A Novel 3P22.3 Gene CMTM7 Represses Oncogenic EGFR Signaling and Inhibits Cancer Cell Growth

Total Page:16

File Type:pdf, Size:1020Kb

A Novel 3P22.3 Gene CMTM7 Represses Oncogenic EGFR Signaling and Inhibits Cancer Cell Growth Oncogene (2014) 33, 3109–3118 & 2014 Macmillan Publishers Limited All rights reserved 0950-9232/14 www.nature.com/onc ORIGINAL ARTICLE A novel 3p22.3 gene CMTM7 represses oncogenic EGFR signaling and inhibits cancer cell growth HLi1,2,JLi3,YSu1,YFan3, X Guo1,LLi3,XSu3, R Rong3, J Ying4,XMo1, K Liu1, Z Zhang5, F Yang6, G Jiang6, J Wang6, Y Zhang1, DMa1,QTao3 and W Han1 Deletion of 3p12-22 is frequent in multiple cancer types, indicating the presence of critical tumor-suppressor genes (TSGs) at this region. We studied a novel candidate TSG, CMTM7, located at the 3p22.3 CMTM-gene cluster, for its tumor-suppressive functions and related mechanisms. The three CMTM genes, CMTM6, 7 and 8, are broadly expressed in human normal adult tissues and normal epithelial cell lines. Only CMTM7 is frequently silenced or downregulated in esophageal and nasopharyngeal cell lines, but uncommon in other carcinoma cell lines. Immunostaining of tissue microarrays for CMTM7 protein showed its downregulation or absence in esophageal, gastric, pancreatic, liver, lung and cervix tumor tissues. Promoter CpG methylation and loss of heterozygosity were both found contributing to CMTM7 downregulation. Ectopic expression of CMTM7 in carcinoma cells inhibits cell proliferation, motility and tumor formation in nude mice, but not in immortalized normal cells, suggesting a tumor inhibitory role of CMTM7. The tumor-suppressive function of CMTM7 is associated with its role in G1/S cell cycle arrest, through upregulating p27 and downregulating cyclin-dependent kinase 2 (CDK2) and 6 (CDK6). Moreover, CMTM7 could promote epidermal growth factor receptor (EGFR) internalization, and further suppress AKT signaling pathway. Thus, our findings suggest that CMTM7 is a novel 3p22 tumor suppressor regulating G1/S transition and EGFR/AKT signaling during tumor pathogenesis. Oncogene (2014) 33, 3109–3118; doi:10.1038/onc.2013.282; published online 29 July 2013 Keywords: CMTM7; 3p22; tumor-suppressor gene; methylation; LOH INTRODUCTION squamous cell carcinoma (ESCC), nasopharyngeal carcinoma (NPC) Chemokine-like factor 1 (CKLF)-like MARVEL transmembrane and lung carcinoma, suggesting the presence of critical TSGs. domain-containing family (CMTM) is a novel family of proteins Several 3p TSGs have been identified, including RASSF1A (3p21.3), linking chemokines and the transmembrane-4 superfamily.1,2 DLEC1 (3p22.3), HYA22 (3p22.3), LIMD1 (3p21.3), BLU/ZMYND10 Human CMTM family consists of nine members, CKLF and (3p21.3), FHIT (3p14.2) and PLCD1 (3p22.3).22–28 TSGs exert tumor- CMTM1–8, having important roles in immune and male suppressive functions through inhibiting cell proliferation and reproductive systems as well as disease pathogenesis including migration, inducing cell apoptosis and cell cycle arrest. TSGs can tumorigenesis.3–17 Transmembrane-4 superfamily includes several be inactivated by both genetic and epigenetic mechanisms. types of proteins possessing the four transmembrane-helix Genetic deletion and point mutations disrupt TSG functions, structure, such as the classical transmembrane-4 superfamily whereas epigenetic mechanisms including promoter CpG (tetraspanin) and MARVEL domain-containing proteins. methylation and histone modifications, lead to TSG silencing Association with specialized membrane microdomains has been and functional loss thus also frequently involved in tumor reported for MARVEL domain-containing proteins.18 They development and progression.29,30 participate in a variety of cellular processes including In this study, we investigated the expression, function