Back Matter 611-642.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary for Narrative Writing
Periodontal Assessment and Treatment Planning Gingival description Color: o pink o erythematous o cyanotic o racial pigmentation o metallic pigmentation o uniformity Contour: o recession o clefts o enlarged papillae o cratered papillae o blunted papillae o highly rolled o bulbous o knife-edged o scalloped o stippled Consistency: o firm o edematous o hyperplastic o fibrotic Band of gingiva: o amount o quality o location o treatability Bleeding tendency: o sulcus base, lining o gingival margins Suppuration Sinus tract formation Pocket depths Pseudopockets Frena Pain Other pathology Dental Description Defective restorations: o overhangs o open contacts o poor contours Fractured cusps 1 ww.links2success.biz [email protected] 914-303-6464 Caries Deposits: o Type . plaque . calculus . stain . matera alba o Location . supragingival . subgingival o Severity . mild . moderate . severe Wear facets Percussion sensitivity Tooth vitality Attrition, erosion, abrasion Occlusal plane level Occlusion findings Furcations Mobility Fremitus Radiographic findings Film dates Crown:root ratio Amount of bone loss o horizontal; vertical o localized; generalized Root length and shape Overhangs Bulbous crowns Fenestrations Dehiscences Tooth resorption Retained root tips Impacted teeth Root proximities Tilted teeth Radiolucencies/opacities Etiologic factors Local: o plaque o calculus o overhangs 2 ww.links2success.biz [email protected] 914-303-6464 o orthodontic apparatus o open margins o open contacts o improper -
59. Lateral Facial Clefts
59 LATERAL FACIAL CLEFTS LI OR TRANSVERSE CLEFTS ARE CONSIDERED THE RESULT OF FAILURE OF MESODERM MIGRATION OR MERGING TO OBLITERATE MANDIBULAR THE EMBRYONIC GROOVES BETWEEN THE MAXILLARY AND PROMINENCES TRANSVERSE CLEFTS AS THESE CLEFTS ARE RARE AND ALMOST EVERYBODY HAVING ONE HAS AND REPORTED IT IT IS POSSIBLE TO REVIEW MOST OF THE REPORTED CASES 769 DESCRIBED THE AFTER WHEN NOTE TREATMENT SPECIFIC CASE RECORDINGS IN WHAT MAY SEEM HELTERSKELTER ARRANGEMENT GENERALIZATIONS MAY BE OF VALUE IN 1891 ROSE NOTED FOR LONG THE VERY EXISTENCE OF THIS MACROSROMATOUS DEFORMITY WAS DOUBTED BUT CASES HAVE BEEN RECOGNIZED MORE OR LESS SINCE 1715 WHEN MURALT PICTURED IT FOR THE FIRST TIME ONE OF THE FIRST CASES REPORTED WAS BY VROLIK WHOIN HIS 1849 CLEFTS WORK GAVE SEVERAL ILLUSTRATIONS OF COMMISSURAL AS WELL AS OTHER DEFORMITIES OF THE FACE OTHER CASES WERE REPORTED BY REISSMANN IN 1869 AND MORGAN IN 1882 MACROSTOMIA OR COMMISSURAL HARELIP ACCORDING TO ROSE IS DIAMETER OF WHICH EVIDENCED BY AN INCREASED THE MOUTH MAY VARY IN FROM SLIGHT INCREASE TO CONSIDERABLE DISTANCE CASE RE PORTED BY RYND IN 1862 THE MOUTH OPENING EXTENDED AS FAR AS THE THE LEFT FIRST MOLAR ON THE RIGHT SIDE AND TO THE LAST MOLAR ON IN 1887 SUTTON PUBLISHED THE DRAWING OF CHILD WITH VERY LARGE RED CICATRIX THIS CLEFT THE ANGLES OF WHICH GRADUALLY PASSED INTO SCAR ENDED IN GAPING WOUND OVER THE TEMPORAL REGION EXTEND ING TO THE DURA MATER ROSE ALSO POINTED OUT MACROSROMA IS NOR ONLY ATTENDED BY GREAT DISFIGUREMENT HUT IS ALSO TROU BLESOME FROM THE IMPOSSIBILITY OF THE CHILD RETAINING -
New CDH3 Mutation in the First Spanish Case of Hypotrichosis with Juvenile Macular Dystrophy, a Case Report
