The Bidimensionality Theory and Its Algorithmic Applications∗
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Treewidth and Graph Minors
On Treewidth and Graph Minors Daniel John Harvey Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy February 2014 Department of Mathematics and Statistics The University of Melbourne Produced on archival quality paper ii Abstract Both treewidth and the Hadwiger number are key graph parameters in structural and al- gorithmic graph theory, especially in the theory of graph minors. For example, treewidth demarcates the two major cases of the Robertson and Seymour proof of Wagner's Con- jecture. Also, the Hadwiger number is the key measure of the structural complexity of a graph. In this thesis, we shall investigate these parameters on some interesting classes of graphs. The treewidth of a graph defines, in some sense, how \tree-like" the graph is. Treewidth is a key parameter in the algorithmic field of fixed-parameter tractability. In particular, on classes of bounded treewidth, certain NP-Hard problems can be solved in polynomial time. In structural graph theory, treewidth is of key interest due to its part in the stronger form of Robertson and Seymour's Graph Minor Structure Theorem. A key fact is that the treewidth of a graph is tied to the size of its largest grid minor. In fact, treewidth is tied to a large number of other graph structural parameters, which this thesis thoroughly investigates. In doing so, some of the tying functions between these results are improved. This thesis also determines exactly the treewidth of the line graph of a complete graph. This is a critical example in a recent paper of Marx, and improves on a recent result by Grohe and Marx. -
A Unified Polynomial-Time Algorithm for Feedback Vertex Set on Graphs
A Unified Polynomial-Time Algorithm for Feedback Vertex Set on Graphs of Bounded Mim-Width Lars Jaffke Department of Informatics, University of Bergen, Norway lars.jaff[email protected] O-joung Kwon Logic and Semantics, Technische Universität Berlin, Berlin, Germany [email protected] Jan Arne Telle Department of Informatics, University of Bergen, Norway [email protected] Abstract We give a first polynomial-time algorithm for (Weighted) Feedback Vertex Set on graphs of bounded maximum induced matching width (mim-width). Explicitly, given a branch decom- position of mim-width w, we give an nO(w)-time algorithm that solves Feedback Vertex Set. This provides a unified algorithm for many well-known classes, such as Interval graphs and Permutation graphs, and furthermore, it gives the first polynomial-time algorithms for other classes of bounded mim-width, such as Circular Permutation and Circular k-Trapezoid graphs for fixed k. In all these classes the decomposition is computable in polynomial time, as shown by Belmonte and Vatshelle [Theor. Comput. Sci. 2013]. We show that powers of graphs of tree-width w − 1 or path-width w and powers of graphs of clique-width w have mim-width at most w. These results extensively provide new classes of bounded mim-width. We prove a slight strengthening of the first statement which implies that, surprisingly, Leaf Power graphs which are of importance in the field of phylogenetic studies have mim-width at most 1. Given a tree decomposition of width w − 1, a path decomposition of width w, or a clique-width w-expression of a graph G, one can for any value of k find a mim-width decomposition of its k-power in polynomial time, and apply our algorithm to solve Feedback Vertex Set on the k-power in time nO(w). -
Treewidth I (Algorithms and Networks)
Treewidth Algorithms and Networks Overview • Historic introduction: Series parallel graphs • Dynamic programming on trees • Dynamic programming on series parallel graphs • Treewidth • Dynamic programming on graphs of small treewidth • Finding tree decompositions 2 Treewidth Computing the Resistance With the Laws of Ohm = + 1 1 1 1789-1854 R R1 R2 = + R R1 R2 R1 R2 R1 Two resistors in series R2 Two resistors in parallel 3 Treewidth Repeated use of the rules 6 6 5 2 2 1 7 Has resistance 4 1/6 + 1/2 = 1/(1.5) 1.5 + 1.5 + 5 = 8 1 + 7 = 8 1/8 + 1/8 = 1/4 4 Treewidth 5 6 6 5 2 2 1 7 A tree structure tree A 5 6 P S 2 P 6 P 2 7 S Treewidth 1 Carry on! • Internal structure of 6 6 5 graph can be forgotten 2 2 once we know essential information 1 7 about it! 4 ¼ + ¼ = ½ 6 Treewidth Using tree structures for solving hard problems on graphs 1 • Network is ‘series parallel graph’ • 196*, 197*: many problems that are hard for general graphs are easy for e.g.: – Trees NP-complete – Series parallel graphs • Many well-known problems Linear / polynomial time computable 7 Treewidth Weighted Independent Set • Independent set: set of vertices that are pair wise non-adjacent. • Weighted independent set – Given: Graph G=(V,E), weight w(v) for each vertex v. – Question: What is the maximum total weight of an independent set in G? • NP-complete 8 Treewidth Weighted Independent Set on Trees • On trees, this problem can be solved in linear time with dynamic programming. -