and tumorigenesis. Promoter methylation of MAL, a putative tumor- mechanism of a potential TSG—CMTM7, located at 3p22.3. We suppressor gene (TSG), contributes to gastric and colon found that CMTM7 is broadly expressed in normal tissues but carcinogenesis.19,20 Loss of occludin leads to the progression of frequently silenced or downregulated in some carcinoma types. breast cancer.21 Our previous study also showed that CMTM3 and Promoter methylation and LOH were both found to be mechan- CMTM5 possess tumor-suppressive functions with frequent isms contributing to CMTM7 downregulation. Ectopic CMTM7 epigenetic inactivation by promoter CpG methylation.9,10 expression led to the inhibition of cell proliferation and motility, CMTM6, CMTM7 and CMTM8 form a small gene cluster on through inducing G1/S cell cycle arrest by upregulating p27 and chromosome 3p22. Loss of heterozygosity (LOH) of 3p, especially downregulating cyclin-dependent kinase 2 (CDK2) and 6 (CDK6). 3p12-22, is common in many cancer types including esophageal CMTM7 also promoted epidermal growth factor receptor (EGFR) 1Department of Immunology, Center for Human Disease Genomics, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing, China; 2Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China; 3Cancer Epigenetics Laboratory, State Key Laboratory of Oncology in South China, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong; 4Department of Pathology, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; 5Department of Otolaryngology/Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China and 6Department of Thoracic Surgery, Peking University People’s Hospital, Beijing, China. Correspondence: Professor Q Tao, Cancer Center, PWH, Department of Clinical Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong or Professor W Han, Peking University Center for Human Disease Genomics, 38 Xueyuan Road, Beijing 100191, China. E-mail: [email protected] or [email protected] Received 16 October 2012; revised 11 April 2013; accepted 29 April 2013; published online 29 July 2013 CMTM7 as a tumor suppressor methylated in carcinomas HLiet al 3110 internalization and further downregulated pAkt. Thus, CMTM7 acts (50%), 1 hypopharyngeal, 5 of 9 breast (55.5%), 2 of 4 cervical as a novel functional TSG. (50%), 1 of 16 gastric (6.25%) carcinoma cell lines and 1 of 3 glioma cell lines (33%; Figure 1c, Supplementary Figure 2B). In contrast, no silencing of CMTM6 was detected in any cell line, RESULTS whereas CMTM8 is expressed in most cell lines, except for its Only CMTM7 is frequently silenced by promoter methylation in silencing in several lymphoma cell lines as well as occasional some carcinoma types carcinoma cell lines (Supplementary Figure 1). CMTM6, CMTM7 and CMTM8 form a gene cluster on 3p22, a The putative CMTM7 promoter identified by bioinformatics chromosomal region rich in TSGs (Figure 1a). We examined their promoter analysis (http://www.genomatix.de) contains a typical expression profiles in a panel of normal adult tissues and tumor CpG island, with common control elements-TATA and CAAT boxes cell lines. Semiquantitative reverse transcription (RT)–PCR showed (Figure 1a). We thus analyzed CMTM7 promoter methylation by that CMTM6, CMTM7 and CMTM8 were all widely expressed in methylation-specific PCR (MSP). The specificity of our MSP system normal tissues (Figure 1b; Supplementary Figure 1). However, was validated using DNA not bisulfite treated (Supplementary CMTM7 was downregulated or silenced in multiple carcinoma cell Figure 2A). Frequent methylation of CMTM7 promoter was lines, including 8 of 18 esophageal (44.4%), 3 of 6 nasopharyngeal observed in ESCC and NPC cell lines with reduced or silenced Figure 1. (a) CMTM6, CMTM7 and CMTM8 form a gene cluster on 3p, a region rich in TSGs. A