Diseases of Leafy Crucifer Vegetables (Collards, Kale, Mustard, Turnips)

Total Page:16

File Type:pdf, Size:1020Kb

Diseases of Leafy Crucifer Vegetables (Collards, Kale, Mustard, Turnips) Oklahoma Cooperative Extension Service EPP-7666 Diseases of Leafy Crucifer Vegetables (collards, kale, mustard, turnips) John Damicone Extension Plant Pathologist Oklahoma Cooperative Extension Fact Sheets are also available on our website at: Vegetable crops in the crucifer family, grown for their ed- http://osufact.okstate.edu ible leaves include collards, kale, mustard, turnips, and turnip x mustard hybrids. These cool-season crops are well adapted cabbage, cauliflower, broccoli, radish, etc.) are avoided for spring and fall production in Oklahoma. While most of the for at least two years. Rotations with corn, grain sorghum, production is for processing, both processing and fresh markets or another summer grass crops particularly are beneficial demand high-quality produce free of blemishes. Diseases are for reducing levels of root-knot nematodes. important factors limiting the production of leafy greens. Dis- Site selection and preparation - Selecting well-drained soils eases mainly cause damage by reducing crop quality. Severe and forming raised beds helps avoid damping-off, root disease development can reduce quality to the point where rot, and wilt diseases promoted by water-logged soils. the crop is unmarketable. Preparing a good seed bed promotes rapid seedbed Agents (pathogens) that cause the most common dis- germination and seedling growth. Acid soils should be eases of leafy greens are molds (fungi) and bacteria, but avoided or corrected with lime. Maintaining records on diseases caused by viruses and nematodes also can be the disease history of fields helps avoid disease problems a problem. This Fact Sheet is intended to aid growers in and the timely use of control measures. identifying these diseases and to provide general guidelines Seed health - Seed contamination, particularly for bacterial for managing them. Accurate identification of a disease is diseases such as black rot, is an important means of critical to an effective management program. For example, introducing diseases into non-infested fields. Purchasing use of a fungicide to control a leaf spot disease will not be high-quality seed from reputable sources helps ensure effective if the pathogen is a bacteria. Some diseases can that seed is pathogen-free. Many seed companies pro- routinely be identified in the field with a little experience. For duce seed in dry climates where disease pressure is low diseases that are difficult to identify in the field, consider sub- and implement quality control programs to minimize the mitting samples through local Extension offices to the OSU chances for seed contamination. Some seed companies Plant Disease Diagnostic Laboratory. Consult Fact Sheet directly test crucifer seed for the presence of the black EPP-7612, Plant Disease and Insect Diagnostic Services, rot bacterium. Seed lots passing the test are certified for recommended procedures in taking and submitting good black-rot free. Questionable seed lots should soaked in samples. Because registrations of pesticides for disease man- hot water for 20 minutes at exactly 122°F. agement change from year to year, consult the latest edition Sanitation - Foliar diseases can be spread by equipment of the Extension Agent’s Handbook for Insect, Plant Disease, and workers moving in and between fields. Soil cling- and Weed Control (Extension Circular E-832). ing to equipment and boots is a means of introducing pathogens such as nematodes into clean fields. Equip- Strategies for Disease Management ment and boots should be cleaned when moving from Diseases are best managed by minimizing pathogen infested fields to clean fields. Clean fields also can be populations and/or slowing the increase of disease during the worked before entering infested fields. Fields should not growing season. Integrated pest management (IPM) refers be worked when leaves are wet to limit disease spread. to the use of several different management strategies within Irrigation - In sprinkler irrigation, excessive irrigation, or a crop management system and the judicious use of pesti- frequent irrigations with small amounts of water favors cides where needed. Better, more economical pest control is spread and development of many diseases and should achieved when IPM is practiced, compared to reliance on a be