A Fixed-Parameter Algorithm for the Directed Feedback Vertex Set Problem
A Fixed-Parameter Algorithm for the Directed Feedback Vertex Set Problem Jianer Chen, Yang Liu, Songjian Lu Barry O’Sullivan and Igor Razgon Department of Computer Science Cork Constraint Computation Centre Texas A&M University Computer Science Department College Station, TX 77843, USA University College Cork, Ireland {chen,yangliu,sjlu}@cs.tamu.edu {b.osullivan,i.razgon}@cs.ucc.ie ABSTRACT played an essential role in the study of deadlock recovery in database systems and in operating systems [30, 14]. In such The (parameterized) feedback vertex set problem on di- a system, the status of system resource allocations can be rected graphs, which we refer to as the dfvs problem, is defined as follows: given a directed graph G and a param- represented as a directed graph G (i.e., the system resource- eter k, either construct a feedback vertex set of at most k allocation graph), and a directed cycle in G represents a vertices in G or report that no such set exists. Whether or deadlock in the system. Therefore, in order to recover from deadlocks, we need to abort a set of processes in the system, not the dfvs problem is fixed-parameter tractable has been a well-known open problem in parameterized computation i.e., to remove a set of vertices in the graph G, so that all and complexity, i.e., whether the problem can be solved in directed cycles in G are broken. Equivalently, we need to time f(k)nO(1) for some function f. In this paper we develop find a FVS in the graph G. -
The Complexity of Two Graph Orientation Problems
The Complexity of Two Graph Orientation Problems Nicole Eggemann∗ and Steven D. Noble† Department of Mathematical Sciences, Brunel University Kingston Lane Uxbridge UB8 3PH United Kingdom [email protected] and [email protected] November 8, 2018 Abstract We consider two orientation problems in a graph, namely the mini- mization of the sum of all the shortest path lengths and the minimization of the diameter. We show that it is NP-complete to decide whether a graph has an orientation such that the sum of all the shortest paths lengths is at most an integer specified in the input. The proof is a short reduction from a result of Chv´atal and Thomassen showing that it is NP-complete to decide whether a graph can be oriented so that its diameter is at most 2. In contrast, for each positive integer k, we describe a linear-time algo- rithm that decides for a planar graph G whether there is an orientation for which the diameter is at most k. We also extend this result from planar graphs to any minor-closed family F not containing all apex graphs. 1 Introduction We consider two problems concerned with orienting the edges of an undirected graph in order to minimize two global measures of distance in the resulting directed graph. Our work is motivated by an application involving the design of arXiv:1004.2478v1 [math.CO] 14 Apr 2010 urban light rail networks of the sort described in [22]. In such an application, a number of stations are to be linked with unidirectional track in order to minimize some function of the travel times between stations and subject to constraints on cost, engineering and planning. -
Constrained Representations of Map Graphs and Half-Squares
Constrained Representations of Map Graphs and Half-Squares Hoang-Oanh Le Berlin, Germany [email protected] Van Bang Le Universität Rostock, Institut für Informatik, Rostock, Germany [email protected] Abstract The square of a graph H, denoted H2, is obtained from H by adding new edges between two distinct vertices whenever their distance in H is two. The half-squares of a bipartite graph B = (X, Y, EB ) are the subgraphs of B2 induced by the color classes X and Y , B2[X] and B2[Y ]. For a given graph 2 G = (V, EG), if G = B [V ] for some bipartite graph B = (V, W, EB ), then B is a representation of G and W is the set of points in B. If in addition B is planar, then G is also called a map graph and B is a witness of G [Chen, Grigni, Papadimitriou. Map graphs. J. ACM, 49 (2) (2002) 127-138]. While Chen, Grigni, Papadimitriou proved that any map graph G = (V, EG) has a witness with at most 3|V | − 6 points, we show that, given a map graph G and an integer k, deciding if G admits a witness with at most k points is NP-complete. As a by-product, we obtain NP-completeness of edge clique partition on planar graphs; until this present paper, the complexity status of edge clique partition for planar graphs was previously unknown. We also consider half-squares of tree-convex bipartite graphs and prove the following complexity 2 dichotomy: Given a graph G = (V, EG) and an integer k, deciding if G = B [V ] for some tree-convex bipartite graph B = (V, W, EB ) with |W | ≤ k points is NP-complete if G is non-chordal dually chordal and solvable in linear time otherwise. -
