Pennsylvania State University Astronomy and Astrophysics University Park, Pennsylvania 16802-6305

Total Page:16

File Type:pdf, Size:1020Kb

Pennsylvania State University Astronomy and Astrophysics University Park, Pennsylvania 16802-6305 550 Pennsylvania State University Astronomy and Astrophysics University Park, Pennsylvania 16802-6305 This report covers the period from September 1, 1994 to presented the 1994 Marker Lecture Series in September. Sir August 31, 1995. Martin Rees from Cambridge University, England, presented the 1995 Marker Lecture Series in April. 1. PERSONNEL 1.1 Faculty 2. ACADEMIC PROGRAM The regular members of the faculty during the academic 2.1 Graduate and Undergraduate Majors year 1994-1995 were Professors Peter Me´sza´ros ~Department Twenty-nine graduate and sixty-three undergraduate as- Head!, France Co´rdova ~on leave as NASA Chief Scientist!, tronomy majors were enrolled during the academic year Eric Feigelson, Gordon Garmire ~Evan Pugh Professor!, Lawrence Ramsey, Douglas Sampson, Peter Usher, Daniel 1994-95. During that time, seven B.S. degrees and three Ph.D. degrees were awarded in Astronomy and Astrophysics. Weedman ~on leave as NASA Director of Astrophysics Di- Doctoral recipients were Windsor Morgan, Ralph Kraft, and vision! and Aleksander Wolszczan; Visiting Professor George Pavlov; Associate Professors Donald Schneider and Zhiyu Guo. Richard Wade; Assistant Professors Matthew Bershady, Jane Charlton, Robin Ciardullo, Pablo Laguna and Louis Winkler; and Senior Research Associate/Associate Professors David 2.2 Educational Initiative Burrows and John Nousek. The Department continues as a Site for NSF’s Research Research Associates in the program were Stuart Ander- Experiences for Undergraduate program Chester, PI and son, Margaret Chester, Robin Corbet, Audrey Garmire, Scott ~ Ramsey, Co-PI . The Site grant provides stipend and travel Horner, Ron Kollgaard, Chi-Wai Lee, David Lumb, James ! support for undergraduates to participate in research with Neff, Mark Skinner, Guy Stringfellow, Leisa Townsley, faculty members. Six undergraduates from other colleges and Robin Tuluie, Kim Weaver, and Alan Welty. Chester was universities were fully supported by the Site Grant, and three appointed Visiting Assistant Professor of Physics at Bucknell Penn State students received partial support. These nine stu- University for the 1994-5 academic year. Neff was appointed dents and additional Penn State students supported under to the Graduate Faculty. Joining the department as Research ~ individual faculty research grants! participated in a variety of Associates are Marcos Diaz ~formerly of the University of group activities. These included a colloquium series given by Sao Paulo, Brazil!, Philippos Papadopoulos ~formerly of Ar- faculty and visiting scientists, a workshop on Modern Detec- istotle University, Greece!, George Chartas ~formerly of Har- tors and Observational Techniques, an observing trip to the vard Smithsonian Center for Astrophysics!, Oleg Goldshmidt NRAO at Green Bank, and an introduction to optical observ- ~formerly of Tel Aviv University, Israel! and Zhiyu Guo ing at Penn State’s Black Moshannon Observatory. ~former graduate student at Penn State!. Adjunct Associate Professors include Richard Griffiths at the Space Telescope Science Institute and Hans Kraus at the Technischen Universitat, Munchen, Germany. 2.3 Astronomy Club The Astronomy Club completed 22 years of service to the 1.2 Visitors to the Department University and the local community. It continued to hold Open Houses about once a month during each semester, and Visitors to the department included Ute Kraus, postdoc- during the summer semester. These events attract hundreds toral fellow from the University of Tuebingen, Germany, of visitors to the roof of Davey Laboratory, where the won- Istva´n Horva´th from the Central Research Institute for Phys- ders of the night sky are shown. The Club also organized ics, Budapest, Hungary, and T. Padmanabhan from the Inter- various activities for members, such as star parties, observing University Center for Astronomy and Astrophysics, Pune, trips, and picnics. Their newsletter, The Nittany Observer, India, all working with Peter Me´sza´ros; Honglin Zhang from continued to carry informative and well-written articles and Ohio State University, working with Douglas Sampson; items