The Calculation of Rotational Energy Levels and Rotational Line Intensities in Diatomic Molecules

Total Page:16

File Type:pdf, Size:1020Kb

The Calculation of Rotational Energy Levels and Rotational Line Intensities in Diatomic Molecules NBS MONOGRAPH 115 The Calculation of Rotational Energy Levels and Rotational I Line Intensities in Diatomic Molecules U.S. RTMENT OF MMERCE National Bureau - NATIONAL BUREAU OF STANDARDS ' The National Bureau of Standards was established by an act of Congress March 3, 1901 . Today, in addition to serving as the Nation's central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in four broad program areas. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology. The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Radiation Research, the Center for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and com- merce. The Institute consists of an Office of Measurement Services and the following technical divisions: Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic and Molec- ular Physics—Radio Physics -—Radio Engineering - —Time and Frequency -—Astro- physics - —Cryogenics. THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to im- proved methods of measurement standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; develops, produces, and distributes standard reference materials; relates the physical and chemical prop- erties of materials to their behavior and their interaction with their environments; and provides advisory and research services to other Government agencies. The Institute consists of an Office of Standard Reference Materials and the following divisions: Analytical Chemistry—Polymers—Metallurgy—Inorganic Materials—Physical Chemistry. THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Gov- ernment; cooperates with public and private organizations in the development of technological standards, and test methodologies; and provides advisory and research services for Federal, state, and local government agencies. The Institute consists of the following technical divisions and offices: Engineering Standards—Weights and Measures — Invention and Innovation — Vehicle Systems Research—Product Evaluation—Building Research—Instrument Shops—Meas- urement Engineering—Electronic Technology—Technical Analysis. THE CENTER FOR RADIATION RESEARCH engages in research, measurement, and ap- plication of radiation t|o the solution of Bureau mission problems and the problems of other agen- cies and institutions. The Center consists of the following divisions: Reactor Radiation—Linac Radiation—Nuclear Radiation—Applied Radiation. THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in the selection, acquisition, and effective use of automatic data processing equipment; and serves as the principal focus for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions: Information Processing Standards—Computer Information — Computer Services — Sys- tems Development—Information Processing Technology. THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measure- ment System, and provides appropriate services to ensure that the NBS staff has optimum ac- cessibility to the scientific information of the world. The Office consists of the following organizational units: Office of Standard Reference Data—Clearinghouse for Federal Scientific and Technical Information ' —Office of Technical Information and Publications—Library—Office of Public Information—Office of International Relations. ' Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted: mailing address Washington, D.C. 20234. = Located at Boulder, Colorado 80302. ' Located at 5285 Port Royal Road, Springfield, Virginia 22151. UNITED STATES DEPARTMENT OF COMMERCE Maurice H. Stans. Secretary NATIONAL BUREAU OF STANDARDS • Lewis M. Branscomb, Director The Calculation of Rotational Energy Levels and Rotational Line Intensities in Diatomic Molecules Jon T. Hougen Institute for Basic Standards National Bureau of Standards Washington, D.C. 20234 y.S 1 National Bureau of Standards Monograph 115, Nat. Bur. Stand. (U.S.), Monogr. 115. 