Graph Algorithms for Planning and Partitioning

Total Page:16

File Type:pdf, Size:1020Kb

Graph Algorithms for Planning and Partitioning Graph Algorithms for Planning and Partitioning Shuchi Chawla CMU-CS-05-184 September 30, 2005 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Thesis Committee: Avrim Blum, Chair Anupam Gupta R. Ravi Moses Charikar, Princeton University Submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Copyright c 2005 by Shuchi Chawla This research was sponsored by the National Science Foundation under grant nos. IIS-0121678, CCR-0105488, CCR-0122581, CCR-9732705, CCR-0085982 and through a generous fellowship from the IBM Corporation. The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other entity. Keywords: approximation algorithms, combinatorial optimization, robot navigation, vehicle routing, graph partitioning, hardness of approximation i Abstract In this thesis, we present new approximation algorithms as well as hardness of approximation results for several planning and partitioning problems. In planning problems, one is typically given a set of locations to visit, along with timing constraints, such as deadlines for visiting them; The goal is to visit a large number of locations as efficiently as possible. We give the first approximation al- gorithms for problems such as ORIENTEERING, DEADLINES-TSP, and TIME-WINDOWS-TSP, as well as results for planning in stochastic graphs (Markov decision processes). The goal in partition- ing problems is to partition a set of objects into clusters while satisfying “split” or “combine” con- straints on pairs of objects. We consider three kinds of partitioning problems, viz. CORRELATION- CLUSTERING, SPARSEST-CUT, and MULTICUT. We give approximation algorithms for the first two, and improved hardness of approximation results for SPARSEST-CUT and MULTICUT. ii To my grandmothers, (late) Smt. Sita Devi Chawla and Smt. Satyawati Malhotra iii iv Acknowledgements I am grateful to my advisor, Prof. Avrim Blum, for being understanding and patient, for being a great source of information and insight, and for giving me the freedom to work at my own pace on topics of my choice. Thanks also to Dr. Cynthia Dwork and Prof. Anupam Gupta for being great mentors and role models. Prof. Moses Charikar and Prof. R. Ravi helped shape a large part of this thesis through numerous discussions; I am grateful to them for their help and advice during the final year of my graduate study. This thesis would not have been possible without the cooperation of my numerous co-authors — thanks to you all! An enormous thanks to Aditya and Luis for maintaining my sanity (and sometimes making me lose it) during graduate school, and for being the best friends and officemates one could ask for. Finally, I would like to thank my parents and sister for their unconditional love and support through all my endeavors. v vi Contents 1 Introduction 1 1.1 Path-planning problems . 2 1.1.1 Overview of our results . 5 1.1.2 Planning under uncertainty . 6 1.2 Graph Partitioning . 8 1.2.1 Overview of our results . 10 2 Planning with Time Constraints 11 2.1 Introduction . 11 2.1.1 Related work . 12 2.1.2 Notation and definitions . 14 2.1.3 Summary of results . 16 2.2 MIN-EXCESS-PATH . 17 2.2.1 A segment partition . 18 2.2.2 A dynamic program . 20 2.2.3 An improved analysis . 21 2.3 ORIENTEERING . 22 2.3.1 A 3-approximation . 23 2.3.2 Difficulties in obtaining a 2 + δ approximation . 24 2.4 Incorporating timing constraints . 24 2.4.1 Using ORIENTEERING to approximate DEADLINES-TSP . 25 2.4.2 Minimal vertices . 26 2.4.3 A partition into sets . 27 2.4.4 Finding the best collection . 29 2.4.5 From deadlines to time-windows . 30 2.5 A bicriteria approximation for the TIME-WINDOWS-TSP . 31 2.5.1 The small margin case . 32 2.5.2 The large margin case . 34 2.5.3 The general case . 36 2.6 Extensions . 38 vii viii CONTENTS 2.6.1 Max-Value Tree and Max-Value Cycle . 38 2.6.2 Multiple-Path ORIENTEERING . 38 2.6.3 ORIENTEERING on special metrics . 39 2.7 Hardness of approximation . 40 2.8 Concluding remarks . 41 3 Planning under Uncertainty 43 3.1 Introduction . 43 3.1.1 Markov decision processes . 44 3.1.2 Strategies and policies . 44 3.1.3 Objectives . 45 3.1.4 Stochastic optimization . 47 3.1.5 Our Results . 48 3.2 Maximum Discounted-Reward Path . 48 3.3 Stochastic TSP . 