of news. Members also participate in outreach pro- Randy McKee from Ithaca College, as a summer instructor; grams for school children, making use of the Department’s Katsuji Koyama from Kyoto University, working with Eric planetarium. Officers for 1994-1995 were: President, Maggie Feigelson; Ronald Polidan from NASA/Goddard, working Masetti; Vice President, Melissa Pantaleo; Secretary/ Trea- with Richard Wade; and Richard Kron from the University of surer, Chris Burns; Newsletter Editor, Doug Schwer; Fund Chicago, Fermi Lab, and Dario Trevese from the Universita Raiser/Sales, Eric Hilbert; and Student Advisors, Doug degli Studi, La Sapienza, Rome, both working with Matthew O’Neal and Darren Williams. Usher is the Club’s faculty Bershady. Vera Rubin from Carnegie Institute of Washington advisor. PENNSYLVANIA STATE UNIVERSITY 551 3. RESEARCH ACTIVITIES While some detailed design work has started on these instru- ments, none is fully funded. The high resolution spec- 3.1 Instrumentation for Observing trograph is furthest along with initial procurement of long 3.1.1 Optical lead items in progress at HET partner UT Austin. Detailed design work on the medium resolution spectrograph has be- The Hobby-Eberly Telescope: The year since we last re- gun at Penn State. ported has seen dramatic progress in the construction of the The design and construction of the telescope is managed Hobby-Eberly Telescope HET . The initial construction ~ ! by Thomas A. Sebring, HET project manager. For more in- phase of the building has been completed with only interior formation on the HET, its science programs or partnership finishing remaining. In addition, all major structural elements contact L. Ramsey, HET project scientist, at of the telescope have been completed, delivered and installed [email protected]. at the McDonald Observatory site near Fort Davis, Texas. Black Moshannon Observatory: Ramsey and Matus con- This includes the telescope structure, mirror support truss tinued work on the implementation of a near-IR array system and dome. July 1995 was a particularly busy month with the during this last year. Matus completed the electronic and telescope structure azimuth rotation system undergoing its control software for the system and carried out extensive initial tests, the dome being lifted into place and the first two testing and characterization during spring of 1995. Ramsey primary mirror segments, out of 91, being accepted from designed a simple fiber spectrograph which was imple- Kodak. From this time the external appearance of the facility mented by Matus and Ramsey. May 1995 saw first light of will hardly change. However substantial effort remains on this system with initial observations in the H band of Arctu- the installation of the myriad electrical and electronic control rus at a resolution of l/Dl;5000. This coming year we systems. hope to conduct initial observations testing the utility of this The final procurements for the tracker, mirror supports system and spectral region for precision radial velocity mea- and actuators are well underway. Delivery of the tracker late surements. in the first quarter of 1996 will allow us to accurately project first light, now expected in summer of 1996. This will take place with a simple diamond-turned surrogate spherical ab- 3.1.2 X-ray erration corrector system. This surrogate will allow the vital CCD Imaging Spectrometer on AXAF: The AXAF CCD test and de-bug of the novel HET tracking system without Imaging Spectrometer ~ACIS! passed its critical design re- simultaneously having to test the optically complex final view in June. The flight CCDs are being delivered to MIT spherical aberration corrector system. The final aberration and will be calibrated with X-rays during the winter of 1995/ corrector system along with the acquisition and guide sys- 96. A number of CCDs, both frontside and backside illumi- tems and instrument interface is currently in final design. At nated have been calibrated at BESSY in Berlin by our col- this time we see no threat to our plan to implement regular laborators at the MIT Center for Space Research. These science operations in mid-1997. CCDs form the standard by which the flight CCDs are com- With the construction of the telescope well along, the em- pared for absolute quantum efficiency. Backside illuminated phasis is turning to the science operations