52 pages (June 1970) CODEN: NBSMA Issued June 1970 For sale by the Superintendent of Documents, U.S. Government Printinfi Office Washington, D.C. 20402 (Order by SO Catalog No. C13.44:n5). Price 55 cents mmfil BUREAU OF STANDARDS SEP 1 2 197^ Freiace i, / i This monograph describes procedures for making quantum mechanical calculatioiis of rota- tional energy levels and rotational line intensities in diatomic molecules. The procedures are illustrated by sample calculations. A familiarity with the material of this monograph should enable a practicing electronic spectroscopist to carry out, though in a rather mechanical way, his own theoretical calculations for molecules under experimental investigation. A true understanding of the procedures described below can only be acquired by studying the theoretical reference material cited. These references are not exhaustive; they represent sources which the author finds convenient and instructive. Unfortunately, the material in the references is sometimes presented in a notation different' from that used here. In addition, it is sometimes slightly too general or slightly too specific to apply directly to diatomic molecules. The material of this monograph is aimed at electronic spectroscopists who have had the equivalent of one semester of graduate-level quantum mechanics. Finally, I should like to point out, that the procedures described here for carrying out calcula- tions are not new. Neither do they represent all possible correct procedures. They do represent, however, a unified approach to the problem, which, in the opinion of the author, is easier to under- stand than the original literature cited, and less likely to lead to error than some of the alternative calculation procedures. Note added in proof: The reader is referred to the book Rotational Structure in the Spectra of Diatomic Molecules [28] by I. Kovacs, which just appeared and which represents another author's discussion of much of the material in this monograph. Library of Congress Catalog Card No. 76-604235 II Contents Page Preface II 1. Calculation of rotational energy levels 1 1.1. Hund's coupling cases (a), (b), (c), and (d) 1 1.2. General approach to the calculations 2 1.3. Nonrotating-molecule Hamiltonian 3 1.4. Nonrotating-molecule basis set 1.5. Nonrotating-molecule matrix elements 6 1.6. Rotating-molecule Hamiltonian 7 1.7. Rotating-molecule basis set 8 1.8. Rotating-molecule matrix elements 8 1.9. Example: The Hill and Van Vleck expression for ^11 states 9 1.10. Example: The Schlapp expression for ^2 states 13 2. Symmetry properties of the rotational energy levels 15 2.1. Geometric symmetry operations 16 2.2. Permutation-inversion symmetry operations 18 2.3. The symmetry operation o"„ 19 2.4. Example: Parities of the rotational levels in a ' state 21 2.5. Example: Parities of the rotational levels in a ^2"^ state 22 2.6. The symmetry operation i 22 2.7. The symmetry operation C2 : 22 2.8. Example: Symmetry properties of the rotational levels in a 'Ha state 23 2.9. Relations between matrix elements 23 2.10. Example: Li = L2-L| 25 2.11. The time inversion operation 0 25 3. Calculation of rotational line intensities 27 3.1. Laboratory-fixed components of the electric dipole moment operator fi 28 3.2. Molecule-fixed components of ft 29 3.3. The direction cosine matrix a 31 3.4. Example: Honl-London intensity expressions for a 'D — '2"^ transition 32 — 3.5. Example: Rotational intensity distribution in a^S" 'S"*" transition 34 3.6. Intensity calculations when closed-form expressions cannot be obtained. Example: Rotational intensity distribution in a''A — transition 37 4. Perturbations 41 4.1. General remarks 41 4.2. Homogeneous and heterogeneous perturbations 42 4.3. Example: 'H — heterogeneous perturbation 42 4.4. Example: — 'H homogeneous perturbation 44 4.5. Van Vleck transformations 45 4.6. Example: A-type doubling in a 'H state 45 4.7. Centrifugal distortion corrections to rotational energy levels 46 5. References 49 III ; The Calculation of Rotational Energy Levels and Rotational Line Intensities in Diatomic Molecules Jon T. Hougen Procedures are described, in this pedagogical monograph, for
Recommended publications
  • Rotational Motion (The Dynamics of a Rigid Body)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body) Henry Semat City College of New York Robert Katz University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/physicskatz Part of the Physics Commons Semat, Henry and Katz, Robert, "Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body)" (1958). Robert Katz Publications. 141. https://digitalcommons.unl.edu/physicskatz/141 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Robert Katz Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 11 Rotational Motion (The Dynamics of a Rigid Body) 11-1 Motion about a Fixed Axis The motion of the flywheel of an engine and of a pulley on its axle are examples of an important type of motion of a rigid body, that of the motion of rotation about a fixed axis. Consider the motion of a uniform disk rotat­ ing about a fixed axis passing through its center of gravity C perpendicular to the face of the disk, as shown in Figure 11-1. The motion of this disk may be de­ scribed in terms of the motions of each of its individual particles, but a better way to describe the motion is in terms of the angle through which the disk rotates.