avoided. Water should be applied during periods when single management strategy such as pesticide application. foliage dries rapidly. Disease management strategies that are effective components Weed control - Weeds in and around fields may harbor viruses of IPM programs are listed below. Many of these strategies and bacteria. For example, common weeds in the cruci- help prevent diseases from becoming established. fer family such as swinecress and Virginia pepperweed Crop rotation - Fungi, bacteria, and nematodes that cause are known to harbor black rot bacteria. Practicing good root and foliar diseases persist in soil or crop debris in weed control minimizes chances of disease carryover the soil. These pathogens build to damaging levels with and spread. repeated cropping of crucifer crops. Crop rotation is ef- Scouting - Crops should regularly be inspected (at least fective where crops in the crucifer family (also includes once a week) for symptoms and signs of diseases and Division of Agricultural Sciences and Natural Resources • Oklahoma State University other pests. Scouting permits the early detection of Root-knot (Meloidogyne spp.) pest problems so timely management practices can be Root-knot is caused by several species of nematodes, implemented. which are microscopic roundworms that live in soil and feed on Chemical control - Fungicide sprays may be needed for plant roots. Crucifers are susceptible to all root-knot species. In effective management of diseases caused by fungi. Cop- Oklahoma, both northern and southern root-knot nematodes per compounds are used to reduce diseases caused by are present and both cause damage to vegetable crops in bacteria as well as fungi. Fungicides and copper sprays isolated fields. Where nematode populations are high, yield help prevent healthy plants from becoming infected, loss results from poor plant growth. Nematodes are most but cannot cure plants already diseased. Therefore, severe on sandy, well-drained soils. Fortunately, nematodes applications should be made before symptoms appear are most active during the summer when these crops are not where disease is anticipated or shortly after the disease grown. is first detected. Because fungicides degrade over time, Symptoms - Affected plants are pale green to yellow, repeated applications on a seven to 14-day schedule stunted, and may occur in patches along rows or in circular typically are required to maintain protection. Sprays areas. Roots of affected plants show the characteristic galls should be applied before anticipated rains rather than or swellings caused by nematode feeding. The southern after, since protection is afforded during wet periods that root-knot nematode causes large galls that may be up to a favor infection. Sprays should be applied in a sufficient half-inch thick, while galls caused by the northern root-knot volume to achieve thorough plant coverage. The number nematode are finer in appearance. of fungicides registered for use on leafy greens is limited; Control - Crop rotation with grass crops for at least two therefore it is critical to use IPM strategies along with years effectively reduces nematode populations below dam- chemical control. aging levels. Rotations with other broadleaf vegetable crops Seed and soil-applied fungicides also are used to should be avoided, since most are susceptible to root-knot. Soil manage soilborne diseases. Seed treatments are rec- should be tested for nematodes prior to planting in fields with ommended to help prevent damping-off of seedlings. a history of nematode problems to ensure that the populations Soil-applied fungicide is pre-plant incorporated, applied are below damaging levels. See OSU Extension Fact Sheet to the seed furrow, or banded over the row and watered EPP-7610 for more information on sampling procedures for in. Soil-applied fungicide provides additional damping-off nematodes. control, and may help reduce root-rot diseases. Residue management - Since many pathogens survive in and on crop debris, crop residue should be incorporated Bacterial Leaf Diseases by disking or plowing soon after harvest to promote rapid Bacterial diseases have been important foliar diseases decomposition. of leafy greens in Oklahoma. Bacterial diseases are serious, since they spread rapidly and cause direct damage to the Soilborne Diseases marketed portion of the crop. In addition, chemical controls are not very effective. While the causes and symptoms of each disease are