51 3.3.1 The complexity of computing the optimal strategy . 52 3.3.2 The adaptivity gap . 53 3.3.3 Approximation via static policies . 56 3.3.4 Approximation via dynamic strategies . 58 3.4 Concluding remarks . 59 4 Correlation Clustering 61 4.1 Introduction . 61 4.1.1 Related and subsequent work . 63 4.2 Notation and definitions . 64 4.3 NP-completeness . 65 4.4 A constant factor approximation for minimizing disagreements . 66 4.5 A PTAS for maximizing agreements . 73 4.5.1 A PTAS doubly-exponential in 1/ . 74 4.5.2 A singly-exponential PTAS . 75 4.6 Random noise . 81 4.7 Extensions . 82 4.8 Concluding remarks . 85 5 Min-Ratio Partitioning 87 5.1 Introduction . 87 5.1.1 SPARSEST-CUT and low-distortion metric embeddings . 88 5.1.2 The Unique Games Conjecture . 89 5.2 Our results . 90 CONTENTS ix 5.3 Related and subsequent work . 92 5.4 An improved approximation for SPARSEST-CUT . 94 5.4.1 A high-level overview . 94 5.4.2 Notation and definitions . 95 5.4.3 Creating decomposition suites . 97 5.4.4 Obtaining decomposition bundles: weighting and watching . 101 5.4.5 Embedding via decomposition bundles . 103 5.5 Hardness of approximating SPARSEST-CUT and MULTICUT . 108 5.5.1 Preliminaries . 108 5.5.2 Hardness of bicriteria approximation for MULTICUT . 109 5.5.3 Hardness of approximating SPARSEST-CUT . 114 5.5.4 Hardness of approximating MIN-2CNF DELETION . 116 ≡ 5.5.5 Limitations of our approach . 117 5.6 Concluding remarks . 117 Bibliography 118 x CONTENTS List of Figures 1.1 Approximation factors and references for a few path-planning problems. Prior re- sults are accompanied by references. 6 2.1 Segment partition of a path in graph G . 19 2.2 Algorithm P2P— 3-approximation for s t ORIENTEERING . 23 − 2.3 A bad example for Orienteering. The distance between each consecutive pair of points is 1. 24 2.4 An example illustrating the construction of the rectangles (x; y; z). 27 R 2.5 Algorithm DTSP—3 log n-approximation for DEADLINES-TSP . 30 2.6 Division of set V into segments Sj. Note that segments Si, Si+3 and Si+6 are disjoint along the time axis. 32 2.7 Algorithm —Bicriteria approximation for the small margin case . 33 A 2.8 Algorithm —Approximation for the large margin case . 35 B 2.9 Algorithm —Bicriteria approximation for the general case . 37 C 3.1 A (6:75 + δ)-approximation for DISCOUNTED-REWARD-TSP . 50 3.2 Exact iterative PSPACE algorithm ITER for STOCHASTIC-TSP . 53 4.1 Construction of a triangle packing for Lemma 4.5 . 68 5.1 Projection and Bucketing . 98 5.2 The distribution of projected edge lengths in the proof of Lemma 5.9. If y falls into a light-shaded interval, the pair (x; y) is split. 99 xi xii LIST OF FIGURES Chapter 1 Introduction We study two classes of optimization problems on graphs, namely, planning and partitioning, and present improved approximations and hardness of approximation results for them. Broadly, the goal in these problems is to find structure in a set of objects, satisfying some constraints, such that the value of the structure is maximized (or its cost is minimized). In planning problems, the objects are tasks to be performed, and the structure is an ordering of these tasks satisfying scheduling constraints; The goal is to perform a large subset of the tasks in the most efficient manner. In partitioning problems, the structure is a grouping of the objects into classes based on their similarity or closeness. Planning and partitioning are fundamental combinatorial problems and capture a wide-variety of natural optimization problems; Examples arise in transportation problems, supply chain man- agement, document classification in machine learning, and reconstructing phylogenies in computa- tional genomics. Unfortunately most of these problems are NP-hard. Therefore, a natural approach to solving them is to look for approximate solutions that can be computed in polynomial time. In this thesis, we study the approximability of several partitioning and planning problems. We provide the first approximation algorithms for some of the problems, and improve upon previously known approximations for others. For some of these problems, we provide hardness of approxima- tion results showing that these problems are NP-hard to approximate better than a certain factor. We begin with some basic definitions. Approximation algorithms and hardness of approximation As mentioned earlier, most of.