typical CpG island (CGI) spans the promoter to exon 1 of CMTM7. Vertical bar: a single CpG site. Curved arrow: the transcription start site. MSP and bisulfite genomic sequencing (BGS) regions are shown. (b) CMTM7 is broadly expressed in normal human adult tissues. (c) CMTM7 is frequently silenced in esophageal (ESCC) and nasopharyngeal (NPC) carcinoma cell lines with promoter methylation, but expressed and unmethylated in immortalized normal epithelial cell lines (underlined). GAPDH was used as an internal control as shown before. M, methylated; U, unmethylated. (d) Pharmacologic demethylation with 5-aza-2’-deoxycytidine alone (A) or combined with trichostatin A (A þT) restored CMTM7 expression in methylated and silenced carcinoma cell lines. (e) Detailed BGS analysis of the CMTM7 promoter in KYSE410 and C666-1 cells with or without A þT treatment. Circles, CpG sites analyzed; row of circles, an individual promoter allele that was cloned, randomly selected, and sequenced; filled circle, methylated CpG site; open circle, unmethylated CpG site. Oncogene (2014) 3109 – 3118 & 2014 Macmillan Publishers Limited CMTM7 as a tumor suppressor methylated in carcinomas HLiet al 3111 CMTM7, but not in 12 immortalized epithelial cell lines and other analyzed and 45% esophageal tumor tissues were observed LOH tumor cell lines (Figure 1c, Supplementary Figure 2B). We (Figure 2g), suggesting that genetic alteration is also involved in also noted that no methylation was detected in several cell CMTM7 disruption in tumor tissues. lines including KYSE180, in which CMTM7 was barely detectable (Figure 1c, Supplementary Figure 2B), suggesting that CMTM7 exerts tumor-suppressive functions other genetic alterations or histone modification may also account for CMTM7 downregulation. The above expression and methylation results of CMTM7 indicate To further assess a
Recommended publications
  • Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma
    Anatomy and Pathology Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma Sarah L. Lake,1 Sarah E. Coupland,1 Azzam F. G. Taktak,2 and Bertil E. Damato3 PURPOSE. To detect deletions and loss of heterozygosity of disease is fatal in 92% of patients within 2 years of diagnosis. chromosome 3 in a rare subset of fatal, disomy 3 uveal mela- Clinical and histopathologic risk factors for UM metastasis noma (UM), undetectable by fluorescence in situ hybridization include large basal tumor diameter (LBD), ciliary body involve- (FISH). ment, epithelioid cytomorphology, extracellular matrix peri- ϩ ETHODS odic acid-Schiff-positive (PAS ) loops, and high mitotic M . Multiplex ligation-dependent probe amplification 3,4 5 (MLPA) with the P027 UM assay was performed on formalin- count. Prescher et al. showed that a nonrandom genetic fixed, paraffin-embedded (FFPE) whole tumor sections from 19 change, monosomy 3, correlates strongly with metastatic death, and the correlation has since been confirmed by several disomy 3 metastasizing UMs. Whole-genome microarray analy- 3,6–10 ses using a single-nucleotide polymorphism microarray (aSNP) groups. Consequently, fluorescence in situ hybridization were performed on frozen tissue samples from four fatal dis- (FISH) detection of chromosome 3 using a centromeric probe omy 3 metastasizing UMs and three disomy 3 tumors with Ͼ5 became routine practice for UM prognostication; however, 5% years’ metastasis-free survival. to 20% of disomy 3 UM patients unexpectedly develop metas- tases.11 Attempts have therefore been made to identify the RESULTS. Two metastasizing UMs that had been classified as minimal region(s) of deletion on chromosome 3.12–15 Despite disomy 3 by FISH analysis of a small tumor sample were found these studies, little progress has been made in defining the key on MLPA analysis to show monosomy 3.