different, management programs are similar. Damping-off (Fusarium, Rhizoctonia, and Pythium spp.) Black rot (Xanthomonas campestris Damping-off is a term used to describe the different phases pv. campestris) of seed and seedling disease. Several fungi that commonly Black rot is a widespread and destructive disease of inhabit agricultural soils may contribute to damping-off prob- crucifer crops in Oklahoma. Entire fields can be destroyed lems within a single field. Damage results from reduced plant when conditions are favorable for disease development. The stand, which in severe cases results in reduced yield or the disease is caused by a bacterium that survives on seed, weedy added expense of replanting. Damping-off is favored by poor crucifers, and crop debris in infested fields. Extended
Recommended publications
  • Description of Albugo Fungi- an Obligate Parasite
    Description of Albugo fungi- an obligate parasite Dr. Pallavi J.N.L. College Khagaul Classification Kingdom: Fungi Phylum: Oomycota Class: Oomycetes Order: Peronosporales Family: Albuginaceae Genus: Albugo Species: Albugo candida Distribution of Albugo • This genus is represented by 25 species distributed all around the world • They are all plant parasite. • Albugo candida also known as Cystopus candidus is the most important pathogen of Brassicaceae/Crucifereae members, causing white rust. Other families that are prone to attack of this fungi are Asteraceae, Convolvulaceae and Chenopodiaceae. Signs and Symptoms • This pathogen attack all the above ground parts. Infection takes place through stomata. • The disease results in the formation of shiny white irregular patches on leaves or stems. In the later stages, these patches turn powdery. The flowers and fruits gets deformed. Hypertrophy (increase in size of the cells and organs) is also a symptom of the disease. Deformed leaves of cabbage infected with Albugo candida Reproduction in Albugo • The fungus reproduces both by asexual and sexual methods • Asexual Reproduction: • The asexual reproduction takes place by conidia, condiosporangia or zoosporangia. They are produced on the sporangiophores. Under suitable conditions the mycelium grows and branches rapidly. • After attaining a certain age of maturity, it produces a dense mat like growth just beneath the epidermis of the host and some of the hyphae start behaving as sporangiophores or conidiophores. These sporangiophores contain dense cytoplasm and about a dozen nuclei. Later, the apical portion of sporangiophore gets swollen and a constriction appears below the swollen end and results in the formation of first sporangium. A second sporangium is similarly formed from the tip just beneath the previous one.
    [Show full text]
  • Albugo Candida on Isatis Emarginata
    Journal of Plant Pathology (2018) 100:587 https://doi.org/10.1007/s42161-018-0091-1 DISEASE NOTE First confirmed report of white blister rust disease caused by Albugo candida on Isatis emarginata Mohammad Reza Mirzaee1 & Sebastian Ploch2 & Lisa Nigrelli2,3 & Sepide Sajedi4 & Marco Thines2,3 Published online: 7 June 2018 # Società Italiana di Patologia Vegetale (S.I.Pa.V.) 2018 Isatis emarginata Kar. & Kir. (syn. I. violascens Bunge)isan (10–)11.8–16.6(−21) μm (mean 14.2 μm) (n =50).Primary annual therophyte belonging to the Brassicaceae. It is distrib- sporangia and secondary sporangia were morphologically uted in Iran, Afghanistan, Pakistan, and East Anatolia. In similar except that the former had slightly thicker walls than April 2011, white blister rust disease symptoms including the latter. No oospores were found in infected tissue. The whitish sori, usually on the lower leaf surfaces of I. identity of the pathogen was further analysed by sequencing emarginata, were noticed in Mighan, Nehbandan, South the mitochondrial locus cox2 and the nuclear ribosomal inter- Khorasan province of Iran. Recent phylogenetic analyses have nal transcribed spacers (ITS) (Mirzaee et al. 2013). The con- revealed that besides Albugo candida, several specialised spe- sensus sequences of ITS (MF580755) and cox2 (MF580756) cies are present in the genus Albugo (Ploch et al. 2010). Dried were identical with A. candida sequences in GenBank (100% specimens of I. emarginata (voucher FR0046090) with white identity to DQ418500 and DQ418511, for ITS and cox2, re- blister symptoms were examined in terms of the morphology spectively). Therefore, the species causing white blister rust of the pathogen and molecular phylogeny.