Recommended publications
  • Constrained Representations of Map Graphs and Half-Squares
    Constrained Representations of Map Graphs and Half-Squares Hoang-Oanh Le Berlin, Germany [email protected] Van Bang Le Universität Rostock, Institut für Informatik, Rostock, Germany [email protected] Abstract The square of a graph H, denoted H2, is obtained from H by adding new edges between two distinct vertices whenever their distance in H is two. The half-squares of a bipartite graph B = (X, Y, EB ) are the subgraphs of B2 induced by the color classes X and Y , B2[X] and B2[Y ]. For a given graph 2 G = (V, EG), if G = B [V ] for some bipartite graph B = (V, W, EB ), then B is a representation of G and W is the set of points in B. If in addition B is planar, then G is also called a map graph and B is a witness of G [Chen, Grigni, Papadimitriou. Map graphs. J. ACM, 49 (2) (2002) 127-138]. While Chen, Grigni, Papadimitriou proved that any map graph G = (V, EG) has a witness with at most 3|V | − 6 points, we show that, given a map graph G and an integer k, deciding if G admits a witness with at most k points is NP-complete. As a by-product, we obtain NP-completeness of edge clique partition on planar graphs; until this present paper, the complexity status of edge clique partition for planar graphs was previously unknown. We also consider half-squares of tree-convex bipartite graphs and prove the following complexity 2 dichotomy: Given a graph G = (V, EG) and an integer k, deciding if G = B [V ] for some tree-convex bipartite graph B = (V, W, EB ) with |W | ≤ k points is NP-complete if G is non-chordal dually chordal and solvable in linear time otherwise.
    [Show full text]
  • New Bounds on the Number of Edges in a K-Map Graph
    New bounds on the edge number of a k-map graph ∗ Zhi-Zhong Chen y Abstract It is known that for every integer k 4, each k-map graph with n vertices has at most ≥ kn 2k edges. Previously, it was open whether this bound is tight or not. We show that this − bound is tight for k = 4, 5. We also show that this bound is not tight for large enough k (namely, k 374); more precisely, we show that for every 0 < < 3 and for every integer k 140 , ≥ 328 ≥ 41 each k-map graph with n vertices has at most ( 325 + )kn 2k edges. This result implies the 328 − first polynomial (indeed linear) time algorithm for coloring a given k-map graph with less than 2k colors for large enough k. We further show that for every positive multiple k of 6, there are 11 1 infinitely many integers n such that some k-map graph with n vertices has at least ( 12 k + 3 )n edges. Key words. Planar graph, plane embedding, sphere embedding, map graph, k-map graph, edge number. AMS subject classifications. 05C99, 68R05, 68R10. Abbreviated title. Edge Number of k-Map Graphs. 1 Introduction Chen, Grigni, and Papadimitriou [6] studied a modified notion of planar duality, in which two nations of a (political) map are considered adjacent when they share any point of their boundaries (not necessarily an edge, as planar duality requires). Such adjacencies define a map graph. The map graph is called a k-map graph for some positive integer k, if no more than k nations on the map meet at a point.
