A Study of the Dung-Inhabiting Beetles of Priory Water NR (Coleoptera: Scarabaeidae, Hydrophilidae and Histeridae)

Total Page:16

File Type:pdf, Size:1020Kb

A Study of the Dung-Inhabiting Beetles of Priory Water NR (Coleoptera: Scarabaeidae, Hydrophilidae and Histeridae) LEICESTERSHIRE ENTOMOLOGICAL SOCIETY A study of the dung-inhabiting beetles of Priory Water NR (Coleoptera: Scarabaeidae, Hydrophilidae and Histeridae) Frank Clark1 & Tony Cook2 Aphodius prodromus LESOPS 32 (August 2015) ISSN 0957 - 1019 1Bank Cottage, 4 Main Street, Houghton on the Hill, LE7 9GD ([email protected]) 2Barnwood Cottage, Main Street, Slawston, Market Harborough, LE16 7UF ([email protected]) LESOPS 32 (2015) Dung beetles of Priory Water NR 2 Introduction Dung beetles of the family Scarabaeidae play a prominent role in the decomposition of herbivore dung and so it is not surprising that a large number of studies have been undertaken on many aspects of their ecology. Examples of these studies include community structure and succession (Koskela & Hanski, 1977), resource partitioning (Hanski & Koskela, 1979), resource utilisation (Holter, 1982), life history traits (Gittings & Giller, 1997), resource quality and colonisation (Gittings & Giller, 1998), distribution and abundance in fragmented landscapes (Roselin & Koivunen, 2001) and competition (Finn & Gittings, 2003). The Hydrophilidae and Histeridae have generally received less attention. Those species that feed on dung play only a minor role in its decomposition and are often found in other habitats, for example compost heaps and birds’ nests (Ryndevich & Lundyslev, 2005), where some species, principally in the Sphaereidae and Histeridae are, at least in their larval stages, predators of other invertebrates (Sowig, 1997; Hansen, 1987). The work that has been done on this group includes studies on Sphaeridium species by Hanski (1980a) and Otronen & Hanski (1983) and on species of Cercyon and Sphaeridium by Prezewozny & Bajerlein (2010). Records of dung inhabiting species for VC55 Scarabaeidae, Hydrophilidae and Histeridae are relatively few in comparison with other beetle families (Finch, 2015). No beetles associated with dung have previously been recorded at Priory Water NR. The aims of this study were to compile a species list for Priory Water, compare different methods of sampling, record seasonality, preference for dung type, habitat and spatial separation of species within dung piles. Study site description Priory Water comprises a complex of lakes of various sizes in abandoned gravel pits, separated by woodland and grassland habitats, in the flood plain of the River Wreake near Kirby Bellars (SK7118). The pits were acquired by the Leicestershire Wildfowlers’ Association in 1987 and managed by them as a reserve, principally for wildfowl. The reserve covers an area of 81 hectares, of which 32 are open water. For further information on the reserve see the Priory Water Wildfowl Project handbook (Shelton, 2007). The flood plain of the River Wreake lies to the north of the main body of the reserve from which it is fenced off from the main reserve. This area of the flood plain is grazed by sheep and cattle from spring to autumn. On the south side of the lake the reserve only extends to a few metres from the water’s edge, the land beyond is owned by a farm and stables and is grazed daily by horses. For the purposes of this study this area was considered as part of the reserve. Materials and Methods Dung beetles were sampled from naturally occurring dung in different areas of grassland (direct searching), from experimental dung piles set up in woodland and grassland and by pitfall traps set in grassland. Direct searching was carried out primarily to obtain a species list for the site while the experimental dung piles and dung baited traps were used to obtain information on dung type and habitat preferences. Direct searching Naturally-occurring dung from sheep, cattle and horse were sampled for beetles in each month from February 2014 to February 2015. Samples of dung weighing approximately 