Blanco-Kelly et al. BMC Medical Genetics (2017) 18:1 DOI 10.1186/s12881-016-0364-5 CASEREPORT Open Access New CDH3 mutation in the first Spanish case of hypotrichosis with juvenile macular dystrophy, a case report Fiona Blanco-Kelly1,2, Luciana Rodrigues-Jacy da Silva1, Iker Sanchez-Navarro1, Rosa Riveiro-Alvarez1,2, Miguel Angel Lopez-Martinez1, Marta Corton1,2 and Carmen Ayuso1,2,3* Abstract Background: CDH3 on 16q22.1 is responsible for two rare autosomal recessive disorders with hypotrichosis and progressive macular dystrophy: Hypotrichosis with Juvenile Macular Dystrophy and Ectodermal Dysplasia, Ectrodactyly and Macular Dystrophy. We present a new case of Hypotrichosis with Juvenile Macular Dystrophy. Case presentation: A Spanish male born in 1998 from non-consanguineous healthy parents with a suspected diagnosis of Keratosis Follicularis Spinulosa Decalvans and Retinitis Pigmentosa Inversa referred to our Genetics Department (IIS-Fundación Jiménez Díaz). Molecular study of ABCA4 was performed, and a heterozygous missense p.Val2050Leu variant in ABCA4 was found. Clinical revision reclassified this patient as Hypotrichosis with Juvenile Macular Dystrophy. Therefore, further CDH3 sequencing was performed showing a novel maternal missense change p.Val205Met (probably pathogenic by in silico analysis), and a previously reported paternal frameshift c.830del;p.Gly277Alafs*20, thus supporting the clinical diagnosis.. Conclusions: This is not only the first Spanish case with this clinical and molecular diagnosis, but a new mutation has been described in CDH3. Moreover, this work reflects the importance of joint assessment of clinical signs and evaluation of pedigree for a correct genetic study approach and diagnostic. Keywords: Macular dystrophy, CDH3, Hypotrichosis, Syndromic retinal dystrophy, Case report Background Dysplasia, Ectrodactyly and Macular Dystrophy (EEM, The CDH3 gene, on16q22.1, encodes for P-cadherin, OMIM: 225280) [18]. -
OCSHCN-10G, Medical Eligibility List for Clinical and Case Management Services.Pdf
OCSHCN-10g (01 2019) (Rev 7-15-2017) Office for Children with Special Health Care Needs Medical Eligibility List for Clinical and Case Management Services BODY SYSTEM ELIGIBLE DISEASES/CONDITIONS ICD-10-CM CODES AFFECTED AUTISM SPECTRUM Autistic disorder, current or active state F84.0 Autistic disorder DISORDER (ASD) F84.3 Other childhood disintegrative disorder Autistic disorder, residual state F84.5 Asperger’s Syndrome F84.8 Other pervasive developmental disorder Other specified pervasive developmental disorders, current or active state Other specified pervasive developmental disorders, residual state Unspecified pervasive development disorder, current or active Unspecified pervasive development disorder, residual state CARDIOVASCULAR Cardiac Dysrhythmias I47.0 Ventricular/Arrhythmia SYSTEM I47.1 Supraventricular/Tachycardia I47.2 Ventricular/Tachycardia I47.9 Paroxysmal/Tachycardia I48.0 Paroxysmal atrial fibrillation I48.1 Persistent atrial fibrillationar I48.2 Chronic atrial fibrillation I48.3 Typical atrial flutter I48.4 Atypical atrial flutter I49.0 Ventricular fibrillation and flutter I49.1 Atrial premature depolarization I49.2 Junctional premature depolarization I49.3 Ventricular premature depolarization I49.49 Ectopic beats Extrasystoles Extrasystolic arrhythmias Premature contractions Page 1 of 28 OCSHCN-10g (01 2019) (Rev 7-15-2017) Office for Children with Special Health Care Needs Medical Eligibility List for Clinical and Case Management Services I49.5 Tachycardia-Bradycardia Syndrome CARDIOVASCULAR Chronic pericarditis -
Ectodermal Dysplasias: a New Clinical-Genetic Classification