    [Show full text]
  • Albugo: Contents: 1
    Albugo: Contents: 1. Habit and Habitat of Albugo 2. Symptoms of Albugo 3. Vegetative Structure of Albugo 4. Reproduction in Albugo 5. Biological Specialization or Physiological Specialization in Albugo 6. Control Measures of Albugo 1. Habit and Habitat of Albugo: Albugo (derived from a Latin word means white), the only genus of family Albuginaceae is represented by more than 25 species. It is an obligate parasite distributed all over the world. In India about 18 species of Albugo have been reported which attacks mostly crucifers like turnip, mustard, radish, cabbage, cauliflower etc. However, it has also been reported on some members of family Asteraceae (Composite, Convolvulaceae and Chenopodiaceae). 2. Symptoms of Albugo: The disease caused by Albugo is commonly known as white rust because it appears in the form of shiny, white, smooth irregular patches (pustules) or blisters on the leaves, stems and other aerial parts of the plant. The pustules are initially formed on the lower surface of the leaf but in several cases they may be present on both the surfaces (Fig. 1 A). With this several other effects are also produced. Increase in the size of the cells (hypertrophy) and organs takes place. It results in the formation of large galls on the various parts of the host (Fig. 1 B-D). Severe infection causes proliferation of the lateral buds, discoloration of flowers, malformation of floral parts and sterile gynoecium. 3. Vegetative Structure of Albugo: Thallus is eucarpic and mycelial. Hyphae are intercellular, coenocytic, aseptate and profusely branched(Fig. 2 B). Cell wall is composed of fungal cellulose.
    [Show full text]
  • Dimorphism of Sporangia in Albuginaceae (Chromista, Peronosporomycetes)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Jahr/Year: 2006 Band/Volume: 58 Autor(en)/Author(s): Constantinescu Ovidiu, Thines Marco Artikel/Article: Dimorphism of sporangia in Albuginaceae (Chromista, Peronosporomycetes). 178-190 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Dimorphism of sporangia in Albuginaceae (Chromista, Peronosporomycetes) O. Constantinescu1 & M. Thines2 1 Botany Section, Museum of Evolution, Uppsala University, Norbyvägen 16, SE-752 36 Uppsala, Sweden 2 Institute of Botany, University of Hohenheim, Garbenstrasse 30, D-70599 Stuttgart, Germany Constantinescu O. & Thines M. (2006) Dimorphism of sporangia in Albugi- naceae (Chromista, Peronosporomycetes). - Sydowia 58 (2): 178 - 190. By using light- and scanning electron microscopy, the dimorphism of sporangia in Albuginaceae is demonstrated in 220 specimens of Albugo, Pustula and Wilsoniana, parasitic on plants belonging to 13 families. The presence of two kinds of sporangia is due to the sporangiogenesis and considered to be present in all representatives of the Albuginaceae. Primary and secondary sporangia are the term recommended to be used for these dissemination organs. Key words: Albugo, morphology, sporangiogenesis, Pustula, Wilsoniana. The Albuginaceae, a group of plant parasitic, fungus-like organisms traditionally restricted to the genus Albugo (Pers.) Roussel (Cystopus Lev.), but to which Pustula Thines and Wilsoniana Thines were recently added (Thines & Spring 2005), differs from other Peronosporomycetes mainly by the sub epidermal location of the unbranched sporangiophores, and basipetal sporangiogenesis resulting in chains of sporangia. A feature only occasionally described is the presence of two kinds of sporangia. Tulasne (1854) was apparently the first to report this character in Wilsoniana portulacae (DC.
    [Show full text]
  • Titel Vorname Name
    Online data base of plant protection products Explanations and dictionary Currently the online data base is available in German language only. Therefore explanations and translations are provided on these pages. Standard search The "Standard search" contains all criteria in one form. Trade name Author. no. Active substance Home and garden / all Field of use Alle All Ackerbau Agricultural crops Baumschulen Nurseries Forst Forestry Gemüsebau Vegetable growing Grünland Grassland Hopfenbau Hop growing Nichtkulturland Non cultivated areas Obstbau Fruit growing Crop Pest Search Clear Vorratsschutz Protection of stored products (see table 1) (see table 2) Weinbau Viticulture Zierpflanzenbau Ornamental growing Function Alle All Akarizid Acaricide ... ... Keimhemmungsmittel Sprout inhibitor Leime, Wachse Glue, sealing wax Wachstumsregler Plant growth regulator 2 Stepwise search The "Stepwise search" will prompt the criteria in a defined sequence. The form starts with an entry line for the field of use. It is then a choice either to show the results or to continue with entering more criteria. Next is function, then crop, and finally pest. Field of use Alle All Ackerbau Agricultural crops Baumschulen Nurseries Forst Forestry Gemüsebau Vegetable growing Grünland Grassland Hopfenbau Hop growing Nichtkulturland Non cultivated areas Obstbau Fruit growing Vorratsschutz Protection of stored products Weinbau Viticulture Zierpflanzenbau Ornamental growing Show results Continue Search functions If several criteria are selected then they are logically combined with AND. That means: The result contains products which fulfil all criteria. The addition of more criteria will narrow the result. Hierarchical organisation of crops Plant protection products may be authorised for certain crop species, or a list of several crop species, or for crop groups (sometimes with exceptions).