500g were mixed in a bucket of water and beetles that floated to the surface were collected and preserved in tubes of 70% isopropyl alcohol. Koskela & Hanski (1977) found that this flotation method recovered more than 95% of beetles from a dung pat. As far as possible the dung sampled was more than two days old but younger than seven days. This period of time was chosen as Koskela & Hanski (op cit.) found that cattle droppings attracted maximum LESOPS 32 (2015) Dung beetles of Priory Water NR 3 numbers of Aphodius a few days after deposition. The age of the dung was judged by its softness and the degree of crust formation (Skidmore 1991). On a few occasions dung older than seven days was sampled. Experimental dung piles Fresh dung from horse and sheep was collected from a stable and a pasture respectively. The dung was divided into samples of 500-600g, stored in individual polythene bags and kept in a freezer at -15ºC until put out into the field (see below). Freezing ensured that if any dung beetles had already colonised the dung before collection they would be killed; only live beetles were collected from the flotation method. For the investigation of spatial separation of beetles within dung piles (see below) fresh horse dung was collected from a stables in January 2014, divided up in to 500g samples and pressed in to foil containers (dimensions 18cm long x 9cm wide x 5cm deep) and frozen at -15ºC. Habitat preferences In each month from June to September 2014 two 500g samples of sheep and/or horse dung, according to availability, were sited in shaded woodland (SK709185), open grassland (SK 710185) and an area of compacted granite chippings used as a car park (SK712183). To protect the samples from foraging birds they were covered with a mesh cage made from plastic coated chicken wire (hole size 3cm x 3cm) pegged to the ground. The samples were put out once a month and left in the field for seven days. At the end of this period beetles were recovered by flotation and preserved. Spatial distribution of beetles within a dung pile In March and again in April 2014 six of the horse dung samples frozen in foil containers as described above, were placed approximately 2m apart in open grassland and left for 7 days. Each sample was covered with 3cm hole size plastic coated chicken wire pegged to the ground to protect the samples from foraging birds. At the end of 7 days each sample was cut longitudinally in half with a serrated bread knife and each half put in a separate bucket of water. Beetles were recovered by flotation and preserved. Dung-baited pitfall traps Dung type preferences were investigated during the period August – October using three dung baited pitfall traps sited in grassland on the south shore of the main lake. Each trap comprised a 4 litre plastic bucket (21cm diameter) sunk up to its rim into the ground. The traps were covered with 4cm hole-size meshweld from which a fine mesh bag was suspended containing approximately 400g of dung. The meshweld was covered with 3cm hole size plastic coated chicken wire to prevent small rodents and amphibians falling in to the traps but still allowing access to dung beetles. The two layers of mesh were pinned to the ground with metal pegs. The mesh bag suspended over the bucket containing either sheep, cattle or horse dung. The three traps were placed in a line 2m apart and a preservative of 25% ethanediol with a few drops of detergent was added to each to a depth of 2cm. The traps were left for 7 days in each month after which the contents were collected and any beetles removed and preserved in labelled tubes of 70% isopropyl alcohol. Sex and breeding condition Aphodius species found in sufficient numbers (>10), by all sampling methods, were sexed by dissection. The breeding condition of females was assessed by the presence of chorionated eggs (Gittings & Giller, 1997). Identification and statistical analysis All beetles in Scarabaeidae, Hydrophilidae and Histeridae were identified to species with the aid of a dissecting microscope and keys by Jessop (1986), Duff (2012) and Foster et al (2014). Statistical analyses were carried out in either Excel or using online software http://www.wessa.net/slr.wasp. LESOPS 32 (2015) Dung beetles of Priory Water NR 4 Results Twenty-six species of dung-inhabiting beetles in the families Scarabaeidae, Hydrophilidae and Histeridae were recorded at Priory Water NR from horse, sheep and cattle dung (Table1). Table 1: Species found in three herbivore dung types February 2014 – February 2015 Species Horse dung Sheep dung Cattle dung Scarabaeidae Aphodius ater x x x Aphodius contaminatus x x x Aphodius fimetarius x x x Aphodius fossor x x x Aphodius haemorrhoidalis x x Aphodius obliteratus x x Aphodius prodromus x x Aphodius pusillus x Aphodius rufipes x x x Aphodius rufus x x x Aphodius sphacelatus x x x Aphodius sticticus x x Geotrupes stercorarius x Hydrophilidae Cercyon haemorrhoidalis x x x Cercyon lateralis x x x Cercyon melanocephalus x x x Cercyon pygmaeus x x Cercyon quisquilius x x x Cercyon unipunctata x Cryptopleurum minutum x x x Cryptopleurum subtile x Megasternum concinnum x x x Sphaeridium scaraboides x x x Sphaeridium lunatum x x Sphaeridium marginatum x x Histeridae Marginotus ventralis x The relative abundance of each species is shown in Figures 1 and 2. Twelve species of Aphodius were recorded among which A. ater, A. contaminatus, A. prodromus, A. rufipes and A. sphacelatus were numerically dominant (see below for seasonal occurrence). The only other Scarabaeidae recorded was Geotrupes stercorarius. Among the Hydrophilidae there were six species of Cercyon, two Cryptopleurum, three Sphaeridium and Megasternum concinnum. The dominant species were Cercyon haemorrhoidalis, C. melanocephalus and Sphearidium scarabaeoides. The only Histeridae recorded was Marginotus ventralis. Of the 26 species identified during the project two, Cryptopleurum subtile and Sphaeridium marginatum, were new records for VC55. Seasonal activity Most species showed fairly discrete periods of activity, exceptions being the hydrophilids Cercyon haemorrhoidalis and C.
Recommended publications
  • Green-Tree Retention and Controlled Burning in Restoration and Conservation of Beetle Diversity in Boreal Forests
    Dissertationes Forestales 21 Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Esko Hyvärinen Faculty of Forestry University of Joensuu Academic dissertation To be presented, with the permission of the Faculty of Forestry of the University of Joensuu, for public criticism in auditorium C2 of the University of Joensuu, Yliopistonkatu 4, Joensuu, on 9th June 2006, at 12 o’clock noon. 2 Title: Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Author: Esko Hyvärinen Dissertationes Forestales 21 Supervisors: Prof. Jari Kouki, Faculty of Forestry, University of Joensuu, Finland Docent Petri Martikainen, Faculty of Forestry, University of Joensuu, Finland Pre-examiners: Docent Jyrki Muona, Finnish Museum of Natural History, Zoological Museum, University of Helsinki, Helsinki, Finland Docent Tomas Roslin, Department of Biological and Environmental Sciences, Division of Population Biology, University of Helsinki, Helsinki, Finland Opponent: Prof. Bengt Gunnar Jonsson, Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden ISSN 1795-7389 ISBN-13: 978-951-651-130-9 (PDF) ISBN-10: 951-651-130-9 (PDF) Paper copy printed: Joensuun yliopistopaino, 2006 Publishers: The Finnish Society of Forest Science Finnish Forest Research Institute Faculty of Agriculture and Forestry of the University of Helsinki Faculty of Forestry of the University of Joensuu Editorial Office: The Finnish Society of Forest Science Unioninkatu 40A, 00170 Helsinki, Finland http://www.metla.fi/dissertationes 3 Hyvärinen, Esko 2006. Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests. University of Joensuu, Faculty of Forestry. ABSTRACT The main aim of this thesis was to demonstrate the effects of green-tree retention and controlled burning on beetles (Coleoptera) in order to provide information applicable to the restoration and conservation of beetle species diversity in boreal forests.