    [Show full text]
  • The Bidimensionality Theory and Its Algorithmic
    The Bidimensionality Theory and Its Algorithmic Applications by MohammadTaghi Hajiaghayi B.S., Sharif University of Technology, 2000 M.S., University of Waterloo, 2001 Submitted to the Department of Mathematics in partial ful¯llment of the requirements for the degree of DOCTOR OF PHILOSOPHY at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2005 °c MohammadTaghi Hajiaghayi, 2005. All rights reserved. The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part. Author.............................................................. Department of Mathematics April 29, 2005 Certi¯ed by. Erik D. Demaine Associate Professor of Electrical Engineering and Computer Science Thesis Supervisor Accepted by . Rodolfo Ruben Rosales Chairman, Applied Mathematics Committee Accepted by . Pavel I. Etingof Chairman, Department Committee on Graduate Students 2 The Bidimensionality Theory and Its Algorithmic Applications by MohammadTaghi Hajiaghayi Submitted to the Department of Mathematics on April 29, 2005, in partial ful¯llment of the requirements for the degree of DOCTOR OF PHILOSOPHY Abstract Our newly developing theory of bidimensional graph problems provides general techniques for designing e±cient ¯xed-parameter algorithms and approximation algorithms for NP- hard graph problems in broad classes of graphs. This theory applies to graph problems that are bidimensional in the sense that (1) the solution value for the k £ k grid graph (and similar graphs) grows with k, typically as ­(k2), and (2) the solution value goes down when contracting edges and optionally when deleting edges. Examples of such problems include feedback vertex set, vertex cover, minimum maximal matching, face cover, a series of vertex- removal parameters, dominating set, edge dominating set, r-dominating set, connected dominating set, connected edge dominating set, connected r-dominating set, and unweighted TSP tour (a walk in the graph visiting all vertices).
    [Show full text]
  • Applications of Bipartite Matching to Problems in Object Recognition
    Applications of Bipartite Matching to Problems in Object Recognition Ali Shokoufandeh Sven Dickinson Department of Mathematics and Department of Computer Science and Computer Science Center for Cognitive Science Drexel University Rutgers University Philadelphia, PA New Brunswick, NJ Abstract The matching of hierarchical (e.g., multiscale or multilevel) image features is a common problem in object recognition. Such structures are often represented as trees or directed acyclic graphs, where nodes represent image feature abstractions and arcs represent spatial relations, mappings across resolution levels, component parts, etc. Such matching problems can be formulated as largest isomorphic subgraph or largest isomorphic subtree problems, for which a wealth of literature exists in the graph algorithms community. However, the nature of the vision instantiation of this problem often precludes the direct application of these methods. Due to occlusion and noise, no significant isomorphisms may exists between two graphs or trees. In this paper, we review our application of a more general class of matching methods, called bipartite matching, to two problems in object recognition. 1 Introduction The matching of hierarchical (e.g., multiscale or multilevel) image features is a common problem in object recognition. Such structures are often represented as trees or directed acyclic graphs, where nodes represent image feature abstractions and arcs represent spatial relations, mappings across resolution levels, compo- nent parts, etc. The requirements of matching include computing a correspondence between nodes in an image structure and nodes in a model structure, as well as computing an overall measure of distance (or, alternatively, similarity) between the two structures. Such matching problems can be formulated as largest isomorphic subgraph or largest isomorphic subtree problems, for which a wealth of literature exists in the graph algorithms community.
    [Show full text]
  • Graph Theory and Graph Algorithms Basics Václav Hlaváč
    Graph theory and graph algorithms basics Václav Hlaváč Czech Technical University in Prague Czech Institute of Informatics, Robotics and Cybernetics 160 00 Prague 6, Jugoslávských partyzánů 1580/3, Czech Republic http://people.ciirc.cvut.cz/hlavac, [email protected] Courtesy: Paul Van Dooren, Jeff Erickson, Jaehyun Park, Jianbo Shi Outline of the talk: Graph-based image segmentation, ideas Special graphs Graphs, concepts Computer representation of graphs Graph traversal Flow network, graph cut Graph coloring Minimum spanning tree Graphs, concepts 2/60 It is assumed that a student has studied related graph theory elsewhere. Main concepts are reminded here only. http://web.stanford.edu/class/cs97si/, lecture 6, 7 https://www.cs.indiana.edu/~achauhan/Teaching/B403/LectureNotes/10-graphalgo.html https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms Concepts Related graph algorithms Graphs: directed, undirected Shortest path Adjacency, similarity matrices Max graph flow = min graph cut Path in a graph Minimum spanning tree Special graphs Undirected/directed graph 3/60 Undirected graph, also graph Directed graph E.g. a city map without one-way streets. E.g. a city map with one-way streets. G = (V, E) is composed of vertices V G = (V, E) is composed of vertices V and undirected edges E ⊂ V × V representing an and directed edges E representing an unordered relation between two vertices. ordered relation between two vertices. Oriented edge e = (u, v) has the tail u The number of vertices |V | = n and the and the head v (shown as the arrow 2 number of edges |E| = m = O(|V | ) is →). The edge e is different from assumed finite.
