Agnathia-Otocephaly Complex and Asymmetric Velopharyngeal Insufficiency Due to an In-Frame Duplication in OTX2
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Glossary for Narrative Writing
Periodontal Assessment and Treatment Planning Gingival description Color: o pink o erythematous o cyanotic o racial pigmentation o metallic pigmentation o uniformity Contour: o recession o clefts o enlarged papillae o cratered papillae o blunted papillae o highly rolled o bulbous o knife-edged o scalloped o stippled Consistency: o firm o edematous o hyperplastic o fibrotic Band of gingiva: o amount o quality o location o treatability Bleeding tendency: o sulcus base, lining o gingival margins Suppuration Sinus tract formation Pocket depths Pseudopockets Frena Pain Other pathology Dental Description Defective restorations: o overhangs o open contacts o poor contours Fractured cusps 1 ww.links2success.biz [email protected] 914-303-6464 Caries Deposits: o Type . plaque . calculus . stain . matera alba o Location . supragingival . subgingival o Severity . mild . moderate . severe Wear facets Percussion sensitivity Tooth vitality Attrition, erosion, abrasion Occlusal plane level Occlusion findings Furcations Mobility Fremitus Radiographic findings Film dates Crown:root ratio Amount of bone loss o horizontal; vertical o localized; generalized Root length and shape Overhangs Bulbous crowns Fenestrations Dehiscences Tooth resorption Retained root tips Impacted teeth Root proximities Tilted teeth Radiolucencies/opacities Etiologic factors Local: o plaque o calculus o overhangs 2 ww.links2success.biz [email protected] 914-303-6464 o orthodontic apparatus o open margins o open contacts o improper -
Non-Syndromic Occurrence of True Generalized Microdontia with Mandibular Mesiodens - a Rare Case Seema D Bargale* and Shital DP Kiran
Bargale and Kiran Head & Face Medicine 2011, 7:19 http://www.head-face-med.com/content/7/1/19 HEAD & FACE MEDICINE CASEREPORT Open Access Non-syndromic occurrence of true generalized microdontia with mandibular mesiodens - a rare case Seema D Bargale* and Shital DP Kiran Abstract Abnormalities in size of teeth and number of teeth are occasionally recorded in clinical cases. True generalized microdontia is rare case in which all the teeth are smaller than normal. Mesiodens is commonly located in maxilary central incisor region and uncommon in the mandible. In the present case a 12 year-old boy was healthy; normal in appearance and the medical history was noncontributory. The patient was examined and found to have permanent teeth that were smaller than those of the average adult teeth. The true generalized microdontia was accompanied by mandibular mesiodens. This is a unique case report of non-syndromic association of mandibular hyperdontia with true generalized microdontia. Keywords: Generalised microdontia, Hyperdontia, Permanent dentition, Mandibular supernumerary tooth Introduction [Ullrich-Turner syndrome], Chromosome 13[trisomy 13], Microdontia is a rare phenomenon. The term microdontia Rothmund-Thomson syndrome, Hallermann-Streiff, Oro- (microdentism, microdontism) is defined as the condition faciodigital syndrome (type 3), Oculo-mandibulo-facial of having abnormally small teeth [1]. According to Boyle, syndrome, Tricho-Rhino-Phalangeal, type1 Branchio- “in general microdontia, the teeth are small, the crowns oculo-facial syndrome. short, and normal contact areas between the teeth are fre- Supernumerary teeth are defined as any supplementary quently missing” [2] Shafer, Hine, and Levy [3] divided tooth or tooth substance in addition to usual configuration microdontia into three types: (1) Microdontia involving of twenty deciduous and thirty two permanent teeth [7]. -
Skeletal Malocclusion: a Developmental Disorder with a Life-Long Morbidity