    [Show full text]
  • Morphology, Taxonomy, and Biology of Larval Scarabaeoidea
    Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign http://www.archive.org/details/morphologytaxono12haye ' / ILLINOIS BIOLOGICAL MONOGRAPHS Volume XII PUBLISHED BY THE UNIVERSITY OF ILLINOIS *, URBANA, ILLINOIS I EDITORIAL COMMITTEE John Theodore Buchholz Fred Wilbur Tanner Charles Zeleny, Chairman S70.S~ XLL '• / IL cop TABLE OF CONTENTS Nos. Pages 1. Morphological Studies of the Genus Cercospora. By Wilhelm Gerhard Solheim 1 2. Morphology, Taxonomy, and Biology of Larval Scarabaeoidea. By William Patrick Hayes 85 3. Sawflies of the Sub-family Dolerinae of America North of Mexico. By Herbert H. Ross 205 4. A Study of Fresh-water Plankton Communities. By Samuel Eddy 321 LIBRARY OF THE UNIVERSITY OF ILLINOIS ILLINOIS BIOLOGICAL MONOGRAPHS Vol. XII April, 1929 No. 2 Editorial Committee Stephen Alfred Forbes Fred Wilbur Tanner Henry Baldwin Ward Published by the University of Illinois under the auspices of the graduate school Distributed June 18. 1930 MORPHOLOGY, TAXONOMY, AND BIOLOGY OF LARVAL SCARABAEOIDEA WITH FIFTEEN PLATES BY WILLIAM PATRICK HAYES Associate Professor of Entomology in the University of Illinois Contribution No. 137 from the Entomological Laboratories of the University of Illinois . T U .V- TABLE OF CONTENTS 7 Introduction Q Economic importance Historical review 11 Taxonomic literature 12 Biological and ecological literature Materials and methods 1%i Acknowledgments Morphology ]* 1 ' The head and its appendages Antennae. 18 Clypeus and labrum ™ 22 EpipharynxEpipharyru Mandibles. Maxillae 37 Hypopharynx <w Labium 40 Thorax and abdomen 40 Segmentation « 41 Setation Radula 41 42 Legs £ Spiracles 43 Anal orifice 44 Organs of stridulation 47 Postembryonic development and biology of the Scarabaeidae Eggs f*' Oviposition preferences 48 Description and length of egg stage 48 Egg burster and hatching Larval development Molting 50 Postembryonic changes ^4 54 Food habits 58 Relative abundance.
    [Show full text]
  • An Annotated Checklist of Wisconsin Scarabaeoidea (Coleoptera)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida March 2002 An annotated checklist of Wisconsin Scarabaeoidea (Coleoptera) Nadine A. Kriska University of Wisconsin-Madison, Madison, WI Daniel K. Young University of Wisconsin-Madison, Madison, WI Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Kriska, Nadine A. and Young, Daniel K., "An annotated checklist of Wisconsin Scarabaeoidea (Coleoptera)" (2002). Insecta Mundi. 537. https://digitalcommons.unl.edu/insectamundi/537 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI, Vol. 16, No. 1-3, March-September, 2002 3 1 An annotated checklist of Wisconsin Scarabaeoidea (Coleoptera) Nadine L. Kriska and Daniel K. Young Department of Entomology 445 Russell Labs University of Wisconsin-Madison Madison, WI 53706 Abstract. A survey of Wisconsin Scarabaeoidea (Coleoptera) conducted from literature searches, collection inventories, and three years of field work (1997-1999), yielded 177 species representing nine families, two of which, Ochodaeidae and Ceratocanthidae, represent new state family records. Fifty-six species (32% of the Wisconsin fauna) represent new state species records, having not previously been recorded from the state. Literature and collection distributional records suggest the potential for at least 33 additional species to occur in Wisconsin. Introduction however, most of Wisconsin's scarabaeoid species diversity, life histories, and distributions were vir- The superfamily Scarabaeoidea is a large, di- tually unknown.