    [Show full text]
  • SPATA33 Localizes Calcineurin to the Mitochondria and Regulates Sperm Motility in Mice
    SPATA33 localizes calcineurin to the mitochondria and regulates sperm motility in mice Haruhiko Miyataa, Seiya Ouraa,b, Akane Morohoshia,c, Keisuke Shimadaa, Daisuke Mashikoa,1, Yuki Oyamaa,b, Yuki Kanedaa,b, Takafumi Matsumuraa,2, Ferheen Abbasia,3, and Masahito Ikawaa,b,c,d,4 aResearch Institute for Microbial Diseases, Osaka University, Osaka 5650871, Japan; bGraduate School of Pharmaceutical Sciences, Osaka University, Osaka 5650871, Japan; cGraduate School of Medicine, Osaka University, Osaka 5650871, Japan; and dThe Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan Edited by Mariana F. Wolfner, Cornell University, Ithaca, NY, and approved July 27, 2021 (received for review April 8, 2021) Calcineurin is a calcium-dependent phosphatase that plays roles in calcineurin can be a target for reversible and rapidly acting male a variety of biological processes including immune responses. In sper- contraceptives (5). However, it is challenging to develop molecules matozoa, there is a testis-enriched calcineurin composed of PPP3CC and that specifically inhibit sperm calcineurin and not somatic calci- PPP3R2 (sperm calcineurin) that is essential for sperm motility and male neurin because of sequence similarities (82% amino acid identity fertility. Because sperm calcineurin has been proposed as a target for between human PPP3CA and PPP3CC and 85% amino acid reversible male contraceptives, identifying proteins that interact with identity between human PPP3R1 and PPP3R2). Therefore, identi- sperm calcineurin widens the choice for developing specific inhibitors. fying proteins that interact with sperm calcineurin widens the choice Here, by screening the calcineurin-interacting PxIxIT consensus motif of inhibitors that target the sperm calcineurin pathway. in silico and analyzing the function of candidate proteins through the The PxIxIT motif is a conserved sequence found in generation of gene-modified mice, we discovered that SPATA33 inter- calcineurin-binding proteins (8, 9).
    [Show full text]
  • ZMYND10 Functions in a Chaperone Relay During Axonemal Dynein Assembly
    bioRxiv preprint doi: https://doi.org/10.1101/233718; this version posted December 13, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 ZMYND10 functions in a chaperone relay during axonemal dynein assembly. 2 3 Girish R Mali1,9 , Patricia Yeyati1, Seiya Mizuno2, Margaret A Keighren1, Petra zur Lage3, Amaya 4 Garcia-Munoz4, Atsuko Shimada5, Hiroyuki Takeda5, Frank Edlich6, Satoru Takahashi2,7, Alex von 5 Kreigsheim4,8, Andrew Jarman3 and Pleasantine Mill1,*. 6 7 1. MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of 8 Edinburgh, Edinburgh, UK, EH4 2XU 9 2. Laboratory Animal Resource Centre, University of Tsukuba, Tsukuba, Japan, 305-8575 10 3. Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK, EH8 9XD 11 4. Systems Biology Ireland, University College Dublin, Dublin, Ireland 12 5. Department of Biological Sciences, University of Tokyo, Tokyo, Japan, 113-0033 13 6. Institute for Biochemistry and Molecular Biology, University of Freiburg, Freiburg, Germany, 14 79104 15 7. Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, 16 Japan, 305-8575 17 8. Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University 18 of Edinburgh, Edinburgh, UK, EH4 2XU 19 9. Current address: MRC Laboratory of Molecular Biology, Cambridge, UK, CB2 0QH 20 * Corresponding author: [email protected] 21 22 23 24 25 26 27 28 29 30 31 1 bioRxiv preprint doi: https://doi.org/10.1101/233718; this version posted December 13, 2017.