Elmer ress Review J Clin Med Res. 2014;6(6):399-408 Skeletal Malocclusion: A Developmental Disorder With a Life-Long Morbidity Nishitha Joshia, Ahmad M. Hamdanb, Walid D. Fakhouric, d Abstract Keyword: Skeletal malocclusion; Micrognathia; Retrognathia; Prognathia; Late-onset diseases The likelihood of birth defects in orofacial tissues is high due to the structural and developmental complexity of the face and the sus- ceptibility to intrinsic and extrinsic perturbations. Skeletal maloc- clusion is caused by the distortion of the proper mandibular and/or Introduction maxillary growth during fetal development. Patients with skeletal malocclusion may suffer from dental deformities, bruxism, teeth Disorders of the head and face are very common birth de- crowding, trismus, mastication difficulties, breathing obstruction fects in all racial populations, and can appear as isolated phe- and digestion disturbance if the problem is left untreated. In this notype or as part of a syndrome. The prevalence of cranio- review, we focused on skeletal malocclusion that affects 27.9% of facial anomalies varies among different ethnicities based on the US population with different severity levels. We summarized genetic background, geography, socio-economical status and the prevalence of class I, II and III of malocclusion in different ethnic groups and discussed the most frequent medical disorders environmental factors. Because of the structural complexity associated with skeletal malocclusion. Dental anomalies that lead of the craniofacial region, variations in genetic and environ- to malocclusion such as tooth agenesis, crowding, missing teeth mental factors may have a profound effect on development, and abnormal tooth size are not addressed in this review. We pro- and could lead to congenital birth defects. -
Otocephaly: Agnathia-Microstomia-Synotia Syndrome Tanya Kitova1, Borislav D Kitov2
CASE REPORT Otocephaly: Agnathia-Microstomia-Synotia Syndrome Tanya Kitova1, Borislav D Kitov2 ABSTRACT The aim of the study is to present otocephaly, which is a rare congenital lethal malformation. Until this moment, only a little bit more than 100 cases worldwide were reported, and only 22 cases of prediagnosed otocephaly. Background: Otocephaly or agnathia-microstomia-synotia syndrome (SAMS) is characterized by agenesis of mandible (agnathia), disposition or fusion of the auricle (synotia), microstomia, and complete or partial lack of language (aglossia), which often ends up lethal. Case description: A 499.7 g male fetus was obtained after a therapeutic abortion during the 23rd gestational week at the Center for Maternity and Neonatology, Embryo-fetopathology Clinic, Tunis, Tunisia. The mother is an 18-year-old with close relative marriage with first-degree incest, primigravida. Examination of the fetus revealed microcephaly with craniosynostosis, hypertelorism, closed eyelid exophthalmos, one nostril, point microstomia, mandibular agenesis, bilateral, and auditory cysts of neck. The ears are located at the level of the neck. A study of the brain and the base of the skull revealed holoprosencephaly and sphenoid bone agenesis. There are no internal organ abnormalities. Conclusion: In cases where, at the end of the second trimester of pregnancy, polyhydramnios is detected, inability to visualize the mandible, and malposition of ears, otocephaly should be suspected. In these cases, the decision to interrupt pregnancy should be taken by a multidisciplinary team, after an magnetic resonance imaging, which is much better in visualizing location of the ears and other facial malformations and the presence of other associated anomalies. -
Diseases of the Digestive System (KOO-K93)
CHAPTER XI Diseases of the digestive system (KOO-K93) Diseases of oral cavity, salivary glands and jaws (KOO-K14) lijell Diseases of pulp and periapical tissues 1m Dentofacial anomalies [including malocclusion] Excludes: hemifacial atrophy or hypertrophy (Q67.4) K07 .0 Major anomalies of jaw size Hyperplasia, hypoplasia: • mandibular • maxillary Macrognathism (mandibular)(maxillary) Micrognathism (mandibular)( maxillary) Excludes: acromegaly (E22.0) Robin's syndrome (087.07) K07 .1 Anomalies of jaw-cranial base relationship Asymmetry of jaw Prognathism (mandibular)( maxillary) Retrognathism (mandibular)(maxillary) K07.2 Anomalies of dental arch relationship Cross bite (anterior)(posterior) Dis to-occlusion Mesio-occlusion Midline deviation of dental arch Openbite (anterior )(posterior) Overbite (excessive): • deep • horizontal • vertical Overjet Posterior lingual occlusion of mandibular teeth 289 ICO-N A K07.3 Anomalies of tooth position Crowding Diastema Displacement of tooth