    [Show full text]
  • Arthropod Diversity and Conservation in Old-Growth Northwest Forests'
    AMER. ZOOL., 33:578-587 (1993) Arthropod Diversity and Conservation in Old-Growth mon et al., 1990; Hz Northwest Forests complex litter layer 1973; Lattin, 1990; JOHN D. LATTIN and other features Systematic Entomology Laboratory, Department of Entomology, Oregon State University, tural diversity of th Corvallis, Oregon 97331-2907 is reflected by the 14 found there (Lawtt SYNOPSIS. Old-growth forests of the Pacific Northwest extend along the 1990; Parsons et a. e coastal region from southern Alaska to northern California and are com- While these old posed largely of conifer rather than hardwood tree species. Many of these ity over time and trees achieve great age (500-1,000 yr). Natural succession that follows product of sever: forest stand destruction normally takes over 100 years to reach the young through successioi mature forest stage. This succession may continue on into old-growth for (Lattin, 1990). Fire centuries. The changing structural complexity of the forest over time, and diseases, are combined with the many different plant species that characterize succes- bances. The prolot sion, results in an array of arthropod habitats. It is estimated that 6,000 a continually char arthropod species may be found in such forests—over 3,400 different ments and habitat species are known from a single 6,400 ha site in Oregon. Our knowledge (Southwood, 1977 of these species is still rudimentary and much additional work is needed Lawton, 1983). throughout this vast region. Many of these species play critical roles in arthropods have lx the dynamics of forest ecosystems. They are important in nutrient cycling, old-growth site, tt as herbivores, as natural predators and parasites of other arthropod spe- mental Forest (HJ cies.
    [Show full text]
  • Millichope Park and Estate Invertebrate Survey 2020
    Millichope Park and Estate Invertebrate survey 2020 (Coleoptera, Diptera and Aculeate Hymenoptera) Nigel Jones & Dr. Caroline Uff Shropshire Entomology Services CONTENTS Summary 3 Introduction ……………………………………………………….. 3 Methodology …………………………………………………….. 4 Results ………………………………………………………………. 5 Coleoptera – Beeetles 5 Method ……………………………………………………………. 6 Results ……………………………………………………………. 6 Analysis of saproxylic Coleoptera ……………………. 7 Conclusion ………………………………………………………. 8 Diptera and aculeate Hymenoptera – true flies, bees, wasps ants 8 Diptera 8 Method …………………………………………………………… 9 Results ……………………………………………………………. 9 Aculeate Hymenoptera 9 Method …………………………………………………………… 9 Results …………………………………………………………….. 9 Analysis of Diptera and aculeate Hymenoptera … 10 Conclusion Diptera and aculeate Hymenoptera .. 11 Other species ……………………………………………………. 12 Wetland fauna ………………………………………………….. 12 Table 2 Key Coleoptera species ………………………… 13 Table 3 Key Diptera species ……………………………… 18 Table 4 Key aculeate Hymenoptera species ……… 21 Bibliography and references 22 Appendix 1 Conservation designations …………….. 24 Appendix 2 ………………………………………………………… 25 2 SUMMARY During 2020, 811 invertebrate species (mainly beetles, true-flies, bees, wasps and ants) were recorded from Millichope Park and a small area of adjoining arable estate. The park’s saproxylic beetle fauna, associated with dead wood and veteran trees, can be considered as nationally important. True flies associated with decaying wood add further significant species to the site’s saproxylic fauna. There is also a strong
    [Show full text]
  • A Novel Trap Design for Non-Lethal Monitoring of Dung Beetles Using
    Journal of Insect Conservation (2021) 25:629–642 https://doi.org/10.1007/s10841-021-00329-4 ORIGINAL PAPER A novel trap design for non‑lethal monitoring of dung beetles using eDNA metabarcoding Leandro Camila1 · Dejean Tony2 · Valentini Alice2 · Jean Pauline2 · Jay‑Robert Pierre1 Received: 2 March 2020 / Accepted: 4 June 2021 / Published online: 21 June 2021 © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 Abstract The current biodiversity crisis calls for rapid and wide-ranging surveys to assess living organisms. However, some taxa are more elusive than others, making monitoring challenging. This is the case for soil invertebrates, but new molecular technologies such as eDNA metabarcoding could help to alleviate this problem. In this study, we evaluated the feasibil- ity of using an eDNA approach to survey dung beetles, adapting existing monitoring methods for surveying dung fauna to enable eDNA collection in a non-destructive way. The main design idea is to capture species secretions and excretions from a serum-soaked nonwoven compress in a baited non-destructive trap. While the attractiveness of the device to dung beetles and the sampling protocol would beneft from further development, eDNA allowed the identifcation of more than 68% of trapped species and an identifcation of relative abundance match rate of 79%. The results of the study demonstrate the efectiveness of eDNA-based detection tools for the monitoring of dung beetles compared to standard surveying and identifcation techniques. Moreover, the adapted collecting device developed for the study could be used for similar surveys of other terrestrial invertebrates or even re-adapted.