    [Show full text]
  • An Annotated Bibliography on 1-Planarity
    An annotated bibliography on 1-planarity Stephen G. Kobourov1, Giuseppe Liotta2, Fabrizio Montecchiani2 1Dep. of Computer Science, University of Arizona, Tucson, USA [email protected] 2Dip. di Ingegneria, Universit`adegli Studi di Perugia, Perugia, Italy fgiuseppe.liotta,[email protected] July 21, 2017 Abstract The notion of 1-planarity is among the most natural and most studied generalizations of graph planarity. A graph is 1-planar if it has an embedding where each edge is crossed by at most another edge. The study of 1-planar graphs dates back to more than fifty years ago and, recently, it has driven increasing attention in the areas of graph theory, graph algorithms, graph drawing, and computational geometry. This annotated bibliography aims to provide a guiding reference to researchers who want to have an overview of the large body of literature about 1-planar graphs. It reviews the current literature covering various research streams about 1-planarity, such as characterization and recognition, combinatorial properties, and geometric representations. As an additional contribution, we offer a list of open problems on 1-planar graphs. 1 Introduction Relational data sets, containing a set of objects and relations between them, are commonly modeled by graphs, with the objects as the vertices and the relations as the edges. A great deal is known about the structure and properties of special types of graphs, in particular planar graphs. The class of planar graphs is fundamental for both Graph Theory and Graph Algorithms, and is extensively studied. Many structural properties of planar graphs are known and these properties can be used in the development of efficient algorithms for planar graphs, even where the more general problem is NP-hard [11].
    [Show full text]
  • Decomposition of Map Graphs with Applications Fedor V
    Decomposition of Map Graphs with Applications Fedor V. Fomin University of Bergen, Norway, [email protected] Daniel Lokshtanov University of California, Santa Barbara, USA, [email protected] Fahad Panolan University of Bergen, Norway, [email protected] Saket Saurabh The Institute of Mathematical Sciences, HBNI, Chennai, India, [email protected] Meirav Zehavi Ben-Gurion University of the Negev, Beer-Sheva, Israel, [email protected] Abstract Bidimensionality is the most common technique to design subexponential-time parameterized algorithms on special classes of graphs, particularly planar graphs. The core engine behind it is a combinatorial√ lemma√ of Robertson, Seymour and Thomas√ that states that every planar graph either has a k × k-grid as a minor, or its treewidth is O( k). However, bidimensionality theory cannot be extended directly to several well-known√ √ classes of geometric graphs. The reason is very simple: a clique on k − 1 vertices has no k × k-grid as a minor and its treewidth is k − 2, while classes of geometric graphs such as unit disk graphs or map graphs can have arbitrarily large cliques. Thus, the combinatorial lemma of Robertson, Seymour and Thomas is inapplicable to these classes of geometric graphs. Nevertheless, a relaxation of this lemma has been proven useful for unit disk graphs. Inspired by this, we prove a new decomposition lemma for map graphs, the intersection graphs of finitely many simply-connected and interior-disjoint regions of the Euclidean plane. Informally, our lemma states the following. For any map graph G, there√ exists√ a collection (U1,...,Ut) of cliques of G with the following property: G either contains√ a k × k-grid as a minor, or it admits a tree decomposition where every bag is the union of O( k) of the cliques in the above collection.
    [Show full text]
  • Fixed-Parameter Algorithms for (K,R)-Center in Planar Graphs And
    Fixed-Parameter Algorithms for (k, r)-Center in Planar Graphs and Map Graphs ERIK D. DEMAINE MIT, Cambridge, Massachusetts FEDOR V. FOMIN University of Bergen, Bergen, Norway MOHAMMADTAGHI HAJIAGHAYI MIT, Cambridge, Massachusetts AND DIMITRIOS M. THILIKOS Universitat Politecnica` de Catalunya, Barcelona, Spain Abstract. The (k, r)-center problem asks whether an input graph G has ≤ k vertices (called centers) such that every vertex of G is within distance ≤ r from some center. In this article, we prove that the (k, r)-center problem, parameterized by k and r,isfixed-parameter tractable (FPT) on planar graphs, O(1) i.e., it admits an algorithm of complexity f (√k, r)n where the function f is independent of n.In particular, we show that f (k, r) = 2O(r log r) k , where the exponent of the exponential term grows sublinearly in the number of centers. Moreover, we prove that the same type of FPT algorithms can be designed for the more general class of map graphs introduced by Chen, Grigni, and Papadimitriou. Our results combine dynamic-programming algorithms for graphs of small branchwidth and a graph- theoretic result bounding this parameter in terms of k and r. Finally, a byproduct of our algorithm is the existence of a PTAS for the r-domination problem in both planar graphs and map graphs. Our approach builds on the seminal results of Robertson and Seymour on Graph Minors, and as a result is much more powerful than the previous machinery of Alber et al. for exponential speedup A preliminary version of this article appeared in the Proceedings of the 30th International Colloquium on Automata, Languages and Programming (ICALP’03).