Arxiv:2104.09976V2 [Cs.CG] 2 Jun 2021
Finding Geometric Representations of Apex Graphs is NP-Hard Dibyayan Chakraborty* and Kshitij Gajjar† June 3, 2021 Abstract Planar graphs can be represented as intersection graphs of different types of geometric objects in the plane, e.g., circles (Koebe, 1936), line segments (Chalopin & Gonc¸alves, 2009), L-shapes (Gonc¸alves et al., 2018). For general graphs, however, even deciding whether such representations exist is often NP-hard. We consider apex graphs, i.e., graphs that can be made planar by removing one vertex from them. We show, somewhat surprisingly, that deciding whether geometric representations exist for apex graphs is NP-hard. More precisely, we show that for every positive integer k, recognizing every graph class G which satisfies PURE-2-DIR ⊆ G ⊆ 1-STRING is NP-hard, even when the input graphs are apex graphs of girth at least k. Here, PURE-2-DIR is the class of intersection graphs of axis-parallel line segments (where intersections are allowed only between horizontal and vertical segments) and 1-STRING is the class of intersection graphs of simple curves (where two curves share at most one point) in the plane. This partially answers an open question raised by Kratochv´ıl & Pergel (2007). Most known NP-hardness reductions for these problems are from variants of 3-SAT. We reduce from the PLANAR HAMILTONIAN PATH COMPLETION problem, which uses the more intuitive notion of planarity. As a result, our proof is much simpler and encapsulates several classes of geometric graphs. Keywords: Planar graphs, apex graphs, NP-hard, Hamiltonian path completion, recognition problems, geometric intersection graphs, 1-STRING, PURE-2-DIR. -
Fast Dynamic Programming on Graph Decompositions
Fast Dynamic Programming on Graph Decompositions∗ Johan M. M. van Rooij† Hans L. Bodlaender† Erik Jan van Leeuwen‡ Peter Rossmanith§ Martin Vatshelle‡ June 6, 2018 Abstract In this paper, we consider three types of graph decompositions, namely tree decompo- sitions, branch decompositions, and clique decompositions. We improve the running time of dynamic programming algorithms on these graph decompositions for a large number of problems as a function of the treewidth, branchwidth, or cliquewidth, respectively. Such algorithms have many practical and theoretical applications. On tree decompositions of width k, we improve the running time for Dominating Set to O∗(3k). Hereafter, we give a generalisation of this result to [ρ,σ]-domination problems with finite or cofinite ρ and σ. For these problems, we give O∗(sk)-time algorithms. Here, s is the number of ‘states’ a vertex can have in a standard dynamic programming algorithm for such a problems. Furthermore, we give an O∗(2k)-time algorithm for counting the number of perfect matchings in a graph, and generalise this result to O∗(2k)-time algorithms for many clique covering, packing, and partitioning problems. On branch decompositions of width k, we give ∗ ω k ∗ ω k an O (3 2 )-time algorithm for Dominating Set, an O (2 2 )-time algorithm for counting ∗ ω k the number of perfect matchings, and O (s 2 )-time algorithms for [ρ,σ]-domination problems involving s states with finite or cofinite ρ and σ. Finally, on clique decompositions of width k, we give O∗(4k)-time algorithms for Dominating Set, Independent Dominating Set, and Total Dominating Set. -
Bidimensionality Theory and Algorithmic Graph Minor Theory Lecture Notes for Mohammadtaghi Hajiaghayi’S Tutorial
Bidimensionality Theory and Algorithmic Graph Minor Theory Lecture Notes for MohammadTaghi Hajiaghayi’s Tutorial Mareike Massow,∗ Jens Schmidt,† Daria Schymura,‡ Siamak Tazari§ MDS Fall School Blankensee October 2007 1 Introduction Dealing with Hard Graph Problems Many graph problems cannot be computed in polynomial time unless P = NP , which most computer scientists and mathematicians doubt. Examples are the Traveling Salesman Problem (TSP), vertex cover, and dominating set. TSP is to find a Hamiltonian cycle with the least weight in a complete weighted graph. A vertex cover of a graph is a subset of the vertices that covers all edges. A dominating set in a graph is a subset of the vertices such that each vertex is contained in the set or has a neighbour in the set. The decision problem is to answer the question whether there is a vertex cover resp. a dominating set with at most k elements. The optimization problem is to find a vertex cover resp. a dominating set of minimal size. How can we solve these problems despite their computational complexity? The four main theoretical approaches to handle NP -hard problems are the following. • Average case: Prove that an algorithm is efficient in the expected case. • Special instances: A problem is solved efficiently for a special graph class. For example, graph isomor- phism is computable in linear time on planar graphs whereas graph isomorphism in general is known to be in NP and suspected not to be in P . • Approximation algorithms: Approximate the optimal solution within a constant factor c, or even within 1 + . An algorithmic scheme that gives for each > 0 a polynomial-time (1 + )-approximation is called a polynomial-time approximation scheme (PTAS). -