    [Show full text]
  • T1)E Bedford,1)Ire Naturaii,T 45
    T1)e Bedford,1)ire NaturaIi,t 45 Journal for the year 1990 Bedfordshire Natural History Society 1991 'ISSN 0951 8959 I BEDFORDSHffiE NATURAL HISTORY SOCIETY 1991 Chairman: Mr D. Anderson, 88 Eastmoor Park, Harpenden, Herts ALS 1BP Honorary Secretary: Mr M.C. Williams, 2 Ive! Close, Barton-le-Clay, Bedford MK4S 4NT Honorary Treasurer: MrJ.D. Burchmore, 91 Sundon Road, Harlington, Dunstable, Beds LUS 6LW Honorary Editor (Bedfordshire Naturalist): Mr C.R. Boon, 7 Duck End Lane, Maulden, Bedford MK4S 2DL Honorary Membership Secretary: Mrs M.]. Sheridan, 28 Chestnut Hill, Linslade, Leighton Buzzard, Beds LU7 7TR Honorary Scientific Committee Secretary: Miss R.A. Brind, 46 Mallard Hill, Bedford MK41 7QS Council (in addition to the above): Dr A. Aldhous MrS. Cham DrP. Hyman DrD. Allen MsJ. Childs Dr P. Madgett MrC. Baker Mr W. Drayton MrP. Soper Honorary Editor (Muntjac): Ms C. Aldridge, 9 Cowper Court, Markyate, Herts AL3 8HR Committees appointed by Council: Finance: Mr]. Burchmore (Sec.), MrD. Anderson, Miss R. Brind, Mrs M. Sheridan, Mr P. Wilkinson, Mr M. Williams. Scientific: Miss R. Brind (Sec.), Mr C. Boon, Dr G. Bellamy, Mr S. Cham, Miss A. Day, DrP. Hyman, MrJ. Knowles, MrD. Kramer, DrB. Nau, MrE. Newman, Mr A. Outen, MrP. Trodd. Development: Mrs A. Adams (Sec.), MrJ. Adams (Chairman), Ms C. Aldridge (Deputy Chairman), Mrs B. Chandler, Mr M. Chandler, Ms]. Childs, Mr A. Dickens, MrsJ. Dickens, Mr P. Soper. Programme: MrJ. Adams, Mr C. Baker, MrD. Green, MrD. Rands, Mrs M. Sheridan. Trustees (appointed under Rule 13): Mr M. Chandler, Mr D. Green, Mrs B.