J Med Genet 2001;38:579–585 579 Ectodermal dysplasias: a new clinical-genetic J Med Genet: first published as 10.1136/jmg.38.9.579 on 1 September 2001. Downloaded from classification Manuela Priolo, Carmelo Laganà Abstract many case reports and personal communica- The ectodermal dysplasias (EDs) are a tions in their listing of EDs, as well as large and complex nosological group of conditions traditionally classified under other diseases, first described by Thurnam in headings, for example dyskeratosis congenita11 1848. In the last 10 years more than 170 and keratitis-ichthyosis-deafness (KID) syn- diVerent pathological clinical conditions drome12 (poikiloderma and immune defect have been recognised and defined as EDs, diseases and erythrokeratodermas, respec- all sharing in common anomalies of the tively). Further, they did not appear to hair, teeth, nails, and sweat glands. Many consider variability of expression and may are associated with anomalies in other have reported, as distinct diseases, conditions organs and systems and, in some condi- that reflect variable expression of the same tions, with mental retardation. pathological entity. Moreover, they included The anomalies aVecting the epidermis pathological conditions which, in our opinion, and epidermal appendages are extremely do not strictly fulfil the diagnostic criteria for variable and clinical overlap is present EDs, such as conditions with secondary among the majority of EDs. Most EDs are involvement of epidermal derivatives rather defined by particular clinical signs (for than a primary defect. We abandoned the 1-2- example, eyelid adhesion in AEC syn- 3-4 designation of EDs, because we believe drome, ectrodactyly in EEC). -
Non-Syndromic Occurrence of True Generalized Microdontia with Mandibular Mesiodens - a Rare Case Seema D Bargale* and Shital DP Kiran
Bargale and Kiran Head & Face Medicine 2011, 7:19 http://www.head-face-med.com/content/7/1/19 HEAD & FACE MEDICINE CASEREPORT Open Access Non-syndromic occurrence of true generalized microdontia with mandibular mesiodens - a rare case Seema D Bargale* and Shital DP Kiran Abstract Abnormalities in size of teeth and number of teeth are occasionally recorded in clinical cases. True generalized microdontia is rare case in which all the teeth are smaller than normal. Mesiodens is commonly located in maxilary central incisor region and uncommon in the mandible. In the present case a 12 year-old boy was healthy; normal in appearance and the medical history was noncontributory. The patient was examined and found to have permanent teeth that were smaller than those of the average adult teeth. The true generalized microdontia was accompanied by mandibular mesiodens. This is a unique case report of non-syndromic association of mandibular hyperdontia with true generalized microdontia. Keywords: Generalised microdontia, Hyperdontia, Permanent dentition, Mandibular supernumerary tooth Introduction [Ullrich-Turner syndrome], Chromosome 13[trisomy 13], Microdontia is a rare phenomenon. The term microdontia Rothmund-Thomson syndrome, Hallermann-Streiff, Oro- (microdentism, microdontism) is defined as the condition faciodigital syndrome (type 3), Oculo-mandibulo-facial of having abnormally small teeth [1]. According to Boyle, syndrome, Tricho-Rhino-Phalangeal, type1 Branchio- “in general microdontia, the teeth are small, the crowns oculo-facial syndrome. short, and normal contact areas between the teeth are fre- Supernumerary teeth are defined as any supplementary quently missing” [2] Shafer, Hine, and Levy [3] divided tooth or tooth substance in addition to usual configuration microdontia into three types: (1) Microdontia involving of twenty deciduous and thirty two permanent teeth [7]. -