    [Show full text]
  • Review of Horseradish Breeding for Improved Root Quality and Yield in Illinois, USA
    agronomy Review Review of Horseradish Breeding for Improved Root Quality and Yield in Illinois, USA Stuart Alan Walters School of Agricultural Sciences, Southern Illinois University, Carbondale, IL 62901, USA; [email protected]; Tel.: +1-618-453-3446 Abstract: Horseradish cultivars are highly heterozygous clones and are maintained through asexual propagation, using root cuttings. For many years, horseradish was believed to be sterile and therefore impossible to improve by traditional sexual crosses. Prior to the 20th century, the only way to improve horseradish was to select and plant root cuttings from the most desirable plants. Moreover, the development of new improved horseradish cultivars has also been somewhat limited by the lack of viable seed resulting from low fertility of horseradish flowers. However, in Illinois, USA, a horseradish breeding program was initiated in the 1950s to develop additional cultivars to widen the genetic base of the few cultivars being grown at the time. In more recent years, the proven cross breeding technique has been primarily used to obtain new genotypes of horseradish, since it is more efficient in producing new improved cultivars, compared to the polycross method that had been previously used for decades to obtain new genetic combinations. Since horseradish is a minor specialty crop with very little available information regarding breeding procedures, this review was developed to provide a better understanding of pollination barriers and methods for fertility improvement, traditional breeding procedures and cultivar development, and traditional breeding achievements and limitations. The development of new horseradish cultivars is essential for the sustained success of the Illinois, USA industry since it provides growers with a continuous supply of new selections that have increased vigor, outstanding root quality, and high yields.
    [Show full text]
  • White Rust of Horseradish
    report on RPD No. 1202 PLANT December 2016 DEPARTMENT OF CROP SCIENCES DISEASE UNIVERSITY OF ILLINOIS AT URBANA WHITE RUST OF HORSERADISH White rust, caused by the oomycete Albugo candida, is a very damaging disease of horseradish in most of horseradish growing areas in the world. White rust is not a common disease of horseradish in Illinois, but it widely occurs in northern regions of the United States, Canada, and Europe. Severe white rust on leaves prevents normal root growth and can results in significant yield reduction. Plants are infected at all growth stages (Figure 1). A. candida also infected other brassica crops, but biotype of the pathogen may differ among the hosts. Symptoms Symptoms first appear as small yellow (chlorotic) areas on both leaf surfaces (Figure 2). The white pustules then appear within the chlorotic areas on the lower leaf surface (Figures 2 and 3). These pustules are grayish- to creamy-white and vary in shape from oval to irregular. The expanding pustule eventually ruptures the epidermis of the leaf, exposing the powdery white spores (sporangia) beneath. The pathogen may also infect the crown of the plant, and can occasionally infect the root. Disease Cycle Albugo candida is an obligate parasite, which means that it survives in _________________________________________________________________________________ For further information contact Mohammad Babadoost, Extension Specialist in Fruit and Vegetable Pathology, Department of Crop Sciences, University of Illinois at Urbana-Champaign. (Phone: 217-333-1523; email: [email protected]). University of Illinois Extension provides equal opportunities in programs and employment. - 2 - infected plant tissues. The pathogen also survives as oospores (thick-walled sexual spores) (Figure 5).