    [Show full text]
  • Scarabaeidae) in Finland (Coleoptera)
    © Entomologica Fennica. 27 .VIII.1991 Abundance and distribution of coprophilous Histerini (Histeridae) and Onthophagus and Aphodius (Scarabaeidae) in Finland (Coleoptera) Olof Bistrom, Hans Silfverberg & Ilpo Rutanen Bistrom, 0., Silfverberg, H. & Rutanen, I. 1991: Abundance and distribution of coprophilous Histerini (Histeridae) and Onthophagus and Aphodius (Scarabaeidae) in Finland (Coleoptera).- Entomol. Fennica 2:53-66. The distribution and occmTence, with the time-factor taken into consideration, were monitored in Finland for the mainly dung-living histerid genera Margarinotus, Hister, and Atholus (all predators), and for the Scarabaeidae genera Onthophagus and Aphodius, in which almost all species are dung-feeders. All available records from Finland of the 54 species studied were gathered and distribution maps based on the UTM grid are provided for each species with brief comments on the occmTence of the species today. Within the Histeridae the following species showed a decline in their occurrence: Margarinotus pwpurascens, M. neglectus, Hister funestus, H. bissexstriatus and Atholus bimaculatus, and within the Scarabaeidae: Onthophagus nuchicornis, 0. gibbulus, O.fracticornis, 0 . similis , Aphodius subterraneus, A. sphacelatus and A. merdarius. The four Onthophagus species and A. sphacelatus disappeared in the 1950s and 1960s and are at present probably extinct in Finland. Changes in the agricultural ecosystems, caused by different kinds of changes in the traditional husbandry, are suggested as a reason for the decline in the occuJTence of certain vulnerable species. Olof Bistrom & Hans Si!fverberg, Finnish Museum of Natural Hist01y, Zoo­ logical Museum, Entomology Division, N. Jarnviigsg. 13 , SF-00100 Helsingfors, Finland llpo Rutanen, Water and Environment Research Institute, P.O. Box 250, SF- 00101 Helsinki, Finland 1.
    [Show full text]
  • Larvae of Ataenius (Coleoptera: Scarabaeidae: Aphodiinae
    Eur. J. Entomol. 96: 57—68, 1999 ISSN 1210-5759 Larvae ofAtaenius (Coleóptera: Scarabaeidae: Aphodiinae): Generic characteristics and species descriptions José R. VERDÚ and E duardo GALANTE Departamento de Ciencias Ambientales y Recursos Naturales, Universidad de Alicante, E-03080 Alicante, Spain Key words.Scarabaeidae, Aphodiinae, Ataenius, larvae, description, key, dung beetles, turfgrass beetles, taxonomy Abstract. We compared the larval morphology of the genera Ataenius and Aphodius. The third larval instars of five Ataenius species: Ataenius opatrinus Harold, A. picinus Harold, A. platensis (Blanchard), A. simulator Harold and A. strigicauda Bates, are described or redescribed and illustrated. The most important morphological characteristics of the larvae of Ataenius are found in the respiratory plate of thoracic spiracle, the setation of venter of the last abdominal segment, the setation of the epicranial region and the morphology of the epipharynx. A key to larvae of the known species of Ataenius is included. INTRODUCTION del Sacramento (Uruguay). For the purpose of laboratory studies, a total of 10 to 20 adult specimens of each species were The genus Ataenius Harold comprises 320 species, of kept in cylindrical plastic breeding cages (20 cm high, 10 cm which 228 species are found in America, 49 in Australia, wide) with moist soil and dry cow dung from which they had 11 in Africa, 6 in East Asia, 2 in Madagascar, and single been collected. The lid was an opening (6 cm diameter) covered species in India, Sri Lanka, Turkestan, Japan, Hawaii and with gauze screen. These breeding cages were maintained in an Sumatra, respectively (Dellacasa, 1987). Despite the rich­ environmental chamber at 25 : 20°C (L : D), 80 ± 5% RH, with ness of this genus and its worldwide distribution, the lar­ a photoperiod of 15 : 9 (L : D).