or teeth Rotation Spacing, abnormal Transposition Impacted or embedded teeth with abnormal position of such teeth or adjacent teeth K07.4 Malocclusion, unspecified K07.5 Dentofacial functional abnormalities Abnormal jaw closure Malocclusion due to: • abnormal swallowing • mouth breathing • tongue, lip or finger habits K07.6 Temporomandibular joint disorders Costen's complex or syndrome Derangement of temporomandibular joint Snapping jaw Temporomandibular joint-pain-dysfunction syndrome Excludes: current temporomandibular joint: • dislocation (S03.0) • strain (S03.4) K07.8 Other dentofacial anomalies K07.9 Dentofacial anomaly, unspecified 1m Stomatitis and related lesions K12.0 Recurrent oral aphthae Aphthous stomatitis (major)(minor) Bednar's aphthae Periadenitis mucosa necrotica recurrens Recurrent aphthous ulcer Stomatitis herpetiformis 290 DISEASES OF THE DIGESTIVE SYSTEM Diseases of oesophagus, stomach and duodenum (K20-K31) Ill Oesophagitis Abscess of oesophagus Oesophagitis: • NOS • chemical • peptic Use additional external cause code (Chapter XX), if desired, to identify cause. -
WES Gene Package Multiple Congenital Anomalie.Xlsx
Whole Exome Sequencing Gene package Multiple congenital anomalie, version 5, 1‐2‐2018 Technical information DNA was enriched using Agilent SureSelect Clinical Research Exome V2 capture and paired‐end sequenced on the Illumina platform (outsourced). The aim is to obtain 8.1 Giga base pairs per exome with a mapped fraction of 0.99. The average coverage of the exome is ~50x. Duplicate reads are excluded. Data are demultiplexed with bcl2fastq Conversion Software from Illumina. Reads are mapped to the genome using the BWA‐MEM algorithm (reference: http://bio‐bwa.sourceforge.net/). Variant detection is performed by the Genome Analysis Toolkit HaplotypeCaller (reference: http://www.broadinstitute.org/gatk/). The detected variants are filtered and annotated with Cartagenia software and classified with Alamut Visual. It is not excluded that pathogenic mutations are being missed using this technology. At this moment, there is not enough information about the sensitivity of this technique with respect to the detection of deletions and duplications of more than 5 nucleotides and of somatic mosaic mutations (all types of sequence changes). HGNC approved Phenotype description including OMIM phenotype ID(s) OMIM median depth % covered % covered % covered gene symbol gene ID >10x >20x >30x A4GALT [Blood group, P1Pk system, P(2) phenotype], 111400 607922 101 100 100 99 [Blood group, P1Pk system, p phenotype], 111400 NOR polyagglutination syndrome, 111400 AAAS Achalasia‐addisonianism‐alacrimia syndrome, 231550 605378 73 100 100 100 AAGAB Keratoderma, palmoplantar, -
Evaluation of Fetal Orbits and Ears
Evaluation of Fetal Orbits and Ears Maria A. Calvo-Garcia, MD. Associate Professor of Radiology Cincinnati Children’s Hospital Medical Center Disclosure • I have no disclosures Goals & Objectives • Review basic US anatomic views for the evaluation of the orbits and ears • Describe some of the major malformations involving the orbits and ears Background on Facial Abnormalities • Important themselves • May also indicate an underlying problem – Chromosome abnormality/ Syndromic conditions Background on Facial Abnormalities • Assessment of the face is included in all standard fetal anatomic surveys • Recheck the face if you found other anomalies • And conversely, if you see facial anomalies look for other systemic defects Background on Facial Abnormalities • Fetal chromosomal analysis is often indicated • Fetal MRI frequently requested in search for additional malformations • US / Fetal MRI, as complementary techniques: information for planning delivery / neonatal treatment • Anatomic evaluation • Malformations (orbits, ears) Orbits Axial View • Bony orbits: IOD Orbits Axial View • Bony orbits: IOD and BOD, which correlates with GA, will allow detection of hypo-/ hypertelorism Orbits Axial View • Axial – Bony orbits – Intraorbital anatomy: • Globe • Lens Orbits Axial View • Axial – Bony orbits – Intraorbital anatomy: • Globe • Lens Orbits Axial View • Hyaloid artery is seen as an echogenic line bisecting the vitreous • By the 8th month the hyaloid system involutes – If this fails: persistent hyperplastic primary vitreous Malformations of -