Skeletal Malocclusion: a Developmental Disorder with a Life-Long Morbidity
Elmer ress Review J Clin Med Res. 2014;6(6):399-408 Skeletal Malocclusion: A Developmental Disorder With a Life-Long Morbidity Nishitha Joshia, Ahmad M. Hamdanb, Walid D. Fakhouric, d Abstract Keyword: Skeletal malocclusion; Micrognathia; Retrognathia; Prognathia; Late-onset diseases The likelihood of birth defects in orofacial tissues is high due to the structural and developmental complexity of the face and the sus- ceptibility to intrinsic and extrinsic perturbations. Skeletal maloc- clusion is caused by the distortion of the proper mandibular and/or Introduction maxillary growth during fetal development. Patients with skeletal malocclusion may suffer from dental deformities, bruxism, teeth Disorders of the head and face are very common birth de- crowding, trismus, mastication difficulties, breathing obstruction fects in all racial populations, and can appear as isolated phe- and digestion disturbance if the problem is left untreated. In this notype or as part of a syndrome. The prevalence of cranio- review, we focused on skeletal malocclusion that affects 27.9% of facial anomalies varies among different ethnicities based on the US population with different severity levels. We summarized genetic background, geography, socio-economical status and the prevalence of class I, II and III of malocclusion in different ethnic groups and discussed the most frequent medical disorders environmental factors. Because of the structural complexity associated with skeletal malocclusion. Dental anomalies that lead of the craniofacial region, variations in genetic and environ- to malocclusion such as tooth agenesis, crowding, missing teeth mental factors may have a profound effect on development, and abnormal tooth size are not addressed in this review. We pro- and could lead to congenital birth defects. -
Circle Applicable Codes
IDENTIFYING INFORMATION (please print legibly) Individual’s Name: DOB: Last 4 Digits of Social Security #: CIRCLE APPLICABLE CODES ICD-10 ICD-10 ICD-9 DIAGNOSTIC ICD-9 DIAGNOSTIC PRIMARY ICD-9 CODES CODE CODE PRIMARY ICD-9 CODES CODE CODE Abetalipoproteinemia 272.5 E78.6 Hallervorden-Spatz Syndrome 333.0 G23.0 Acrocephalosyndactyly (Apert’s Syndrome) 755.55 Q87.0 Head Injury, unspecified – Age of onset: 959.01 S09.90XA Adrenaleukodystrophy 277.86 E71.529 Hemiplegia, unspecified 342.9 G81.90 Arginase Deficiency 270.6 E72.21 Holoprosencephaly 742.2 Q04.2 Agenesis of the Corpus Callosum 742.2 Q04.3 Homocystinuria 270.4 E72.11 Agenesis of Septum Pellucidum 742.2 Q04.3 Huntington’s Chorea 333.4 G10 Argyria/Pachygyria/Microgyria 742.2 Q04.3 Hurler’s Syndrome 277.5 E76.01 or 758.33 Aicardi Syndrome 333 G23.8 Hyperammonemia Syndrome 270.6 E72.4 Alcohol Embryo and Fetopathy 760.71 F84.5 I-Cell Disease 272.2 E77.0 Anencephaly 655.0 Q00.0 Idiopathic Torsion Dystonia 333.6 G24.1 Angelman Syndrome 759.89 Q93.5 Incontinentia Pigmenti 757.33 Q82.3 Asperger Syndrome 299.8 F84.5 Infantile Cerebral Palsy, unspecified 343.9 G80.9 Ataxia-Telangiectasia 334.8 G11.3 Intractable Seizure Disorder 345.1 G40.309 Autistic Disorder (Childhood Autism, Infantile 299.0 F84.0 Klinefelter’s Syndrome 758.7 Q98.4 Psychosis, Kanner’s Syndrome) Biotinidase Deficiency 277.6 D84.1 Krabbe Disease 333.0 E75.23 Canavan Disease 330.0 E75.29 Kugelberg-Welander Disease 335.11 G12.1 Carpenter Syndrome 759.89 Q87.0 Larsen’s Syndrome 755.8 Q74.8 Cerebral Palsy, unspecified 343.69 G80.9 -
2018 Etiologies by Frequencies