    [Show full text]
  • Life Cycles of Aphodius Dung Beetles (Scarabaeidae, Coleoptera) in Sapporo, Northern Japan
    Title Life Cycles of Aphodius Dung Beetles (Scarabaeidae, Coleoptera) in Sapporo, Northern Japan Author(s) Yoshida, Nobuyo; Katakura, Haruo Environmental science, Hokkaido : journal of the Graduate School of Environmental Science, Hokkaido University, Citation Sapporo, 8(2), 209-229 Issue Date 1986-03-15 Doc URL http://hdl.handle.net/2115/37184 Type bulletin (article) File Information 8(2)_209-229.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP 209 I Environ. sci. Hokkaido i 8 (2) 'I 2o9N229 I. Dec. 1985 I Life Cycles of APhodius Dung Beetles (Scarabaeidae, Coleoptera) in Sapporo, Northern Japan Nobuyo Yoshida* and Haruo Katakura* "* Department of Systematic Zoology, l)ivision of Environmental Structure, Graduate School of Environmental Science, Hol<kaldo Unlversity, Sapporo 060, Japan Abstract On the basis of the results obtained by the periodical field sampling, analyses of genadal condition and rearing experiments made during 1982 to 1984, life cycles of twelve Aphodius species in Hol<l<aido Agricultural Experiment Station, Sapporo, northern Japan, were described with the following bionomic eharacters: fiight period, pre-reproductive period, reproductlve period, seasonal change in the frequency of inseminated females, hibernating stage and hibernaculum. All species were univoltine. Following the classification systein by Kiuchi(1979>, the life cycles were classified into the follewing four types: 1) Type A-a: Hibernating as adults that feed before hibernatlon: A. ttn・ijo' rmis, A. haentorrhoidalis, A. sublimbatus, A. rectus. 2> Type A-b: }{[ibernating as adults that do not feed before'hibernation: A. haroldianas, A. pusillus, A. brevittscttltts, A. biuchs,somus, A. rttgvsostriattts. 3) Type B: Hibernating as larvae: A.
    [Show full text]
  • Rvk-Diss Digi
    University of Groningen Of dwarves and giants van Klink, Roel IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2014 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): van Klink, R. (2014). Of dwarves and giants: How large herbivores shape arthropod communities on salt marshes. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 01-10-2021 Of Dwarves and Giants How large herbivores shape arthropod communities on salt marshes Roel van Klink This PhD-project was carried out at the Community and Conservation Ecology group, which is part of the Centre for Ecological and Environmental Studies of the University of Groningen, The Netherlands.
    [Show full text]
  • Quick Guide for the Identification Of
    Quick Guide for the Identification of Maryland Scarabaeoidea Mallory Hagadorn Dr. Dana L. Price Department of Biological Sciences Salisbury University This document is a pictorial reference of Maryland Scarabaeoidea genera (and sometimes species) that was created to expedite the identification of Maryland Scarabs. Our current understanding of Maryland Scarabs comes from “An Annotated Checklist of the Scarabaeoidea (Coleoptera) of Maryland” (Staines 1984). Staines reported 266 species and subspecies using literature and review of several Maryland Museums. Dr. Price and her research students are currently conducting a bioinventory of Maryland Scarabs that will be used to create a “Taxonomic Guide to the Scarabaeoidea of Maryland”. This will include dichotomous keys to family and species based on historical reports and collections from all 23 counties in Maryland. This document should be cited as: Hagadorn, M.A. and D.L. Price. 2012. Quick Guide for the Identification of Maryland Scarabaeoidea. Salisbury University. Pp. 54. Questions regarding this document should be sent to: Dr. Dana L. Price - [email protected] **All pictures within are linked to their copyright holder. Table of Contents Families of Scarabaeoidea of Maryland……………………………………... 6 Geotrupidae……………………………………………………………………. 7 Subfamily Bolboceratinae……………………………………………… 7 Genus Bolbocerosoma………………………………………… 7 Genus Eucanthus………………………………………………. 7 Subfamily Geotrupinae………………………………………………… 8 Genus Geotrupes………………………………………………. 8 Genus Odonteus...……………………………………………… 9 Glaphyridae..............................................................................................
    [Show full text]