    [Show full text]
  • Fast Algorithms for Hard Graph Problems: Bidimensionality, Minors
    FastFast AlgorithmsAlgorithms foforr HardHard GraphGraph Problems:Problems: BidimensionalityBidimensionality,, Minors,Minors, andand (Local)(Local) TreewidthTreewidth MohammadTaghiMohammadTaghi HajiaghayiHajiaghayi CSCS && AIAI LabLab M.I.T.M.I.T. JointJoint workwork mainlymainly withwith ErikErik DemaineDemaine EDD = Erik D. Demaine, MTH = MohammadTaghi Hajiaghayi ReferencesReferences FVF = Fedor Fomin, DMT = Dimitrios Thilikos ❚ EDD & MTH, “Bidimensionality: New ❚ EDD & MTH, “Fast Algorithms for Connections between FPT Algorithms Hard Graph Problems: Bidimen- and PTASs”, SODA 2005. sionality, Minors, and Local ❚ EDD & MTH, “Graphs Excluding a Fixed Treewidth”, GD 2004. Minor have Grids as Large as ❚ EDD, FVF, MTH, & DMT, Treewidth, with Combinatorial and “Bidimensional Parameters and Local Algorithmic Applications through Treewidth”, SIDMA 2005. Bidimensionality”, SODA 2005. ❚ ❚ EDD & MTH, “Diameter and Tree- EDD, MTH & DMT, “Exponential Speed- width in Minor-Closed Graph Fami- up of FPT Algorithms for Classes of lies, Revisited”, Algorithmica 2004. Graphs Excluding Single-Crossing ❚ Graphs as Minors”, Algorithmica 2005. EDD, MTH, & DMT, “The Bidimen- ❚ sional Theory of Bounded-Genus EDD, FVF, MTH, & DMT, “Fixed- Graphs”, SIDMA 2005. Parameter Algorithms for (k, r)-Center ❚ in Planar Graphs and Map Graphs”, ACM EDD & MTH, “Equivalence of Local Trans. on Algorithms 2005. Treewidth and Linear Local ❚ Treewidth and its Algorithmic EDD, MTH, Naomi Nishimura, Applications”, SODA 2004. Prabhakar Ragde, & DMT, “Approx- ❚ imation algorithms for classes of EDD, FVF, MTH, & DMT, “Subexpo- graphs excluding single-crossing graphs nential parameterized algorithms on as minors”, J. Comp & System Sci.2004. graphs of bounded genus and H- ❚ minor-free graphs”, JACM 2005. EDD, MTH, Ken-ichi Kawarabayashi, ❚ “Algorithmic Graph Minor Theory: Uriel Feige, MTH & James R. Lee, Decomposition, Approximation, and “Improved approximation algorithms Coloring’’, FOCS 2005.