phase. The Hobby- CCDs have been made at Lincoln Laboratory based on a Eberly Telescope Consortium, which consists of University process developed for the High Energy Transient Explorer of Texas at Austin, Penn State, Stanford University and the (HETE). These CCDs have proven to be very stable under Universities of Goettingen and Munich in Germany, held a conditions expected in the AXAF orbit and on the ground science workshop at Penn State in June of 1995. Several prior to launch. The quantum efficiency is high below 0.5 representatives from other private and national projects were keV, but the energy resolution is substantially worse than the also present. The focus of this workshop was to coordinate frontside illuminated CCDs yet sufficient to separate orders and optimize those scientific programs that the HET partners from the objective grating spectrometers. Low energy events will likely execute within the first year of science operation show considerable splitting of charge between pixels. with particular attention paid to seeking efficiencies in
Recommended publications
  • Building the Coolest X-Ray Satellite
    National Aeronautics and Space Administration Building the Coolest X-ray Satellite 朱雀 Suzaku A Video Guide for Teachers Grades 9-12 Probing the Structure & Evolution of the Cosmos http://suzaku-epo.gsfc.nasa.gov/ www.nasa.gov The Suzaku Learning Center Presents “Building the Coolest X-ray Satellite” Video Guide for Teachers Written by Dr. James Lochner USRA & NASA/GSFC Greenbelt, MD Ms. Sara Mitchell Mr. Patrick Keeney SP Systems & NASA/GSFC Coudersport High School Greenbelt, MD Coudersport, PA This booklet is designed to be used with the “Building the Coolest X-ray Satellite” DVD, available from the Suzaku Learning Center. http://suzaku-epo.gsfc.nasa.gov/ Table of Contents I. Introduction 1. What is Astro-E2 (Suzaku)?....................................................................................... 2 2. “Building the Coolest X-ray Satellite” ....................................................................... 2 3. How to Use This Guide.............................................................................................. 2 4. Contents of the DVD ................................................................................................. 3 5. Post-Launch Information ........................................................................................... 3 6. Pre-requisites............................................................................................................. 4 7. Standards Met by Video and Activities ...................................................................... 4 II. Video Chapter 1
    [Show full text]
  • VLBI for Gravity Probe B. VII. the Evolution of the Radio Structure Of
    Accepted to the Astrophysical Journal Supplement Series VLBI for Gravity Probe B. VII. The Evolution of the Radio Structure of IM Pegasi M. F. Bietenholz1,2, N. Bartel1, D. E. Lebach3, R. R. Ransom1,4, M. I. Ratner3, and I. I. Shapiro3 ABSTRACT We present measurements of the total radio flux density as well as very-long-baseline interferometry (VLBI) images of the star, IM Pegasi, which was used as the guide star for the NASA/Stanford relativity mission Gravity Probe B. We obtained flux densities and images from 35 sessions of observations at 8.4 GHz (λ = 3.6 cm) between 1997 January and 2005 July. The observations were accurately phase-referenced to several extragalactic reference sources, and we present the images in a star-centered frame, aligned by the position of the star as derived from our fits to its orbital motion, parallax, and proper motion. Both the flux density and the morphology of IM Peg are variable. For most sessions, the emission region has a single-peaked structure, but 25% of the time, we observed a two-peaked (and on one occasion perhaps a three-peaked) structure. On average, the emission region is elongated by 1.4 ± 0.4 mas (FWHM), with the average direction of elongation being close to that of the sky projection of the orbit normal. The average length of the emission region is approximately equal to the diameter of the primary star. No significant correlation with the orbital phase is found for either the flux density or the direction of elongation, and no preference for any particular longitude on the star is shown by the emission region.