    [Show full text]
  • Further Quantum Physics
    Further Quantum Physics Concepts in quantum physics and the structure of hydrogen and helium atoms Prof Andrew Steane January 18, 2005 2 Contents 1 Introduction 7 1.1 Quantum physics and atoms . 7 1.1.1 The role of classical and quantum mechanics . 9 1.2 Atomic physics—some preliminaries . .... 9 1.2.1 Textbooks...................................... 10 2 The 1-dimensional projectile: an example for revision 11 2.1 Classicaltreatment................................. ..... 11 2.2 Quantum treatment . 13 2.2.1 Mainfeatures..................................... 13 2.2.2 Precise quantum analysis . 13 3 Hydrogen 17 3.1 Some semi-classical estimates . 17 3.2 2-body system: reduced mass . 18 3.2.1 Reduced mass in quantum 2-body problem . 19 3.3 Solution of Schr¨odinger equation for hydrogen . ..... 20 3.3.1 General features of the radial solution . 21 3.3.2 Precisesolution.................................. 21 3.3.3 Meanradius...................................... 25 3.3.4 How to remember hydrogen . 25 3.3.5 Mainpoints.................................... 25 3.3.6 Appendix on series solution of hydrogen equation, off syllabus . 26 3 4 CONTENTS 4 Hydrogen-like systems and spectra 27 4.1 Hydrogen-like systems . 27 4.2 Spectroscopy ........................................ 29 4.2.1 Main points for use of grating spectrograph . ...... 29 4.2.2 Resolution...................................... 30 4.2.3 Usefulness of both emission and absorption methods . 30 4.3 The spectrum for hydrogen . 31 5 Introduction to fine structure and spin 33 5.1 Experimental observation of fine structure . ..... 33 5.2 TheDiracresult ..................................... 34 5.3 Schr¨odinger method to account for fine structure . 35 5.4 Physical nature of orbital and spin angular momenta .
    [Show full text]
  • Low Power Energy Harvesting and Storage Techniques from Ambient Human Powered Energy Sources
    University of Northern Iowa UNI ScholarWorks Dissertations and Theses @ UNI Student Work 2008 Low power energy harvesting and storage techniques from ambient human powered energy sources Faruk Yildiz University of Northern Iowa Copyright ©2008 Faruk Yildiz Follow this and additional works at: https://scholarworks.uni.edu/etd Part of the Power and Energy Commons Let us know how access to this document benefits ouy Recommended Citation Yildiz, Faruk, "Low power energy harvesting and storage techniques from ambient human powered energy sources" (2008). Dissertations and Theses @ UNI. 500. https://scholarworks.uni.edu/etd/500 This Open Access Dissertation is brought to you for free and open access by the Student Work at UNI ScholarWorks. It has been accepted for inclusion in Dissertations and Theses @ UNI by an authorized administrator of UNI ScholarWorks. For more information, please contact [email protected]. LOW POWER ENERGY HARVESTING AND STORAGE TECHNIQUES FROM AMBIENT HUMAN POWERED ENERGY SOURCES. A Dissertation Submitted In Partial Fulfillment of the Requirements for the Degree Doctor of Industrial Technology Approved: Dr. Mohammed Fahmy, Chair Dr. Recayi Pecen, Co-Chair Dr. Sue A Joseph, Committee Member Dr. John T. Fecik, Committee Member Dr. Andrew R Gilpin, Committee Member Dr. Ayhan Zora, Committee Member Faruk Yildiz University of Northern Iowa August 2008 UMI Number: 3321009 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Energy Harvesting from Rotating Structures
    ENERGY HARVESTING FROM ROTATING STRUCTURES Tzern T. Toh, A. Bansal, G. Hong, Paul D. Mitcheson, Andrew S. Holmes, Eric M. Yeatman Department of Electrical & Electronic Engineering, Imperial College London, U.K. Abstract: In this paper, we analyze and demonstrate a novel rotational energy harvesting generator using gravitational torque. The electro-mechanical behavior of the generator is presented, alongside experimental results from an implementation based on a conventional DC motor. The off-axis performance is also modeled. Designs for adaptive power processing circuitry for optimal power harvesting are presented, using SPICE simulations. Key Words: energy-harvesting, rotational generator, adaptive generator, double pendulum 1. INTRODUCTION with ω the angular rotation rate of the host. Energy harvesting from moving structures has been a topic of much research, particularly for applications in powering wireless sensors [1]. Most motion energy harvesters are inertial, drawing power from the relative motion between an oscillating proof mass and the frame from which it is suspended [2]. For many important applications, including tire pressure sensing and condition monitoring of machinery, the host structure undergoes continuous rotation; in these Fig. 1: Schematic of the gravitational torque cases, previous energy harvesters have typically generator. IA is the armature current and KE is the been driven by the associated vibration. In this motor constant. paper we show that rotational motion can be used directly to harvest power, and that conventional Previously we reported initial experimental rotating machines can be easily adapted to this results for this device, and circuit simulations purpose. based on a buck-boost converter [3]. In this paper All mechanical to electrical transducers rely on we consider a Flyback power conversion circuit, the relative motion of two generator sections.