Psykisk Utviklingshemming Og Forsinket Utvikling
Psykisk utviklingshemming og forsinket utvikling Genpanel, versjon v03 Tabellen er sortert på gennavn (HGNC gensymbol) Navn på gen er iht. HGNC >x10 Andel av genet som har blitt lest med tilfredstillende kvalitet flere enn 10 ganger under sekvensering x10 er forventet dekning; faktisk dekning vil variere. Gen Gen (HGNC Transkript >10x Fenotype (symbol) ID) AAAS 13666 NM_015665.5 100% Achalasia-addisonianism-alacrimia syndrome OMIM AARS 20 NM_001605.2 100% Charcot-Marie-Tooth disease, axonal, type 2N OMIM Epileptic encephalopathy, early infantile, 29 OMIM AASS 17366 NM_005763.3 100% Hyperlysinemia OMIM Saccharopinuria OMIM ABCB11 42 NM_003742.2 100% Cholestasis, benign recurrent intrahepatic, 2 OMIM Cholestasis, progressive familial intrahepatic 2 OMIM ABCB7 48 NM_004299.5 100% Anemia, sideroblastic, with ataxia OMIM ABCC6 57 NM_001171.5 93% Arterial calcification, generalized, of infancy, 2 OMIM Pseudoxanthoma elasticum OMIM Pseudoxanthoma elasticum, forme fruste OMIM ABCC9 60 NM_005691.3 100% Hypertrichotic osteochondrodysplasia OMIM ABCD1 61 NM_000033.3 77% Adrenoleukodystrophy OMIM Adrenomyeloneuropathy, adult OMIM ABCD4 68 NM_005050.3 100% Methylmalonic aciduria and homocystinuria, cblJ type OMIM ABHD5 21396 NM_016006.4 100% Chanarin-Dorfman syndrome OMIM ACAD9 21497 NM_014049.4 99% Mitochondrial complex I deficiency due to ACAD9 deficiency OMIM ACADM 89 NM_000016.5 100% Acyl-CoA dehydrogenase, medium chain, deficiency of OMIM ACADS 90 NM_000017.3 100% Acyl-CoA dehydrogenase, short-chain, deficiency of OMIM ACADVL 92 NM_000018.3 100% VLCAD -
Abstracts from the 51St European Society of Human Genetics Conference: Electronic Posters
European Journal of Human Genetics (2019) 27:870–1041 https://doi.org/10.1038/s41431-019-0408-3 MEETING ABSTRACTS Abstracts from the 51st European Society of Human Genetics Conference: Electronic Posters © European Society of Human Genetics 2019 June 16–19, 2018, Fiera Milano Congressi, Milan Italy Sponsorship: Publication of this supplement was sponsored by the European Society of Human Genetics. All content was reviewed and approved by the ESHG Scientific Programme Committee, which held full responsibility for the abstract selections. Disclosure Information: In order to help readers form their own judgments of potential bias in published abstracts, authors are asked to declare any competing financial interests. Contributions of up to EUR 10 000.- (Ten thousand Euros, or equivalent value in kind) per year per company are considered "Modest". Contributions above EUR 10 000.- per year are considered "Significant". 1234567890();,: 1234567890();,: E-P01 Reproductive Genetics/Prenatal Genetics then compared this data to de novo cases where research based PO studies were completed (N=57) in NY. E-P01.01 Results: MFSIQ (66.4) for familial deletions was Parent of origin in familial 22q11.2 deletions impacts full statistically lower (p = .01) than for de novo deletions scale intelligence quotient scores (N=399, MFSIQ=76.2). MFSIQ for children with mater- nally inherited deletions (63.7) was statistically lower D. E. McGinn1,2, M. Unolt3,4, T. B. Crowley1, B. S. Emanuel1,5, (p = .03) than for paternally inherited deletions (72.0). As E. H. Zackai1,5, E. Moss1, B. Morrow6, B. Nowakowska7,J. compared with the NY cohort where the MFSIQ for Vermeesch8, A. -
Treatments for Ankyloglossia and Ankyloglossia with Concomitant Lip-Tie Comparative Effectiveness Review Number 149
Comparative Effectiveness Review Number 149 Treatments for Ankyloglossia and Ankyloglossia With Concomitant Lip-Tie Comparative Effectiveness Review Number 149 Treatments for Ankyloglossia and Ankyloglossia With Concomitant Lip-Tie Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 540 Gaither Road Rockville, MD 20850 www.ahrq.gov Contract No. 290-2012-00009-I Prepared by: Vanderbilt Evidence-based Practice Center Nashville, TN Investigators: David O. Francis, M.D., M.S. Sivakumar Chinnadurai, M.D., M.P.H. Anna Morad, M.D. Richard A. Epstein, Ph.D., M.P.H. Sahar Kohanim, M.D. Shanthi Krishnaswami, M.B.B.S., M.P.H. Nila A. Sathe, M.A., M.L.I.S. Melissa L. McPheeters, Ph.D., M.P.H. AHRQ Publication No. 15-EHC011-EF May 2015 This report is based on research conducted by the Vanderbilt Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. 