    [Show full text]
  • Arxiv:1906.03269V2 [Astro-Ph.EP] 17 Jun 2019
    Draft version June 18, 2019 Typeset using LATEX twocolumn style in AASTeX62 The Degree of Alignment Between Circumbinary Disks and Their Binary Hosts 1, 1, 2 3 4 3 Ian Czekala, ∗ Eugene Chiang, Sean M. Andrews, Eric L. N. Jensen, Guillermo Torres, David J. Wilner,3 Keivan G. Stassun,5, 6 and Bruce Macintosh7 1Department of Astronomy, University of California at Berkeley, Campbell Hall, CA 94720-3411, USA 2Department of Earth and Planetary Science, University of California at Berkeley, McCone Hall, Berkeley, CA 94720-4767, USA 3Center for Astrophysics Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA j 4Department of Physics and Astronomy, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA 5Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Center, Nashville, TN 37235, USA 6Department of Physics, Fisk University, Nashville, TN 37208, USA 7Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305, USA ABSTRACT All four circumbinary (CB) protoplanetary disks orbiting short-period (P < 20 day) double-lined spectroscopic binaries (SB2s)|a group that includes UZ Tau E, for which we present new ALMA data|exhibit sky-plane inclinations idisk which match, to within a few degrees, the sky-plane incli- nations i? of their stellar hosts. Although for these systems the true mutual inclinations θ between disk and binary cannot be directly measured because relative nodal angles are unknown, the near- coincidence of idisk and i? suggests that θ is small for these most compact of systems. We confirm this hypothesis using a hierarchical Bayesian analysis, showing that 68% of CB disks around short-period SB2s have θ < 3:0◦.
    [Show full text]
  • Time Series Analysis of Long-Term Photometry of the RS Cvn Star IM Pegasi
    Master's thesis International Master's Programme in Space Science Time series analysis of long-term photometry of the RS CVn star IM Pegasi Victor S, olea May 2013 Tutor: Doc. Lauri Jetsu Censors: Prof. Alexis Finoguenov Doc. Lauri Jetsu University of Helsinki Department of Physics P.O. Box 64 (Gustaf Hallstr¨ omin¨ katu 2a) FIN-00014 University of Helsinki Helsingin yliopisto | Helsingfors universitet | University of Helsinki Tiedekunta/Osasto | Fakultet/Sektion | Faculty Laitos | Institution | Department Faculty of Science Department of Physics Tekij¨a | F¨orfattare | Author Victor S, olea Ty¨on nimi | Arbetets titel | Title Time series analysis of long-term photometry of the RS CVn star IM Pegasi Oppiaine | L¨aro¨amne | Subject International Master's Programme in Space Science Ty¨on laji | Arbetets art | Level Aika | Datum | Month and year Sivum¨a¨ar¨a | Sidoantal | Number of pages Master's thesis May 2013 31 Tiivistelm¨a | Referat | Abstract We applied the Continuous Period Search (CPS) method to 23 years of V-band photometric data of the spectroscopic binary star IM Pegasi (primary: K2-class giant; secondary: G{ K-class dwarf). We studied the short and long-term activity changes of the light curve. Our modelling gave the mean magnitude, amplitude, period and the minima of the light curve, as well as their error estimates. There was not enough data to establish whether the long-term changes of the spot distribution followed an activity cycle. We also studied the differential rotation and detected that it was significantly stronger than expected, k ≥ 0:093. This result is based on the assumption that the law of solar differential rotation is valid also for IM Peg.
    [Show full text]
  • Volatiles in Protoplanetary Disks
    Volatiles in Protoplanetary Disks Thesis by Ke Zhang In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2015 (Defended May 15, 2015) ii c 2015 Ke Zhang All Rights Reserved iii Acknowledgements First and foremost, I would like to thank my advisor, Geoffrey Blake, for his patience, guidance, support, and inspiration that made this thesis possible. In retrospect, I am so grateful to have chosen Geoff as my mentor. He is a very special kind of advisor, so rare in the fast-paced world, who can be incredibly patient, waiting for a student to find her passion. But once the student has made up her mind, and starts to ask for resources, opportunities, and attention, he is so supportive and resourceful that the only limitation for the student is herself. It was a great privilege working with Geoff, who is ingeniously creative and vastly knowledgeable. Thank you for all the lessons, support, and, most importantly, for believing in and encouraging me. I'm also thankful for John Carpenter who opened for me the wonderful door of (sub)mm-wave interferometry and gave me a very first opportunity to work with ALMA data. John, you are my role model as a rigorous scientist who understands his field profoundly and is dedicated to getting things right. I would also like to thank Colette Salyk for being such a great mentor and a supportive friend during my years in graduate school. Thanks for taking me to the summit of Mauna Kea and beautiful Charlottesville.