Total Domination on Some Graph Operators
mathematics Article Total Domination on Some Graph Operators José M. Sigarreta Faculty of Mathematics, Autonomous University of Guerrero, Carlos E. Adame 5, Col. La Garita, C. P. 39350 Acapulco, Mexico; [email protected]; Tel.: +52-744-159-2272 Abstract: Let G = (V, E) be a graph; a set D ⊆ V is a total dominating set if every vertex v 2 V has, at least, one neighbor in D. The total domination number gt(G) is the minimum cardinality among all total dominating sets. Given an arbitrary graph G, we consider some operators on this graph; S(G), R(G), and Q(G), and we give bounds or the exact value of the total domination number of these new graphs using some parameters in the original graph G. Keywords: domination theory; total domination; graph operators 1. Introduction The study of the mathematical and structural properties of operators in graphs was initiated in Reference [1]. This study is a current research topic, mainly because of its multiple theoretical and practical applications (see References [2–6]). Motivated by the previous investigations, we work here on the total domination number of some graph operators. Other important parameters have also been studied in this type of graphs (see References [7,8]). We denote by G = (V, E) a finite simple graph of order n = jVj and size m = jEj. For any two adjacent vertices u, v 2 V, uv denotes the corresponding edge, and we denote N(v) = fu 2 V : uv 2 Eg and N[v] = N(v) [ fvg. We denote by D, d the maximum and Citation: Sigarreta, J.M. -
Locating Domination in Bipartite Graphs and Their Complements
Locating domination in bipartite graphs and their complements C. Hernando∗ M. Moray I. M. Pelayoz Abstract A set S of vertices of a graph G is distinguishing if the sets of neighbors in S for every pair of vertices not in S are distinct. A locating-dominating set of G is a dominating distinguishing set. The location-domination number of G, λ(G), is the minimum cardinality of a locating-dominating set. In this work we study relationships between λ(G) and λ(G) for bipartite graphs. The main result is the characterization of all connected bipartite graphs G satisfying λ(G) = λ(G) + 1. To this aim, we define an edge-labeled graph GS associated with a distinguishing set S that turns out to be very helpful. Keywords: domination; location; distinguishing set; locating domination; complement graph; bipartite graph. AMS subject classification: 05C12, 05C35, 05C69. ∗Departament de Matem`atiques. Universitat Polit`ecnica de Catalunya, Barcelona, Spain, car- [email protected]. Partially supported by projects Gen. Cat. DGR 2017SGR1336 and MTM2015- arXiv:1711.01951v2 [math.CO] 18 Jul 2018 63791-R (MINECO/FEDER). yDepartament de Matem`atiques. Universitat Polit`ecnica de Catalunya, Barcelona, Spain, [email protected]. Partially supported by projects Gen. Cat. DGR 2017SGR1336, MTM2015-63791-R (MINECO/FEDER) and H2020-MSCA-RISE project 734922 - CONNECT. zDepartament de Matem`atiques. Universitat Polit`ecnica de Catalunya, Barcelona, Spain, ig- [email protected]. Partially supported by projects MINECO MTM2014-60127-P, igna- [email protected]. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement No 734922. -
New Bounds on the Number of Edges in a K-Map Graph
New bounds on the edge number of a k-map graph ∗ Zhi-Zhong Chen y Abstract It is known that for every integer k 4, each k-map graph with n vertices has at most ≥ kn 2k edges. Previously, it was open whether this bound is tight or not. We show that this − bound is tight for k = 4, 5. We also show that this bound is not tight for large enough k (namely, k 374); more precisely, we show that for every 0 < < 3 and for every integer k 140 , ≥ 328 ≥ 41 each k-map graph with n vertices has at most ( 325 + )kn 2k edges. This result implies the 328 − first polynomial (indeed linear) time algorithm for coloring a given k-map graph with less than 2k colors for large enough k. We further show that for every positive multiple k of 6, there are 11 1 infinitely many integers n such that some k-map graph with n vertices has at least ( 12 k + 3 )n edges. Key words. Planar graph, plane embedding, sphere embedding, map graph, k-map graph, edge number. AMS subject classifications. 05C99, 68R05, 68R10. Abbreviated title. Edge Number of k-Map Graphs. 1 Introduction Chen, Grigni, and Papadimitriou [6] studied a modified notion of planar duality, in which two nations of a (political) map are considered adjacent when they share any point of their boundaries (not necessarily an edge, as planar duality requires). Such adjacencies define a map graph. The map graph is called a k-map graph for some positive integer k, if no more than k nations on the map meet at a point.