    [Show full text]
  • Rotational Piezoelectric Energy Harvesting: a Comprehensive Review on Excitation Elements, Designs, and Performances
    energies Review Rotational Piezoelectric Energy Harvesting: A Comprehensive Review on Excitation Elements, Designs, and Performances Haider Jaafar Chilabi 1,2,* , Hanim Salleh 3, Waleed Al-Ashtari 4, E. E. Supeni 1,* , Luqman Chuah Abdullah 1 , Azizan B. As’arry 1, Khairil Anas Md Rezali 1 and Mohammad Khairul Azwan 5 1 Department of Mechanical and Manufacturing, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia; [email protected] (L.C.A.); [email protected] (A.B.A.); [email protected] (K.A.M.R.) 2 Midland Refineries Company (MRC), Ministry of Oil, Baghdad 10022, Iraq 3 Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan Ikram-Uniten, Kajang 43000, Malaysia; [email protected] 4 Mechanical Engineering Department, College of Engineering University of Baghdad, Baghdad 10022, Iraq; [email protected] 5 Department of Mechanical Engineering, College of Engineering, Universiti Tenaga Nasional, Jalan Ikram-15 Uniten, Kajang 43000, Malaysia; [email protected] * Correspondence: [email protected] (H.J.C.); [email protected] (E.E.S.) Abstract: Rotational Piezoelectric Energy Harvesting (RPZTEH) is widely used due to mechanical rotational input power availability in industrial and natural environments. This paper reviews the recent studies and research in RPZTEH based on its excitation elements and design and their influence on performance. It presents different groups for comparison according to their mechanical Citation: Chilabi, H.J.; Salleh, H.; inputs and applications, such as fluid (air or water) movement, human motion, rotational vehicle tires, Al-Ashtari, W.; Supeni, E.E.; and other rotational operational principal including gears. The work emphasises the discussion of Abdullah, L.C.; As’arry, A.B.; Rezali, K.A.M.; Azwan, M.K.
    [Show full text]
  • Quantum Mechanics C (Physics 130C) Winter 2015 Assignment 2
    University of California at San Diego { Department of Physics { Prof. John McGreevy Quantum Mechanics C (Physics 130C) Winter 2015 Assignment 2 Posted January 14, 2015 Due 11am Thursday, January 22, 2015 Please remember to put your name at the top of your homework. Go look at the Physics 130C web site; there might be something new and interesting there. Reading: Preskill's Quantum Information Notes, Chapter 2.1, 2.2. 1. More linear algebra exercises. (a) Show that an operator with matrix representation 1 1 1 P = 2 1 1 is a projector. (b) Show that a projector with no kernel is the identity operator. 2. Complete sets of commuting operators. In the orthonormal basis fjnign=1;2;3, the Hermitian operators A^ and B^ are represented by the matrices A and B: 0a 0 0 1 0 0 ib 01 A = @0 a 0 A ;B = @−ib 0 0A ; 0 0 −a 0 0 b with a; b real. (a) Determine the eigenvalues of B^. Indicate whether its spectrum is degenerate or not. (b) Check that A and B commute. Use this to show that A^ and B^ do so also. (c) Find an orthonormal basis of eigenvectors common to A and B (and thus to A^ and B^) and specify the eigenvalues for each eigenvector. (d) Which of the following six sets form a complete set of commuting operators for this Hilbert space? (Recall that a complete set of commuting operators allow us to specify an orthonormal basis by their eigenvalues.) fA^g; fB^g; fA;^ B^g; fA^2; B^g; fA;^ B^2g; fA^2; B^2g: 1 3.A positive operator is one whose eigenvalues are all positive.