    [Show full text]
  • + Gravity Probe B
    NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Gravity Probe B Experiment “Testing Einstein’s Universe” Press Kit April 2004 2- Media Contacts Donald Savage Policy/Program Management 202/358-1547 Headquarters [email protected] Washington, D.C. Steve Roy Program Management/Science 256/544-6535 Marshall Space Flight Center steve.roy @msfc.nasa.gov Huntsville, AL Bob Kahn Science/Technology & Mission 650/723-2540 Stanford University Operations [email protected] Stanford, CA Tom Langenstein Science/Technology & Mission 650/725-4108 Stanford University Operations [email protected] Stanford, CA Buddy Nelson Space Vehicle & Payload 510/797-0349 Lockheed Martin [email protected] Palo Alto, CA George Diller Launch Operations 321/867-2468 Kennedy Space Center [email protected] Cape Canaveral, FL Contents GENERAL RELEASE & MEDIA SERVICES INFORMATION .............................5 GRAVITY PROBE B IN A NUTSHELL ................................................................9 GENERAL RELATIVITY — A BRIEF INTRODUCTION ....................................17 THE GP-B EXPERIMENT ..................................................................................27 THE SPACE VEHICLE.......................................................................................31 THE MISSION.....................................................................................................39 THE AMAZING TECHNOLOGY OF GP-B.........................................................49 SEVEN NEAR ZEROES.....................................................................................58
    [Show full text]
  • The Gravity Probe B Test of General Relativity
    Home Search Collections Journals About Contact us My IOPscience The Gravity Probe B test of general relativity This content has been downloaded from IOPscience. Please scroll down to see the full text. 2015 Class. Quantum Grav. 32 224001 (http://iopscience.iop.org/0264-9381/32/22/224001) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 131.169.4.70 This content was downloaded on 08/01/2016 at 08:37 Please note that terms and conditions apply. Classical and Quantum Gravity Class. Quantum Grav. 32 (2015) 224001 (29pp) doi:10.1088/0264-9381/32/22/224001 The Gravity Probe B test of general relativity C W F Everitt1, B Muhlfelder1, D B DeBra1, B W Parkinson1, J P Turneaure1, A S Silbergleit1, E B Acworth1, M Adams1, R Adler1, W J Bencze1, J E Berberian1, R J Bernier1, K A Bower1, R W Brumley1, S Buchman1, K Burns1, B Clarke1, J W Conklin1, M L Eglington1, G Green1, G Gutt1, D H Gwo1, G Hanuschak1,XHe1, M I Heifetz1, D N Hipkins1, T J Holmes1, R A Kahn1, G M Keiser1, J A Kozaczuk1, T Langenstein1,JLi1, J A Lipa1, J M Lockhart1, M Luo1, I Mandel1, F Marcelja1, J C Mester1, A Ndili1, Y Ohshima1, J Overduin1, M Salomon1, D I Santiago1, P Shestople1, V G Solomonik1, K Stahl1, M Taber1, R A Van Patten1, S Wang1, J R Wade1, P W Worden Jr1, N Bartel6, L Herman6, D E Lebach6, M Ratner6, R R Ransom6, I I Shapiro6, H Small6, B Stroozas6, R Geveden2, J H Goebel3, J Horack2, J Kolodziejczak2, A J Lyons2, J Olivier2, P Peters2, M Smith3, W Till2, L Wooten2, W Reeve4, M Anderson4, N R Bennett4,
    [Show full text]
  • Numerical Simulations of Stellar Jets and Comparison Between Synthetic and Observed Maps: Clues to the Launch Mechanism
    A&A 567, A13 (2014) Astronomy DOI: 10.1051/0004-6361/201322171 & c ESO 2014 Astrophysics Numerical simulations of stellar jets and comparison between synthetic and observed maps: clues to the launch mechanism F. Rubini1, L. Maurri1,G.Inghirami1,2, F. Bacciotti3, and L. Del Zanna1,2,3 1 Dipartimento di Fisica e Astronomia, Università di Firenze, via G. Sansone 1, 50019 Sesto F. no, Firenze, Italy 2 INFN – Sezione di Firenze, via G. Sansone 1, 50019 Sesto F. no, Firenze, Italy 3 INAF – Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy Received 28 June 2013 / Accepted 14 April 2014 ABSTRACT High angular resolution spectra obtained with the Hubble Space Telescope Imaging Spectrograph (HST/STIS) provide rich morpho- logical and kinematical information about the stellar jet phenomenon, which allows us to test theoretical models efficiently. In this work, numerical simulations of stellar jets in the propagation region are executed with the PLUTO code, by adopting inflow condi- tions that arise from former numerical simulations of magnetized outflows, accelerated by the disk-wind mechanism in the launching region. By matching the two regions, information about the magneto-centrifugal accelerating mechanism underlying a given astro- physical object can be extrapolated by comparing synthetic and observed position-velocity diagrams. We show that quite different jets, like those from the young T Tauri stars DG-Tau and RW-Aur, may originate from the same disk-wind model for different config- urations of the magnetic field at the disk surface. This result supports the idea that all the observed jets may be generated by the same mechanism.