2018 Etiologies in Order of Frequency by Category Hereditary Syndromes and Disorders Count CHARGE Syndrome 958 Down syndrome (Trisomy 21 syndrome) 308 Usher I syndrome 252 Stickler syndrome 130 Dandy Walker syndrome 119 Cornelia de Lange 102 Goldenhar syndrome 98 Usher II syndrome 83 Wolf-Hirschhorn syndrome (Trisomy 4p) 68 Trisomy 13 (Trisomy 13-15, Patau syndrome) 60 Pierre-Robin syndrome 57 Moebius syndrome 55 Trisomy 18 (Edwards syndrome) 52 Norrie disease 38 Leber congenital amaurosis 35 Chromosome 18, Ring 18 31 Aicardi syndrome 29 Alstrom syndrome 27 Pfieffer syndrome 27 Treacher Collins syndrome 27 Waardenburg syndrome 27 Marshall syndrome 25 Refsum syndrome 21 Cri du chat syndrome (Chromosome 5p- synd) 16 Bardet-Biedl syndrome (Laurence Moon-Biedl) 15 Hurler syndrome (MPS I-H) 15 Crouzon syndrome (Craniofacial Dysotosis) 13 NF1 - Neurofibromatosis (von Recklinghausen dis) 13 Kniest Dysplasia 12 Turner syndrome 11 Usher III syndrome 10 Cockayne syndrome 9 Apert syndrome/Acrocephalosyndactyly, Type 1 8 Leigh Disease 8 Alport syndrome 6 Monosomy 10p 6 NF2 - Bilateral Acoustic Neurofibromatosis 6 Batten disease 5 Kearns-Sayre syndrome 5 Klippel-Feil sequence 5 Hereditary Syndromes and Disorders Count Prader-Willi 5 Sturge-Weber syndrome 5 Marfan syndrome 3 Hand-Schuller-Christian (Histiocytosis X) 2 Hunter Syndrome (MPS II) 2 Maroteaux-Lamy syndrome (MPS VI) 2 Morquio syndrome (MPS IV-B) 2 Optico-Cochleo-Dentate Degeneration 2 Smith-Lemli-Opitz (SLO) syndrome 2 Wildervanck syndrome 2 Herpes-Zoster (or Hunt) 1 Vogt-Koyanagi-Harada -
Absent Meibomian Glands: a Marker for Eecsyndrome
ABSENT MEIBOMIAN GLANDS: A MARKER FOR EECSYNDROME ELIZABETH BONNAR, PATRICIA LOGAN and PETER EUSTACE Dublin, Ireland SUMMARY watering eye for the previous week. He gave a A patient with a 20 year history of severe keratocon history of continuous attendance at eye clinics in junctivitis of unknown origin was found, on assessment various hospitals since the age of 3 years and was at a blepharitis clinic, to have complete absence of currently attending our own clinic, where he had last meibomian glands. Further examination revealed the been seen 1 month previously. Maintenance medica features of EEC syndrome. To our knowledge, this is tion was antiviral ointment and artificial tears. Old the only case to have been diagnosed in this way. The notes were unavailable on admission but there had ocular complications of EEC syndrome and other been a previous spontaneous perforation of the left ectodermal dysplasias are reviewed. cornea at the age of 15 years, and an operation for a blocked tear duct on the right side at the age of 8 The combination of ectrodactyly (lobster claw years. deformity of the hands and feet), ectodermal Vision was 6/18 on the right and hand movements dysplasia (abnormalities of hair, teeth, nails and on the left. There was marked photophobia and sweat glands) and cleft lip and palate, known as EEC tearing on both sides. The left cornea was opacified syndrome, is a rare multiple congenital abnormal and vascularised 360°, with central thinning and a ity.1,2 Fewer than 180 cases have been reported in the small perforation just inferonasal to the pupil (Fig. -
Genetics of Congenital Hand Anomalies