    [Show full text]
  • Training Fact Sheet - Energy in Autorotations Contact: Nick Mayhew Phone: (321) 567 0386 ______
    Training Fact Sheet - Energy in Autorotations Contact: Nick Mayhew Phone: (321) 567 0386 ______________________________________________________________________________________________ Using Energy for Our Benefit these energies cannot be created or destroyed, just transferred from one place to another. Relative Sizes of the Energy There are many ways that these energies inter-relate. Potential energy can be viewed as a source of kinetic (and rotational) energy. It’s interesting to note the relative sizes of these. It’s not easy to compare kinetic and potential energy, as they can be traded for one another. But the relatively small size of the rotational energy is surprising. One DVD on the subject showed that the rotational energy was a very small fraction of the combined kinetic The secret to extracting the maximum flexibility from an and potential energy even at the start of autorotation is to understand the various a typical flare. energies at your disposal. Energy is the ability to do work, and the ones available in an autorotation What makes this relative size difference important is that are: potential, kinetic, and rotational. There is a subtle, the rotor RPM, while the smallest energy, but powerful interplay between these is far and away the most important energy – without the energies that we can use to our benefit – but only if we rotor RPM, it is not possible to control know and understand them. the helicopter and all the other energies are of no use! The process of getting from the time/place of the engine We’ve already identified 3 different stages to the failure to safely on the ground can be autorotation – the descent, the flare and thought of as an exercise in energy management.
    [Show full text]
  • On the Symmetry of the Quantum-Mechanical Particle in a Cubic Box Arxiv:1310.5136 [Quant-Ph] [9] Hern´Andez-Castillo a O and Lemus R 2013 J
    On the symmetry of the quantum-mechanical particle in a cubic box Francisco M. Fern´andez INIFTA (UNLP, CCT La Plata-CONICET), Blvd. 113 y 64 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina E-mail: [email protected] arXiv:1310.5136v2 [quant-ph] 25 Dec 2014 Particle in a cubic box 2 Abstract. In this paper we show that the point-group (geometrical) symmetry is insufficient to account for the degeneracy of the energy levels of the particle in a cubic box. The discrepancy is due to hidden (dynamical symmetry). We obtain the operators that commute with the Hamiltonian one and connect eigenfunctions of different symmetries. We also show that the addition of a suitable potential inside the box breaks the dynamical symmetry but preserves the geometrical one.The resulting degeneracy is that predicted by point-group symmetry. 1. Introduction The particle in a one-dimensional box with impenetrable walls is one of the first models discussed in most introductory books on quantum mechanics and quantum chemistry [1, 2]. It is suitable for showing how energy quantization appears as a result of certain boundary conditions. Once we have the eigenvalues and eigenfunctions for this model one can proceed to two-dimensional boxes and discuss the conditions that render the Schr¨odinger equation separable [1]. The particular case of a square box is suitable for discussing the concept of degeneracy [1]. The next step is the discussion of a particle in a three-dimensional box and in particular the cubic box as a representative of a quantum-mechanical model with high symmetry [2].
    [Show full text]
  • Molecular Energy Levels
    MOLECULAR ENERGY LEVELS DR IMRANA ASHRAF OUTLINE q MOLECULE q MOLECULAR ORBITAL THEORY q MOLECULAR TRANSITIONS q INTERACTION OF RADIATION WITH MATTER q TYPES OF MOLECULAR ENERGY LEVELS q MOLECULE q In nature there exist 92 different elements that correspond to stable atoms. q These atoms can form larger entities- called molecules. q The number of atoms in a molecule vary from two - as in N2 - to many thousand as in DNA, protiens etc. q Molecules form when the total energy of the electrons is lower in the molecule than in individual atoms. q The reason comes from the Aufbau principle - to put electrons into the lowest energy configuration in atoms. q The same principle goes for molecules. q MOLECULE q Properties of molecules depend on: § The specific kind of atoms they are composed of. § The spatial structure of the molecules - the way in which the atoms are arranged within the molecule. § The binding energy of atoms or atomic groups in the molecule. TYPES OF MOLECULES q MONOATOMIC MOLECULES § The elements that do not have tendency to form molecules. § Elements which are stable single atom molecules are the noble gases : helium, neon, argon, krypton, xenon and radon. q DIATOMIC MOLECULES § Diatomic molecules are composed of only two atoms - of the same or different elements. § Examples: hydrogen (H2), oxygen (O2), carbon monoxide (CO), nitric oxide (NO) q POLYATOMIC MOLECULES § Polyatomic molecules consist of a stable system comprising three or more atoms. TYPES OF MOLECULES q Empirical, Molecular And Structural Formulas q Empirical formula: Indicates the simplest whole number ratio of all the atoms in a molecule.