290-2012-00009-I). The findings and conclusions in this document are those of the authors, who are responsible for its contents; the findings and conclusions do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services. The information in this report is intended to help health care decisionmakers—patients and clinicians, health system leaders, and policymakers, among others—make well-informed decisions and thereby improve the quality of health care services. This report is not intended to be a substitute for the application of clinical judgment. -
Head and Neck Congenital Malformations
ActaM. Kos clin Croat 2004; 43:195-201 Head and neck congenitalConference malformations papers HEAD AND NECK CONGENITAL MALFORMATIONS Marina Kos Ljudevit Jurak University Department of Pathology, Sestre milosrdnice University Hospital, Zagreb, Croatia SUMMARY Congenital malformations of the head and neck are a wide and extremely heterogeneous group because this region contains parts of almost all organ systems. These malformations range in their importance and severity from purely cosmetic defects and minor disturbances to lethal anomalies. They can be isolated or occur as a component of a sequence, syndrome or chromosomal disorder. Some of them are inherited, however, most of them are caused by frequently unidentified teratogens. Key words: Abnormalities multiple; Head; Neck; Nervous system malformations; Musculoskeletal abnormalities; Chro- mosome disorders Introduction priate than branchial in the context of human embryolo- gy3. The arches are composed of mesoderm that originates When writing about congenital malformations of the almost entirely from two sources: the para-axial mesoderm head and neck, it is impossible not to mention their em- and the neural crest. Every arch contains the following bryological development. The most typical feature in the structures: (a) a core of cartilage derived from neural crest development of the head and neck is formed by the pha- cells; (b) unsegmented mesoderm capable of forming stri- ryngeal or branchial arches. The pharyngeal arches are ated muscle and bone; (c) an artery that runs from the numbered I, II, II, IV and VI (in higher mammals, the fifth aortic sac to the dorsal aorta on the same side; and (d) a arches are transient, becoming fused with the fourth pha- nerve that enters it from the brain stem and carries motor ryngeal arch)1,2. -
Neuropathology Review.Pdf
Neuropathology Review Richard A. Prayson, MD Humana Press Contents NEUROPATHOLOGY REVIEW 2 Contents Contents NEUROPATHOLOGY REVIEW By RICHARD A. PRAYSON, MD Department of Anatomic Pathology Cleveland Clinic Foundation, Cleveland, OH HUMANA PRESS TOTOWA, NEW JERSEY 4 Contents © 2001 Humana Press Inc. 999 Riverview Drive, Suite 208 Totowa, New Jersey 07512 For additional copies, pricing for bulk purchases, and/or information about other Humana titles, contact Humana at the above address or at any of the following numbers: Tel.: 973-256-1699; Fax: 973-256-8341; E-mail:[email protected]; Website: http://humanapress.com All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise without written permission from the Publisher. Due diligence has been taken by the publishers, editors, and authors of this book to assure the accuracy of the information published and to describe generally accepted practices. The contributors herein have carefully checked to ensure that the drug selections and dosages set forth in this text are accurate and in accord with the standards accepted at the time of publication. Notwithstanding, as new research, changes in government regulations, and knowledge from clinical experience relating to drug therapy and drug reactions constantly occurs, the reader is advised to check the product information provided by the manufacturer of each drug for any change in dosages or for additional warnings and contraindications. This is of utmost importance when the recommended drug herein is a new or infrequently used drug. It is the responsibility of the treating physician to determine dosages and treatment strategies for individual patients.