    [Show full text]
  • Albugo Candida)
    Transgressive segregation reveals mechanisms of Arabidopsis immunity to Brassica-infecting races of white rust (Albugo candida) Volkan Cevika,b, Freddy Boutrota, Wiebke Apela,c, Alexandre Robert-Seilaniantza,d, Oliver J. Furzera,e, Amey Redkara,f, Baptiste Castela, Paula X. Koverb, David C. Princea,g, Eric B. Holubh, and Jonathan D. G. Jonesa,1 aThe Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, United Kingdom; bThe Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, BA2 7AY Bath, United Kingdom; cInstitute for Biology, Experimental Biophysics, Humboldt- Universität zu Berlin, 10115 Berlin, Germany;dInstitute for Genetics, Environment and Plant Protection, Agrocampus Ouest, Institut National de la Recherche Agronomique, Universite de Rennes, 35650 Le Rheu, France; eDepartment of Biology, University of North Carolina, Chapel Hill, NC 27599; fDepartment of Genetics, University of Cordoba, 14071 Cordoba, Spain; gSchool of Biological Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, United Kingdom; and hWarwick Crop Centre, School of Life Sciences, University of Warwick, CV35 9EF Wellesbourne, United Kingdom Contributed by Jonathan D. G. Jones, December 19, 2018 (sent for review August 6, 2018; reviewed by Ralph Panstruga and Guido Van den Ackerveken) Arabidopsis thaliana accessions are universally resistant at the sistance of a particular plant species against all isolates of a adult leaf stage to white rust (Albugo candida) races that infect pathogen that can infect other plant species is known as nonhost the crop species Brassica juncea and Brassica oleracea. We used resistance (NHR) (26). The molecular mechanisms underlying transgressive segregation in recombinant inbred lines to test if this NHR are poorly understood; if all accessions of a species are apparent species-wide (nonhost) resistance in A.
    [Show full text]
  • Pathogenicity Diversity in Albugo Candida Isolates Causing White Rust Disease in Rapeseed-Mustard
    Int.J.Curr.Microbiol.App.Sci (2019) 8(12): 621-627 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 12 (2019) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2019.812.081 Pathogenicity Diversity in Albugo candida Isolates causing White Rust Disease in Rapeseed-Mustard Devanshu Dev*, G. R. Daniel, Pooja Upadhyay and A. K. Tewari Department of Plant Pathology, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar-263145, Uttarakhand, India *Corresponding author ABSTRACT Albugo candida causing white rust of rapeseed-mustard is a highly variable fungus and cause great economic losses. In this study 44 A. candida isolates belongs to 17 different states of India has been used for the pathogenicity K e yw or ds diversity. Symptomatology of the pathogen i.e. pustule pattern, pustule size Coalesced , and pustule colour has taken as criteria for the pathogenicity diversity. All the Pathogenicity diversity, Oilseed 44 A. candida isolates were inoculated on susceptible Brassica juncea cultivar crop, Biotic stress, Varuna for the study. In the study of white rust symptoms of 44 A. candida on White rust Varuna cultivar five different types of pustule pattern has been observed viz. Article Info viz. Separate circular; Coalesced circular, Scattered and pin head; Restricted near veins and veinlets and Restricted near veins and veinlets separate or Accepted: coalesced circular type pustules. Pustules size among 44 A. candida isolates 07 November 2019 Available Online: was varied from 0.5-2.5mm while pustule colour of all the isolates was creamy 10 December 2019 white.
    [Show full text]
  • I. Albuginaceae and Peronosporaceae) !• 2
    ANNOTATED LIST OF THE PERONOSPORALES OF OHIO (I. ALBUGINACEAE AND PERONOSPORACEAE) !• 2 C. WAYNE ELLETT Department of Plant Pathology and Faculty of Botany, The Ohio State University, Columbus ABSTRACT The known Ohio species of the Albuginaceae and of the Peronosporaceae, and of the host species on which they have been collected are listed. Five species of Albugo on 35 hosts are recorded from Ohio. Nine of the hosts are first reports from the state. Thirty- four species of Peronosporaceae are recorded on 100 hosts. The species in this family re- ported from Ohio for the first time are: Basidiophora entospora, Peronospora calotheca, P. grisea, P. lamii, P. rubi, Plasmopara viburni, Pseudoperonospora humuli, and Sclerospora macrospora. New Ohio hosts reported for this family are 42. The Peronosporales are an order of fungi containing the families Albuginaceae, Peronosporaceae, and Pythiaceae, which represent the highest development of the class Oomycetes (Alexopoulous, 1962). The family Albuginaceae consists of the single genus, Albugo. There are seven genera in the Peronosporaceae and four commonly recognized genera of Pythiaceae. Most of the species of the Pythiaceae are aquatic or soil-inhabitants, and are either saprophytes or facultative parasites. Their occurrence and distribution in Ohio will be reported in another paper. The Albuginaceae include fungi which are all obligate parasites of vascular plants, causing diseases known as white blisters or white rusts. These white blisters are due to the development of numerous conidia, sometimes called sporangia, in chains under the epidermis of the host. None of the five Ohio species of Albugo cause serious diseases of cultivated plants in the state.
