the Andes which are a multitude of orogenic belts superimposed on each other since the Precambrian. Sites for Crustal Dynamics Program measurements are being located to investigate both interplate and extraplate motions. Observing operations have already been initiated at Arequipa, Peru and Easter Island, Santiago and Cerro Tololo, Chile. Sites under consideration include Iquique, Chile; Oruro and Santa Cruz, Bolivia; Cuzco, Lima, Huancayo and Bayovar, Peru; and Quito and the Galapagos Islands, Ecuador. Based on scientific considerations, it is suggested that Santa Cruz, Huancayo (or Lima), Quito and the Galapagos Islands be replaced by Isla San Felix, Chile; Brazilia or Petrolina, Brazil; and Guayaquil, Ecuador. If resources permit, additional Important sites would be Buenaventura and Vlllavicencio or Puerto La Concordia, Colombia; and Mendoza and Cordoba, Argentina.
    [Show full text]
  • A Large Late-Glacial Eruption of the Hudson Volcano, Southern
    A LARGE LATE-GLACIAL ERUPTION OF THE HUDSON VOLCANO, SOUTHERN CHILE by DEREK JAMES WELLER B.A. University of Colorado, 2010 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Masters of Science Department of Geological Sciences 2015 This thesis entitled: A Large Late-glacial Eruption of the Hudson Volcano, Southern Chile written by Derek James Weller has been approved for the Department of Geological Sciences Dr. Charles Stern Dr. G. Lang Farmer Date The final copy of this thesis has been examined by the signatories, and we Find that both the content and the form meet acceptable presentation standards Of scholarly work in the above mentioned discipline. iii Weller, Derek James (M.S., Geological Sciences) A Large Late-glacial Eruption of the Hudson Volcano, Southern Chile Thesis directed by Dr. Charles Stern ABSTRACT Lakes formed in the Aysén region of southern Chile after the retreat of mountain glaciers, beginning by at least ~17,900 cal yrs BP, contain numerous late-glacial and Holocene tephra layers derived from >70 eruptions of the volcanoes in the region, including Hudson, the southernmost in the Andean Southern Volcanic Zone (SVZ). Sediment cores from six of these lakes each contain an unusually thick late-glacial age tephra layer, which based on its distribution and bulk trace-element composition was derived from a large explosive eruption of the Hudson volcano between 17,300 and 17,440 cal yrs BP, and is termed Ho. In these cores, located ~100 km northeast of Hudson, the Ho tephra layers range between 35 to 88 cm in thickness.
    [Show full text]
  • SEPARATA Cooling Histories and Deformation Of
    S E P A R A T A Revista Geológica de Chile 35 (1): 39-61. January, 2008 Revista Geológica de Chile Cooling histories and deformation of plutonic rocks along the Liquiñe-Ofqui Fault Zone, Southern Chile (41°-42°15’S) Alberto C. Adriasola1, Bernhard Stöckhert2 1 Fugro-Robertson Limited, Llandudno, LL30 1SA, United Kingdom. [email protected]; [email protected] 2 Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität, Bochum, 44780 Bochum, Germany. [email protected]; [email protected] ISSN 0716-0208 Editada por el Servicio Nacional de Geología y Minería con la colaboración científi ca de la Sociedad Geológica de Chile Avda. Santa María 0104, Casilla 10465, Santiago, Chile. [email protected]; http://www.scielo.cl/rgch.htm; http://www.sernageomin.cl Revista Geológica de Chile 35 (1): 39-61. January, 2008 Revista Geológica de Chile www.scielo.cl/rgch.htm Cooling histories and deformation of plutonic rocks along the Liquiñe-Ofqui Fault Zone, Southern Chile (41°-42°15’S) Alberto C. Adriasola1, Bernhard Stöckhert2 1 Fugro-Robertson Limited, Llandudno, LL30 1SA, United Kingdom. [email protected]; [email protected] 2 Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität, Bochum, 44780 Bochum, Germany. [email protected]; [email protected] ABSTRACT. Structural and microstructural observations combined with apatite and zircon fi ssion-track thermochronology within two sectors of the Main Andean Range in the Los Lagos Region of Chile reveal an episodic history of intrusion and deformation in the North Patagonian Batholith (NPB). A dextral displacement of ~30 km along the Liquiñe-Ofqui fault zone (LOFZ) is inferred from the correlation of corresponding Cretaceous intrusions of the NPB across the fault zone at Reloncaví.
    [Show full text]