    [Show full text]
  • Statistical Mechanics, Lecture Notes Part2
    4. Two-level systems 4.1 Introduction Two-level systems, that is systems with essentially only two energy levels are important kind of systems, as at low enough temperatures, only the two lowest energy levels will be involved. Especially important are solids where each atom has two levels with different energies depending on whether the electron of the atom has spin up or down. We consider a set of N distinguishable ”atoms” each with two energy levels. The atoms in a solid are of course identical but we can distinguish them, as they are located in fixed places in the crystal lattice. The energy of these two levels are ε and ε . It is easy to write down the partition function for an atom 0 1 −ε0 / kB T −ε1 / kBT −ε 0 / k BT −ε / kB T Z = e + e = e (1+ e ) = Z0 ⋅ Zterm where ε is the energy difference between the two levels. We have written the partition sum as a product of a zero-point factor and a “thermal” factor. This is handy as in most physical connections we will have the logarithm of the partition sum and we will then get a sum of two terms: one giving the zero- point contribution, the other giving the thermal contribution. At thermal dynamical equilibrium we then have the occupation numbers in the two levels N −ε 0/kBT N n0 = e = Z 1+ e−ε /k BT −ε /k BT N −ε 1 /k BT Ne n1 = e = Z 1 + e−ε /k BT We see that at very low temperatures almost all the particles are in the ground state while at high temperatures there is essentially the same number of particles in the two levels.
    [Show full text]
  • Rotational Motion and Angular Momentum 317
    CHAPTER 10 | ROTATIONAL MOTION AND ANGULAR MOMENTUM 317 10 ROTATIONAL MOTION AND ANGULAR MOMENTUM Figure 10.1 The mention of a tornado conjures up images of raw destructive power. Tornadoes blow houses away as if they were made of paper and have been known to pierce tree trunks with pieces of straw. They descend from clouds in funnel-like shapes that spin violently, particularly at the bottom where they are most narrow, producing winds as high as 500 km/h. (credit: Daphne Zaras, U.S. National Oceanic and Atmospheric Administration) Learning Objectives 10.1. Angular Acceleration • Describe uniform circular motion. • Explain non-uniform circular motion. • Calculate angular acceleration of an object. • Observe the link between linear and angular acceleration. 10.2. Kinematics of Rotational Motion • Observe the kinematics of rotational motion. • Derive rotational kinematic equations. • Evaluate problem solving strategies for rotational kinematics. 10.3. Dynamics of Rotational Motion: Rotational Inertia • Understand the relationship between force, mass and acceleration. • Study the turning effect of force. • Study the analogy between force and torque, mass and moment of inertia, and linear acceleration and angular acceleration. 10.4. Rotational Kinetic Energy: Work and Energy Revisited • Derive the equation for rotational work. • Calculate rotational kinetic energy. • Demonstrate the Law of Conservation of Energy. 10.5. Angular Momentum and Its Conservation • Understand the analogy between angular momentum and linear momentum. • Observe the relationship between torque and angular momentum. • Apply the law of conservation of angular momentum. 10.6. Collisions of Extended Bodies in Two Dimensions • Observe collisions of extended bodies in two dimensions. • Examine collision at the point of percussion.
    [Show full text]
  • Total Angular Momentum
    Total Angular momentum Dipanjan Mazumdar Sept 2019 1 Motivation So far, somewhat deliberately, in our prior examples we have worked exclusively with the spin angular momentum and ignored the orbital component. This is acceptable for L = 0 systems such as filled shell atoms, but properties of partially filled atoms will depend both on the orbital and the spin part of the angular momentum. Also, when we include relativistic corrections to atomic Hamiltonian, both spin and orbital angular momentum enter directly through terms like L:~ S~ called the spin-orbit coupling. So instead of focusing only on the spin or orbital angular momentum, we have to develop an understanding as to how they couple together. One of the ways is through the total angular momentum defined as J~ = L~ + S~ (1) We will see that this will be very useful in many cases such as the real hydrogen atom where the eigenstates after including the fine structure effects such as spin-orbit interaction are eigenstates of the total angular momentum operator. 2 Vector model of angular momentum Let us first develop an intuitive understanding of the total angular momentum through the vector model which is a semi-classical approach to \add" angular momenta using vector algebra. We shall first ask, knowing L~ and S~, what are the maxmimum and minimum values of J^. This is simple to answer us- ing the vector model since vectors can be added or subtracted. Therefore, the extreme values are L~ + S~ and L~ − S~ as seen in figure 1.1 Therefore, the total angular momentum will take up values between l+s Figure 1: Maximum and minimum values of angular and jl − sj.
    [Show full text]