    [Show full text]
  • Decomposition of Map Graphs with Applications Fedor V
    Decomposition of Map Graphs with Applications Fedor V. Fomin University of Bergen, Norway, [email protected] Daniel Lokshtanov University of California, Santa Barbara, USA, [email protected] Fahad Panolan University of Bergen, Norway, [email protected] Saket Saurabh The Institute of Mathematical Sciences, HBNI, Chennai, India, [email protected] Meirav Zehavi Ben-Gurion University of the Negev, Beer-Sheva, Israel, [email protected] Abstract Bidimensionality is the most common technique to design subexponential-time parameterized algorithms on special classes of graphs, particularly planar graphs. The core engine behind it is a combinatorial√ lemma√ of Robertson, Seymour and Thomas√ that states that every planar graph either has a k × k-grid as a minor, or its treewidth is O( k). However, bidimensionality theory cannot be extended directly to several well-known√ √ classes of geometric graphs. The reason is very simple: a clique on k − 1 vertices has no k × k-grid as a minor and its treewidth is k − 2, while classes of geometric graphs such as unit disk graphs or map graphs can have arbitrarily large cliques. Thus, the combinatorial lemma of Robertson, Seymour and Thomas is inapplicable to these classes of geometric graphs. Nevertheless, a relaxation of this lemma has been proven useful for unit disk graphs. Inspired by this, we prove a new decomposition lemma for map graphs, the intersection graphs of finitely many simply-connected and interior-disjoint regions of the Euclidean plane. Informally, our lemma states the following. For any map graph G, there√ exists√ a collection (U1,...,Ut) of cliques of G with the following property: G either contains√ a k × k-grid as a minor, or it admits a tree decomposition where every bag is the union of O( k) of the cliques in the above collection.
    [Show full text]
  • Notes on Graph Product Structure Theory
    Notes on Graph Product Structure Theory Zdenekˇ Dvorák,ˇ Tony Huynh, Gwenaël Joret, Chun-Hung Liu, and David R. Wood Abstract It was recently proved that every planar graph is a subgraph of the strong product of a path and a graph with bounded treewidth. This paper surveys gener- alisations of this result for graphs on surfaces, minor-closed classes, various non- minor-closed classes, and graph classes with polynomial growth. We then explore how graph product structure might be applicable to more broadly defined graph classes. In particular, we characterise when a graph class defined by a cartesian or strong product has bounded or polynomial expansion. We then explore graph prod- uct structure theorems for various geometrically defined graph classes, and present several open problems. Zdenekˇ Dvorákˇ Charles University, Prague, Czech Republic Supported by project 17-04611S (Ramsey-like aspects of graph coloring) of Czech Science Foun- dation e-mail: [email protected] Tony Huynh and David R. Wood School of Mathematics, Monash University, Melbourne, Australia Research supported by the Australian Research Council e-mail: [email protected],[email protected] Gwenaël Joret Département d’Informatique, Université libre de Bruxelles, Brussels, Belgium Research supported by the Wallonia-Brussels Federation of Belgium, and by the Australian Re- search Council e-mail: [email protected] Chun-Hung Liu Department of Mathematics, Texas A&M University, College Station, Texas, USA Partially supported by the NSF under Grant No. DMS-1929851 e-mail: [email protected] 1 2 Zdenekˇ Dvorák,ˇ Tony Huynh, Gwenaël Joret, Chun-Hung Liu, and David R.
    [Show full text]
  • 10 Excluded Grid Minors and Efficient Polynomial-Time Approximation
    Excluded Grid Minors and Eficient Polynomial-Time Approximation Schemes FEDOR V. FOMIN and DANIEL LOKSHTANOV, University of Bergen SAKET SAURABH, University of Bergen and the Institute of Mathematical Sciences Two of the most widely used approaches to obtain polynomial-time approximation schemes (PTASs) on pla- nar graphs are the Lipton-Tarjan separator-based approach and Baker’s approach. In 2005, Demaine and Hajiaghayi strengthened both approaches using bidimensionality and obtained efcient polynomial-time ap- proximation schemes (EPTASs) for several problems, including Connected Dominating Set and Feedback Vertex Set. In this work, we unify the two strengthened approaches to combine the best of both worlds. We develop a framework allowing the design of EPTAS on classes of graphs with the subquadratic grid minor (SQGM) property. Roughly speaking, a class of graphs has the SQGM property if, for every graph G from the class, the fact that G contains no t t grid as a minor guarantees that the treewidth of G is subquadratic in × t. For example, the class of planar graphs and, more generally, classes of graphs excluding some fxed graph as a minor, have the SQGM property. At the heart of our framework is a decomposition lemma stating that for “most” bidimensional problems on a graph class with the SQGM property, there is a polynomial-time G algorithm that, given a graph G as input and an ϵ > 0, outputs a vertex set X of size ϵ OPT such that ∈G · the treewidth of G X is f (ϵ). Here, OPT is the objective function value of the problem in question and f is a − function depending only on ϵ.
    [Show full text]