    [Show full text]
  • SPECIAL ISSUE January 2008
    SPECIAL ISSUE January 2008 The world’s best-selling astronomy magazine TOP 10 STORIES2007 THE YEAR’S HOTTEST STORIES! From testing Einstein’s relativity, to brilliant Comet McNaught, an earthlike exoplanet, the rst 3-D dark-matter map, and more. p. 28 The colliding Antennae galaxies gleam with new stars. But don’t expect fireworks when PLUS: the Andromeda Galaxy crashes into us. Jupiter’s 5 deepest mysteries p. 38 www.Astronomy.com Earth’s impact craters mapped p. 60 $5.95 U.S. • $6.95 CANADA 0 1 36 Vol. • Issue 1 Observe celestial odd couples p. 64 BONUS! 2008 night-sky guide pullout inside 0 72246 46770 1 Editors’ picks space Top stories 10 of 2007 IN 2007, SCIENTISTS explored the outcome of the Milky Way’s coming collision with the Andromeda Galaxy (M31). Planet-hunters bagged transiting worlds the size of Neptune — and came a step closer to an exo-Earth. Comet McNaught (C/2006 P1), seen here above Santiago, Chile, gave skygazers a celestial surprise. ANTENNAE GALAXIES TOP LEFT: NASA/ESA/STS CI; NGC 2207 TOP CENTER: NASA/STS CI; EXOPLANET ART TOP RIGHT: ESA/C. CARREAU; COMET M CNAUGHT: ESO/STEPHANE GUISARD he past year brought thrills to southern observ- Ters, who witnessed an amazing sky show by the brightest comet in A brilliant comet stunned decades. Astronomers discovered southern skywatchers, ever smaller worlds around other stars, made the first 3-D maps of astronomers uncovered the dark matter, and took a close most earthlike exoplanet yet, look at what will happen when the Andromeda Galaxy (M31) and physicists prepared to collides with the Milky Way.
    [Show full text]
  • GEORGE HERBIG and Early Stellar Evolution
    GEORGE HERBIG and Early Stellar Evolution Bo Reipurth Institute for Astronomy Special Publications No. 1 George Herbig in 1960 —————————————————————– GEORGE HERBIG and Early Stellar Evolution —————————————————————– Bo Reipurth Institute for Astronomy University of Hawaii at Manoa 640 North Aohoku Place Hilo, HI 96720 USA . Dedicated to Hannelore Herbig c 2016 by Bo Reipurth Version 1.0 – April 19, 2016 Cover Image: The HH 24 complex in the Lynds 1630 cloud in Orion was discov- ered by Herbig and Kuhi in 1963. This near-infrared HST image shows several collimated Herbig-Haro jets emanating from an embedded multiple system of T Tauri stars. Courtesy Space Telescope Science Institute. This book can be referenced as follows: Reipurth, B. 2016, http://ifa.hawaii.edu/SP1 i FOREWORD I first learned about George Herbig’s work when I was a teenager. I grew up in Denmark in the 1950s, a time when Europe was healing the wounds after the ravages of the Second World War. Already at the age of 7 I had fallen in love with astronomy, but information was very hard to come by in those days, so I scraped together what I could, mainly relying on the local library. At some point I was introduced to the magazine Sky and Telescope, and soon invested my pocket money in a subscription. Every month I would sit at our dining room table with a dictionary and work my way through the latest issue. In one issue I read about Herbig-Haro objects, and I was completely mesmerized that these objects could be signposts of the formation of stars, and I dreamt about some day being able to contribute to this field of study.