    [Show full text]
  • Evaluation of the FHIT Gene in Colorectal Cancers1
    [CANCER RESEARCH 56, 2936-2939. July I. 1996] Advances in Brief Evaluation of the FHIT Gene in Colorectal Cancers1 Sam Thiagalingam, Nikolai A. Lisitsyn, Masaaki Hamaguchi, Michael H. Wigler, James K. V. Willson, Sanford D. Markowitz, Frederick S. Leach, Kenneth W. Kinzler, and Bert Vogelstein2 The Johns Hopkins Oncology Center. Baltimore, Maryland 21231 [S. T.. F. S. L., K. W. K., B. V.]; Department of Genetics. University of Pennsylvania, Philadelphia, Pennsylvania 9094 ¡N.A. LI: Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 ¡M.H., M. H. W.]; Department of Medicine and Ireland Cancer Center, University Hospitals of Cleveland and Case Western Resene University. Cleveland. Ohio 44106 ¡J.K. V. W., and S. D. M.¡; and Howard Hughes Medical Institute [B. V.¡,The Johns Hopkins Oncology Center, Baltimore, Maryland 21231 Abstract suppressor genes (13), the RDA results strongly supported the exist ence of a tumor suppressor gene in this area (14). A variety of studies suggests that tumor suppressor loci on chromosome Finally, Ohta et al. (15) have recently used a positional cloning 3p are important in various forms of human neoplasia. Recently, a chro approach to identify a novel gene that spanned the t(3;8) breakpoint. mosome 3pl4.2 gene called FHIT was discovered and proposed as a They named this gene FHIT (fragile histidine triad gene), reflecting its candidate tumor suppressor gene in coloréela!and other cancers. We evaluated the FHIT gene in a panel of colorectal cancer cell lines and homology to the Schizosaccharomyces pombe gene encoding Ap4A xenografts, which allowed a comprehensive mutational analysis.
    [Show full text]
  • Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.
    [Show full text]
  • Initial Sequencing and Comparative Analysis of the Mouse Genome
    articles Initial sequencing and comparative analysis of the mouse genome Mouse Genome Sequencing Consortium* *A list of authors and their af®liations appears at the end of the paper ........................................................................................................................................................................................................................... The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most of the genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and immunity; the evolution of proteins; and the identi®cation of intraspecies polymorphism. With the complete sequence of the human genome nearly in hand1,2, covering about 90% of the euchromatic human genome, with about the next challenge is to extract the extraordinary trove of infor- 35% in ®nished form1. Since then, progress towards a complete mation encoded within its roughly 3 billion nucleotides. This human sequence has proceeded swiftly, with approximately 98% of information includes the blueprints for all RNAs and proteins, the genome now available in draft form and about 95% in ®nished the regulatory elements that ensure proper expression of all genes, form.