G. C. Schwabe1 S. Mundlos2 Genetics of Congenital Hand Anomalies Die Genetik angeborener Handfehlbildungen Original Article Abstract Zusammenfassung Congenital limb malformations exhibit a wide spectrum of phe- Angeborene Handfehlbildungen sind durch ein breites Spektrum notypic manifestations and may occur as an isolated malforma- an phänotypischen Manifestationen gekennzeichnet. Sie treten tion and as part of a syndrome. They are individually rare, but als isolierte Malformation oder als Teil verschiedener Syndrome due to their overall frequency and severity they are of clinical auf. Die einzelnen Formen kongenitaler Handfehlbildungen sind relevance. In recent years, increasing knowledge of the molecu- selten, besitzen aber aufgrund ihrer Häufigkeit insgesamt und lar basis of embryonic development has significantly enhanced der hohen Belastung für Betroffene erhebliche klinische Rele- our understanding of congenital limb malformations. In addi- vanz. Die fortschreitende Erkenntnis über die molekularen Me- tion, genetic studies have revealed the molecular basis of an in- chanismen der Embryonalentwicklung haben in den letzten Jah- creasing number of conditions with primary or secondary limb ren wesentlich dazu beigetragen, die genetischen Ursachen kon- involvement. The molecular findings have led to a regrouping of genitaler Malformationen besser zu verstehen. Der hohe Grad an malformations in genetic terms. However, the establishment of phänotypischer Variabilität kongenitaler Handfehlbildungen er- precise genotype-phenotype correlations for limb malforma- schwert jedoch eine Etablierung präziser Genotyp-Phänotyp- tions is difficult due to the high degree of phenotypic variability. Korrelationen. In diesem Übersichtsartikel präsentieren wir das We present an overview of congenital limb malformations based Spektrum kongenitaler Malformationen, basierend auf einer ent- 85 on an anatomic and genetic concept reflecting recent molecular wicklungsbiologischen, anatomischen und genetischen Klassifi- and developmental insights. -
A Case Report of Rare Sex Chromosomal Aneuploidy: 48,XXXY/49,XXXXY Rao Swathi S 1, Arumugam Meenakshi 2, Shetty Prashanth D 3, Shenoy Vijaya D 4
Corresponding Author: Dr. Rohit David, MBBS, Post Graduate Resident in Department of Community Medicine, Christian Medical College and Hospital, Ludhiana, Punjab. E-mail: [email protected] www.ijrhs.com Case Report ISSN (o):2321–7251 A case report of rare sex chromosomal aneuploidy: 48,XXXY/49,XXXXY Rao Swathi S 1, Arumugam Meenakshi 2, Shetty Prashanth D 3, Shenoy Vijaya D 4 1. MBBS, DNB(Paediatrics), Senior Resident, Department of Paediatrics. 2. MSc Biotechnology, Lecturer/Research Associate, Diagnostic Centre for Cytogenetics and Molecular genetics. 3. PhD, Professor/ Coordinator, Diagnostic Centre for Cytogenetics and Molecular genetics. 4. MBBS, DCH, MD(Paediatrics),Professor/Head of the Department, Department of Paediatrics. Corresponding Author: Dr Swathi S Rao, 23-13/23(1), Shivakripa, Koragappa Compound, 3 rd Cross Kapikad, Ullal, Mangalore- 575020 . Email: [email protected] Abstract: The sex chromosome aneuploidy 49,XXXXY is a rare syndrome characterized by mental retardation, severe speech impairment, multiple skeletal defects, genital abnormalities and subtle dysmorphic features. The incidence of 48,XXXY/49,XXXXY is very rare and to our knowledge only few reports of mosaicism have been reported so far but with different cell line proportions. We describe a case with 48,XXXY[16]/49,XXXXY[4] mosaicism in a four year old boy with microcephaly, short stature, expressive speech delay, and clinodactyly. Karyotyping showed mosaicism with 48XXXY[16]/49XXXXY[4] and was confirmed by FISH analysis. Key words: Short stature; Expressive speech delay; Sex chromosomal aneuploidy Key Messages: Case History: Males with subtle dysmorphism and A four year old phenotypically male, was expressive speech delay are candidates for referred for evaluation of his speech delay.