    [Show full text]
  • Arxiv:1711.08652V1 [Astro-Ph.SR] 23 Nov 2017 4 Graduate Institute of Astronomy, National Central University, No
    Draft version October 11, 2018 Preprint typeset using LATEX style emulateapj v. 01/23/15 STAR-DISK INTERACTIONS IN MULTI-BAND PHOTOMETRIC MONITORING OF THE CLASSICAL T TAURI STAR GI TAU Zhen Guo 1;2,Gregory J. Herczeg1,Jessy Jose1,Jianning Fu3,Po-Shih Chiang4,Konstantin Grankin5,Raul´ Michel6,Ram Kesh Yadav7, Jinzhong Liu 8 Wen-ping Chen4,Gang Li3,Huifang Xue3,Hubiao Niu3;8,Annapurni Subramaniam9,Saurabh Sharma10,Nikom Prasert7, Nahiely Flores-Fajardo1;11,Angel Castro6;12,Liliana Altamirano6;12 Draft version October 11, 2018 ABSTRACT The variability of young stellar objects is mostly driven by star-disk interactions. In long-term photometric monitoring of the accreting T Tauri star GI Tau, we detect extinction events with typical depths of ∆V ∼ 2:5 mag that last for days-to-months and often appear to occur stochastically. In 2014 – 2015, extinctions that repeated with a quasi-period of 21 days over several months is the first empirical evidence of slow warps predicted from MHD simulations to form at a few stellar radii away from the central star. The reddening is consistent with RV = 3:85 ± 0:5 and, along with an absence of diffuse interstellar bands, indicates that some dust processing has occurred in the disk. The 2015 – 2016 multi-band lightcurve includes variations in spot coverage, extinction, and accretion, each of which result in different traces in color-magnitude diagrams. This lightcurve is initially dominated by a month-long extinction event and return to the unocculted brightness. The subsequent light-curve then features spot modulation with a 7.03 day period, punctuated by brief, randomly- spaced extinction events.
    [Show full text]
  • Gravity Probe B Experiment “Testing Einstein’S Universe”
    NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Gravity Probe B Experiment “Testing Einstein’s Universe” Press Kit April 2004 2- Media Contacts Donald Savage Policy/Program Management 202/358-1547 Headquarters [email protected] Washington, D.C. Steve Roy Program Management/Science 256/544-6535 Marshall Space Flight Center steve.roy @msfc.nasa.gov Huntsville, AL Bob Kahn Science/Technology & Mission 650/723-2540 Stanford University Operations [email protected] Stanford, CA Tom Langenstein Science/Technology & Mission 650/725-4108 Stanford University Operations [email protected] Stanford, CA Buddy Nelson Space Vehicle & Payload 510/797-0349 Lockheed Martin [email protected] Palo Alto, CA George Diller Launch Operations 321/867-2468 Kennedy Space Center [email protected] Cape Canaveral, FL Contents GENERAL RELEASE & MEDIA SERVICES INFORMATION ............................ 5 GRAVITY PROBE B IN A NUTSHELL................................................................ 9 GENERAL RELATIVITY — A BRIEF INTRODUCTION.................................... 17 THE GP-B EXPERIMENT.................................................................................. 27 THE SPACE VEHICLE ...................................................................................... 31 THE MISSION.................................................................................................... 39 THE AMAZING TECHNOLOGY OF GP-B ........................................................ 49 SEVEN NEAR ZEROES ...................................................................................
    [Show full text]