    [Show full text]
  • Genome-Wide DNA Methylation Analysis of KRAS Mutant Cell Lines Ben Yi Tew1,5, Joel K
    www.nature.com/scientificreports OPEN Genome-wide DNA methylation analysis of KRAS mutant cell lines Ben Yi Tew1,5, Joel K. Durand2,5, Kirsten L. Bryant2, Tikvah K. Hayes2, Sen Peng3, Nhan L. Tran4, Gerald C. Gooden1, David N. Buckley1, Channing J. Der2, Albert S. Baldwin2 ✉ & Bodour Salhia1 ✉ Oncogenic RAS mutations are associated with DNA methylation changes that alter gene expression to drive cancer. Recent studies suggest that DNA methylation changes may be stochastic in nature, while other groups propose distinct signaling pathways responsible for aberrant methylation. Better understanding of DNA methylation events associated with oncogenic KRAS expression could enhance therapeutic approaches. Here we analyzed the basal CpG methylation of 11 KRAS-mutant and dependent pancreatic cancer cell lines and observed strikingly similar methylation patterns. KRAS knockdown resulted in unique methylation changes with limited overlap between each cell line. In KRAS-mutant Pa16C pancreatic cancer cells, while KRAS knockdown resulted in over 8,000 diferentially methylated (DM) CpGs, treatment with the ERK1/2-selective inhibitor SCH772984 showed less than 40 DM CpGs, suggesting that ERK is not a broadly active driver of KRAS-associated DNA methylation. KRAS G12V overexpression in an isogenic lung model reveals >50,600 DM CpGs compared to non-transformed controls. In lung and pancreatic cells, gene ontology analyses of DM promoters show an enrichment for genes involved in diferentiation and development. Taken all together, KRAS-mediated DNA methylation are stochastic and independent of canonical downstream efector signaling. These epigenetically altered genes associated with KRAS expression could represent potential therapeutic targets in KRAS-driven cancer. Activating KRAS mutations can be found in nearly 25 percent of all cancers1.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • Análise Integrativa De Perfis Transcricionais De Pacientes Com
    UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Ribeirão Preto – 2012 ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Área de Concentração: Genética Orientador: Prof. Dr. Eduardo Antonio Donadi Co-orientador: Prof. Dr. Geraldo A. S. Passos Ribeirão Preto – 2012 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE. FICHA CATALOGRÁFICA Evangelista, Adriane Feijó Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. Ribeirão Preto, 2012 192p. Tese de Doutorado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. Área de Concentração: Genética. Orientador: Donadi, Eduardo Antonio Co-orientador: Passos, Geraldo A. 1. Expressão gênica – microarrays 2. Análise bioinformática por module maps 3. Diabetes mellitus tipo 1 4. Diabetes mellitus tipo 2 5. Diabetes mellitus gestacional FOLHA DE APROVAÇÃO ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas.
    [Show full text]
  • Role of RUNX1 in Aberrant Retinal Angiogenesis Jonathan D
    Page 1 of 25 Diabetes Identification of RUNX1 as a mediator of aberrant retinal angiogenesis Short Title: Role of RUNX1 in aberrant retinal angiogenesis Jonathan D. Lam,†1 Daniel J. Oh,†1 Lindsay L. Wong,1 Dhanesh Amarnani,1 Cindy Park- Windhol,1 Angie V. Sanchez,1 Jonathan Cardona-Velez,1,2 Declan McGuone,3 Anat O. Stemmer- Rachamimov,3 Dean Eliott,4 Diane R. Bielenberg,5 Tave van Zyl,4 Lishuang Shen,1 Xiaowu Gai,6 Patricia A. D’Amore*,1,7 Leo A. Kim*,1,4 Joseph F. Arboleda-Velasquez*1 Author affiliations: 1Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St., Boston, MA 02114 2Universidad Pontificia Bolivariana, Medellin, Colombia, #68- a, Cq. 1 #68305, Medellín, Antioquia, Colombia 3C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, 55 Fruit St., Boston, MA 02114 4Retina Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 243 Charles St., Boston, MA 02114 5Vascular Biology Program, Boston Children’s Hospital, Department of Surgery, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115 6Center for Personalized Medicine, Children’s Hospital Los Angeles, Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027, USA 7Department of Pathology, Harvard Medical School, 25 Shattuck St., Boston, MA 02115 Corresponding authors: Joseph F. Arboleda-Velasquez: [email protected] Ph: (617) 912-2517 Leo Kim: [email protected] Ph: (617) 912-2562 Patricia D’Amore: [email protected] Ph: (617) 912-2559 Fax: (617) 912-0128 20 Staniford St. Boston MA, 02114 † These authors contributed equally to this manuscript Word Count: 1905 Tables and Figures: 4 Diabetes Publish Ahead of Print, published online April 11, 2017 Diabetes Page 2 of 25 Abstract Proliferative diabetic retinopathy (PDR) is a common cause of blindness in the developed world’s working adult population, and affects those with type 1 and type 2 diabetes mellitus.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened.
    [Show full text]