    [Show full text]
  • White Blister (Albugo Candida)
    DEPARTMENT OF PRIMARY INDUSTRIES Vegetable Matters-of-Facts Based on research funded by the vegetable growers levy, Horticulture Australia and DPI Number 4 2003 White Blister (Albugo candida) Main control points • Watering – short, heavy, pre-dawn / morning • Ventilation – dry leaves quickly • Fertiliser- P&K may improve disease tolerance • Hygiene – remove weeds and crop trash • Plant varieties that are more tolerant to Albugo • Fungicides – none registered … yet • Spores can infect plant as it emerges from seed • White blister can occur with Downy Mildew Gall Bok choi Background • White blister (Albugo candida) is a fungal disease that Broccoli affects plants of the crucifer family. • The disease was first reported in 1870 and became commercially important early in 2002 when vegetable growers near Melbourne found the disease on broccoli and cauliflower crops. Both seedlings and mature crops were affected and substantial and extensive losses were incurred. • Despite quarantine restrictions on the interstate movement of broccoli and cauliflower plant material, the disease is now widespread throughout southern Australia. Symptoms • White blisters on leaves and flowers, possibly gall swellings on stems of seedlings • Yellow to brown spots on the upper leaf surface and white, round to oval blisters on the corresponding under leaf surface. • The blisters consist of masses of white dust-like spores. • Badly infected leaves may be misshapen. Control Strategies More about White Blister You can control white blister with a combination of management practices How is it Spread ? and a fungicide spray program. • Wind, rain or insects disperse aerial spores Controlled watering • Rain splash of spores from soil. Spores germinate on wet leaf surfaces to infect Where can the disease come from ? plants.
    [Show full text]
  • Morphological and Molecular Discrimination Among Albugo Candida Materials Infecting Capsella Bursa-Pastoris World-Wide
    Fungal Diversity Morphological and molecular discrimination among Albugo candida materials infecting Capsella bursa-pastoris world-wide Young-Joon Choi1, Hyeon-Dong Shin1*, Seung-Beom Hong2 and Marco Thines3 1Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea 2Korean Agricultural Culture Collection, National Institute of Agricultural Biotechnology, Rural Development Administration, Suwon 441-707, Korea 3Institute of Botany, University of Hohenheim, 70593 Stuttgart, Germany Choi, Y.J., Shin, H.D., Hong, S.B. and Thines, M. (2007). Morphological and molecular discrimination among Albugo candida materials infecting Capsella bursa-pastoris world-wide. Fungal Diversity 27: 11-34. The genus Albugo with A. candida as the type species causes white blister rust disease in economically important crops. Recently, molecular approaches revealed the high degree of genetic diversity exhibited within A. candida complex. However, before any taxonomic division of the complex at the species level, the correct status of A. candida on Capsella bursa- pastoris, from which it was originally described, should be determined. A worldwide study of white rust pathogens on C. bursa-pastoris was performed on 36 specimens, using morphological analysis and sequence analysis from the cytochrome c oxidase subunit II (COX2) region of mtDNA, the internal transcribed spacer (ITS) region of the rDNA, and D1 and D2 regions of the nrDNA. Specimens were obtained from Asia (India, Korea, Palestine), Europe (England, Finland, Germany, Hungary, Ireland, Latvia, Netherlands, Romania, Russia, Sweden, Switzerland), North and South America (Argentina, Canada, USA), and Oceania (Australia). The molecular data indicated strong support for a species partition separating Korean and other continental specimens.
    [Show full text]